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Weed recognition by SVM texture feature  
classification in outdoor vegetable crop images

Reconocimiento de maleza por características de textura usando  
SVM en imágenes exteriores de cultivos de hortalizas

Camilo Pulido1, Leonardo Solaque2,and Nelson Velasco3

ABSTRACT 

This paper presents a classification system for weeds and vegetables from outdoor crop images. The classifier is based on Support 
Vector Machine (SVM) with its extension to the nonlinear case, using the Radial Basis Function (RBF) and optimizing its scale 
parameter σ to smooth the boundary decision. The feature space is the result of Principal Component Analysis (PCA) for 10 texture 
measurements calculated from Gray Level Co-occurrence Matrices (GLCM). The results indicate that classifier performance is above 
90%, validated with specificity, sensitivity and precision calculations.

Keywords: Weed recognition, support vectors, co-occurrence matrix, PCA.

RESUMEN

El presente trabajo muestra un sistema de clasificación de maleza y hortalizas a partir de imágenes exteriores de cultivos. El 
clasificador está basado en la teoría de las máquinas de vectores de soporte (Support Vector Machine  o SVM) con su extensión para 
el caso no lineal, haciendo uso de la función de base radial (RBF) y optimizando su parámetro de escala σ para suavizar la región 
de decisión. El espacio de características es el resultado del análisis por componentes principales (PCA) de 10 medidas de textura 
calculadas a partir de matrices de co-ocurrencia en niveles de gris (GLCM). Los resultados indican un rendimiento del clasificador 
por encima del 90%, calculando los índices de especificidad, sensibilidad y precisión.
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Introduction

Weeds are plants that compete with the desired commercial 
crop, lowering productivity. They do this by blocking 
irrigation canals and by competing for water, nutrients, 
space, and light, consequently, the quality and crop yield 
decreases. A robotics application that can discriminate 
between weeds and crops from images is a cost-effective 
alternative to allow selective treatment to focus on 
optimizing resources and preserving environments, by 
identifying and removing only weed plants mixed with 
vegetables in crops. This approach can be solved using 
images processing to select undesired plants and by making 
an autonomous mechanical eradication on a mobile 
platform moving through crop, without affecting the other 
plants using chemical products.

Recent developments on the field of machine vision have 
led to a renewed interest in implementing weed recognition 
systems based on it. Basically, there are three main 
approaches for weed detection: based on colour, shape 
and texture analysis. Relating to colour and shape features, 
previous research suggests a criterion for segmenting 
plants based on a Vegetation Index that emphasizes the 
“green” component of the source image. Two such indices 
are the Excess Green Index (Woebbecke, et al., 1995), 
(Muangkasem, et al., 2010) and the Normalized Difference 
Vegetation Index using for weed classification considering 
color and shape (Pérez et al., 2000) and quantify map 
vegetative cover (Wiles, 2011). An advantage of indices 
is that they may perform well with different sunlight and 
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background conditions, as a side effect. Colour features can 
be complemented with shape features that describe their 
geometry. If weeds can be identified by using shapes, then 
they can be identified by using area, perimeter, convexity 
and longest chord calculations (Shinde & Shukla, 2014). 

Other studies have been carried out for weed classification 
with texture features using texture measures calculated on 
the basis of the Gray Level Co-Occurrence Matrix (GLCM) 
(Haralick, et al., 1973 and Burks, 1997), which preserves the 
spatial and high and texture descriptors have been used for 
training neural networks to identify plant species or weeds; 
numerous researchers have explained this approach, some 
of the most relevant articles are shown in  Huang K. (2007) 
and  Kavdir I. (2004) with classification accuaracy around 
90%. Wu & Wen (2009) proposed a support vector machine 
classifier to identify weeds in corn fields during early crop 
stages, using the co-occurrence matrix in gray levels and 
statistical histogram properties to extract texture features 
with greater accuracy to 92%. Similarly,  Ahmed, et al. 
(2012) evaluate fourteen colour, size and moment invariant 
features to get an optimal combination that provides the 
highest classification rate; their result achieves above 97% 
accuracy.

Based on studies described above, there exists a potential 
of using texture features to discriminate weed and 
vegetables applied to classifiers design and so to be carried 
to agriculture robotic applications. The main objective 
of the research presented in this paper is to develop a 
weed identification system using GLCM texture features 
extraction and their dimensionality reduction using 
Principal Component Analysis (PCA) to get suitable patterns 
in 2D feature space for training a support vector machine 
classifier from outdoor and unfiltered RGB images. The 
data processing system consists of a 3,30 GHz processor 
and 8GB RAM running MATLAB 2015b.

This paper has been divided into five parts. The first part is the 
Introduction; section 2 describes texture feature calculation 
and dimensionality reduction. In section 3, Support Vector 
Machine training is explained. Results and discussion are in 
section 4. The final part 5 is about conclusions and future 
work. Finally, acknowledgements are presented.

Texture Feature Processing using PCA

Texture features quantify, in various ways, grey levels 
differences. Building texture calculations over an entire 
image makes visible areas where these changes occur. 
Processing for texture features extraction contains a data 
base with outdoor vegetables crops images for SVM 
training, including labeled images according to weed and 
vegetables classes. Then, Grey Level Co-Occurrence Matrix 
method (GLCM) is purposed for each observation in the 
training set, where each matrix calculated serves as a basis 
to compute 10 statistical texture measures. Then, Principal 
Component Analysis (PCA) is used to represent original data 

in a new base where most variance is preserved on each 
axis; as a result, dimensionality reduction is performed to 
get a 2D feature space which procedure is described below.

GLCM and texture feature extraction

The GLCM method is a practical way to organize and 
tabulate the changes in brightness for different combinations 
of pixels, preserving the spatial information, getting first 
and second order texture measures, obtaining statistical 
calculations considering or not the relationship between 
neighboring pixels. The mathematical definition of co-
occurrence matrix is shown in the Equation (1).
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Where C, is a co-occurrence matrix defined over an I 
image with m x n size, parameterized with steps ∆x and ∆x. 
This matrix must be modified in such a way diagonal and 
normalized according to Haralick, et al., (1973) for texture 
calculations. The present paper works with ten texture 
measures computed from the co-occurrence matrix. These 
features were selected for cover three groups: contrast, 
order and descriptive statistics. Likewise, these quantify 
similarity or local variance in the image, deviation of the 
gray levels, co-occurrence frequency of pixels, uniformity 
and homogeneity of the image within the image evaluation. 
The mathematical expressions about texture features are 
shown in Equations (2) – (11).
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Difference Variance: Variance of   p x−y    ( 10 )

Cluster Shade:
i
∑

j
∑ i+ j−µ x −µ y( ) 3 p i, j( )  ( 11 )

Where Nx and Ny are the columns and rows respectively 
to rectangular image, quantized in Ng gray levels and p(i,j) 
are the input (i,j)ith of the normalized GLCM. 

The database of images was built using 250 photos captured 
by a person moving along vegetable crops using an 8MP 
camera perpendicular to crop lines, avoiding illumination 
disturbances in a not-automated manner, controlling the 
lens aperture for redu-cing light input to preserve the real 
color of the plants. Although this process was manual, it is 

a first approach to testing the present weed classification 
based on texture descriptors, and even more thinking about 
further work with light controlled conditions using a camera 
obscura. The photos used in this paper include spinach and 
chard crops of “Horticulture Technology”, an academic 
program of Universidad Militar Nueva Granada Campus 
in Cajicá, Colombia. The images were labeled manually 
based on the random growth of weed and the expertise of 
crops manager to identify using a binary classifier between 
weed and plants classes. 

With the dataset acquired, an observation with 100 x 100 
pixels was built, dividing the original image into a grid. 
Some of the images used for feature extraction are shown 
in Figure 1.

Figure 1. Some images used for feature extraction. Left: Vegetable class. Right: Weed class.

It is important to highlight that the size of the observation 
was considered in this way, due to weed size. If the area 
was smaller, it would be a kind of zoom in and the little 
leafs of the weed could fill the entire window.

Then, texture measurements described above are calculated 
for each GLCM (observation with size of 100 x 100 pixels). 
Following this, results were stored and tabulated in a 
matrix of 250 rows for the observations and 10 columns 
representing the variables or texture descriptors.

PCA and dimensionality reduction

The Principal Component Analysis (PCA) is a multivariate 
method or tool used to find patterns in data, establishing a 
relationship of observed variables to detect trends, groups, 
deviations and outliers. The objective of the analysis is 
to represent the data in terms of a Y matrix that contains 
the greatest variance information in the directions of 
their eigenvectors (see Equation (12)), from X matrix with 
n columns for samples and m rows assigned to variables 
(Reddy, et al., 2012).

 Y = αX  (12)

The principal components α result from eigenvectors of 
normalized covariance matrix of X, which are orthogonal 
to each other and sorted in descending order respect 
to eigenvalues (proportion of total dataset variance). 
Eigenvalues, therefore, indicate the proportion of variance 
and importance (length) of each principal component 
axis. To clarify, PCA calculation should be with the 
normalized data, subtracting the mean and divided by 
standard deviation, in order to avoid a large variance 
values due to measuring range and units of the extracted 
texture features.

For the purpose of increasing the reliability of weed 
classification, a dimensionality reduction is carried out 
preserving the greatest variance in the data, thus, the 
eigenchannels derived from the texture descriptors and 
containing the majority of the input variance are those 
that best describe the features resulting from the linear 
combination of all calculated texture statistics for this 
particular image. The PCA calculation is performed on 
training set and the cumulative variances are shown in 1.
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Table 1. Principal components cumulative variance (%)

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

56,90 80,96 93,20 96,48 99,56 99,89 99,99 99,99 100 100

Moreover, another way of analyzing the principal 
component relevance for dimensionality reduction is 
through scree plot that represents eigenvalues versus 
number of components (See Figure 2).

Support Vector Machine classification

Support Vector Machine (SVM) is a discriminative classifier 
formally defined by a separating hyperplane. Support vectors 
are the closest examples to the separating hyperplane, and 
the aim of SVM is to orientate this hyperplane in such a way 
as to be as far as possible (margin) from the closest members 
of both classes. This separating hyperplane works as the 
decision surface and is described by wx+b=0, where w is 
normal to the hyperplane and b/||w|| is the perpendicular 
distance from the hyperplane to the origin. The Figure 4 
shows a decision boundary example for discriminating 
two classes A (Circles) and B (Triangles) corresponding to 
vectors xi of the training set, with yi class labels of +1 and 
-1 respectively. The hyperplane´s equidistance from H1 and 
H2 (d1+d2) means a quantity known as margin. 

Figure 2. Scree plot. Eigenvalues vs Number of principal components.

The descriptors must contain the most information possible 
about classes to discriminate them. In the same way, this 
corresponds to the direction with the greatest variance 
(eigenvalues) in the data. With this in mind, the first two 
components retain 80,96% of the data variance. For the 
purpose to validate a clear difference between weed and 
vegetable classes in 2D principal component space, the 
training set is transformed using eigenvectors obtained and 
graphed in Figure 3.

Figure 3. Mapped features in 2D Principal Component space. Red: 
Weed-Green: Vegetables.

These results show a group of differentiable features for 
classes, and form the basis for the classifier design. 

Figure 4. Hyperplane through two linearly separable classes.

Then, the SVM approach is based on selecting the variables 
w and b to describe training data using Equations (13) and 
(14).

 x i.ω+ b≥+1 (13)

 x i.ω+ b≥−1 (14)

In order to orientate the hyperplane to be far from the 
Support Vectors, it is necessary to maximize the margin 
value 1/||w||. This implies to:

 Minimize : φ w,b( )= w 2
 (15)

 Subject to :  y i w,x+ b⎡
⎣⎢

⎤
⎦⎥ −1≥ 0  (16)

This is a convex quadratic optimization problem, which 
than can be expressed as a dual problem with Lagrange 
Multipliers.
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Where Λ=(λ1,…, λl) is the vector of non-negative Lagrange 
multipliers corresponding to the constraints in Equation 
(16). Therefore, the dual problem is:

 Maximize : w λ( )=
i=1

l

∑λ i−
1
2 i=1

l

∑
j=1

l

∑λ iλ j y i y jx i, y i (18)

 Subjec to :
i=1

l

∑y iλ i = 0, λ i > 0, i=1,2,…,l  (19)

The optimal solution λ* is a discriminant function to classify 
new points in feature space. Equations (20) and (21) shows 
how is built this function. Where b* is a threshold value 
(Osuna, et al., 1997).

 b * = y i−w
* i x i  (20)

 f x( )= sign
i=1

l

∑ y iλ i
* x i,x{ + b *

⎧
⎨
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⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
 (21)

In most cases, the classification problems are nonlinear in 
feature space, then, SVM theory can be extended projecting 
input data to a higher dimensionality space, in which 
a separating hyperplane can be built. This approach is 
achieved using a kernel function given a suitable mapping 
x −> ø(x).

 f x( )= sign
i=1

l

∑ y iλ i
*φ x( ) iφ x i( ){ + b *

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
 (22)

Up to now, this section has explained SVM theory; 
therefore, the methodology used to train will be set out. 
Figure 5 shows the highlighted support vectors (black 
circles) according to training set results from dimensionality 
reduction using PCA with texture features. 

The radial basis function (RBF) is used as kernel to 
resolve weed classification problem due to the nonlinear 
representation of texture features in principal components 
space. The mathematical definition of RBF is exposed in 
Equation (23).

 k x, y( )= e −x−y
2/2σ  (23)

Figure 6 shows the contour of decision boundary 
corresponding to RBF kernel with σ=1 in training set. 

Figure 5. Support vectors. Red: Weed-Green: Vegetables-Black 
circles: Support vectors.

Figure 6. Support Vector Machine classifier. Initial decision boundary. 
Red: Weed-Green: Vegetables-Black line: Decision boundary.

To increase the reliability of weed discrimination, the 
support vector machine trained above is optimized. For this 
purpose, the training data is partitioned into 10 sets, then, 
10-fold cross-validation loss is expressed as a function and 
it is used to find an optimal σ value with the simplex search 
method of Lagarias et al., (1998). The resulting value of σ is 
0,9614 and the smoothed decision boundary is shown in 
Figure 7.

Figure 7. Support Vector Machine classifier. Smoothed decision 
boundary. Red: Weed-Green: Vegetables-Black line: Decision 
boundary.

Results

The classification algorithm was tested with a set of 
images that contain weed and vegetable observations. As 
the training set, each observation has a size of 100 x 100 
pixels and was taken perpendicular to crop lines, avoiding 
illumination. The experiments were carried out over two 



IngenIería e InvestIgacIón vol. 37 n.° 1, aprIl - 2017 (68-74) 73

PULIDO, SOLAQUE, AND VELASCO

validation sets with a size of 70 and 320 samples, these 
experiments were labeled and stored respect their class in 
a column vector, with regard of classification performance 
indices calculations described in Equations (24), (25), (26) 
and (27). 

 Sensitivity  SN( ) :  TP
TP+ FN

 (24)

 Specifity  SP( ) :  TN
FP+TN

 (25)

 Positive Predicted Value  PPV( ) :  TP
TP+ FP

 (26)

 Negative Predicted Value  NPV( ) :  TN
FN +TN

 (27)

Where True Positive (TP) is the number of plants detected 
as weed correctly. True Negative (TN) corresponds to the 
number of plants detected as crop correctly. False Positive 
(FP), the number of crop plants detected as weed and False 
Negative (FN), the number of weed plants detected as crop. 

The first test was performed with a set of 70 images, 35 
observations of weed, and the remaining, weed images. 
The results are shown in Figure 8, in which pattern or 
principal components space with the decision boundary 
is displayed, and the position of asterisks indicate weed 
(magenta) and vegetables (cyan) classification.

Table 3. Performance Indices results of 320 images validation set

TP TN FP FN SN SP PPV NPV

145 143 17 15 90,625 89,375 89,506 90,506

Conclusions

The present study was designed to extract relevant features 
as patterns from texture measures, and use it for classify 
weed and vegetables. The approach used outdoor images 
without preprocessing and was validated according to 
the results of principal components analysis and the clear 
difference between classes exposed in feature space (See 
Figure 3), thereby, other algorithms to try outdoor conditions 
images are not necessary, and the computational cost is 
also reduced. The statistical measures of the performance of 
classifier indicate: Sensitivity and specificity values above 
90% represent a high percentage of correct classification 
of weed and vegetables according their true condition. 
Meanwhile, positive and negative predicted values describe 
a high accuracy, indicating the probability that a new 
sample can be really classified as weed or vegetable. These 
results suggest that the system classification developed 
has a high performance and can be applied for selective 
treatment of weeds or applications that requires continuous 
monitoring for minimizing resource consumption on 
agricultural productivity. Future work is focus on transfer 
coordinates from identification results of the crop scene to 
a mechanical structure as set-points to reach and pull out 
weed plants on a module that will be pulled by a tractor.
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