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Abstract

Previous discussions of Robb’s work on space and time have offered 
a philosophical focus on causal interpretations of relativity theory or a 
historical focus on his use of non-Euclidean geometry, or else ignored 
altogether in discussions of relativity at Cambridge. In this paper I fo-
cus on how Robb’s work made contact with those same foundational 
developments in mathematics and with their applications. This contact 
with applications of new mathematical logic at Göttingen and Cam-
bridge explains the transition from his electron research to his treat-
ment of relativity in 1911 and finally to the axiomatic presentation in 
1914 in terms of postulates. At the heart of Robb’s physical optics was 
the model of the light cone. The model underwent a transition from a 
working mechanical model in the Maxwellian Cambridge sense of a 
pedagogical and research tool to the semantic model, in the logical, 
model-theoretic sense. Robb tracked this transition from the 19th- to 
the 20th-century conception with the earliest use of the term ‘model’ in 
the new sense. I place his cone models in a genealogy of similar mod-
els and use their evolution to track how Robb’s physical researches 
were informed by his interest in geometry, logic and the foundations 
of mathematics.
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Las imágenes y la lógica del cono de luz: rastreando el
giro postulacional de Robb en la física geométrica

Resumen

Las discusiones anteriores de la obra de Robb acerca del espacio y el 
tiempo han ofrecido un enfoque filosófico de las interpretaciones de la 
teoría de la relatividad o un enfoque histórico de su empleo de la geo-
metría no-euclidiana, o han ignorado enteramente las discusiones de 
la relatividad en Cambridge. En este artículo centro mi atención en la 
forma cómo la obra de Robb tomó contacto con esos mismos desarro-
llos fundacionales en la matemática y con sus aplicaciones. El contacto 
con las aplicaciones de la nueva lógica matemática en Göttingen y en 
Cambridge explica la transición de las investigaciones de Robb sobre 
los electrones a su tratamiento de la relatividad en 1911 y finalmente a 
su presentación axiomática de 1914. En el corazón de la óptica física 
de Robb estaba el modelo del cono de luz. Este modelo pasó de ser un 
modelo mecánico operante en el sentido cantabrigense maxwelliano 
de herramienta didáctica y heurística a ser un modelo semántico en el 
sentido lógico de la teoría de modelos. Robb marcó esta transición de 
la concepción del siglo XIX a la del siglo XX con el uso más temprano 
del término “modelo” en el nuevo sentido. Sitúo sus modelos de conos 
en una genealogía de modelos similares y uso su evolución para seguir 
la pista de cómo las investigaciones físicas de Robb dependían de su 
interés en la geometría, la lógica y los fundamentos de las matemáticas.

Palabras clave: Robb, axiomática, postulados, postulacionismo, cono 
de luz, teoría de la relatividad, geometría, fundamentos de las mate-
máticas, espacio-tiempo, modelo, modelo lógico, Russell, Hilbert, Ve-
blen, Huntington, Peano, Minkowski, Cambridge, Göttingen.

Introduction

During the pre-war period, physicists at Cambridge were working at the 
forefront of electron and radiation research. While it engaged results in the 
Continent, especially in the Netherlands and Germany, it was rooted in local 
tradition of theoretical and experimental research in electromagnetism. Two 
Cambridge researchers, Norman Campbell and Alfred Arthur Robb, merit 
special attention for their additional interest in relativity theory and logical 
dimensions of scientific thinking. Europe-wide concerns about the relation 
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between matter and energy or the optics of moving bodies made relativity 
theory relevant to the study of radioactivity just as they had motivated Ein-
stein in the first place. More intriguing is their logical point of view and its 
application to physics. Elsewhere I address how new developments in the 
foundations of mathematics, especially the logical study of axiomatics, guid-
ed the American appropriation of relativity theory and this, in turn, influenced 
German formulations (Cat, 2016). In this paper I focus on how Robb’s work 
made contact with those same foundational developments in mathematics 
and with their applications. This contact with applications of new mathemati-
cal logic at Göttingen and Cambridge explains the transition from his electron 
research to his treatment of relativity in 1911 and finally to the axiomatic 
presentation in 1914 in terms of postulates. Previous discussions of Robb’s 
work on space and time have offered a philosophical focus on causal interpre-
tations of relativity theory or a historical focus on his use of non-Euclidean 
geometry, either in the context of a new tradition of German geometrical 
physics in Minkowski’s footsteps or in the context of a Cambridge tradition 
of research in geometry –or else ignored altogether in discussions of relativ-
ity at Cambridge.1 Instead, I emphasize the synthesis of logical and physical 
aspects of his interest in axiomatics by drawing attention to two intersecting 
contexts of his pre-war application of axiomatics in physical geometry: his 
evolving engagement of mathematical logic and the continuity with his early 
electron research.

Geometry and optics paved Robb’s path to relativity. In this path, Robb’s 
particular conception of geometry was key, it combined the two dimensions 
of a physical and formal theory; the first providing physical grounds and in-
terpretation and the second, structure. The duality was rooted in his dual in-
terests and education in geometry and in Cavendish physics. In particular, it 
relied on the dual character of optical theory as a geometrical theory and a 
physical theory situated at the core of Cavendish research on electromagnetic 
radiation. At the heart of Robb’s physical optics was the model of the light 
cone. The model underwent a transition from a working mechanical model 
in the Maxwellian Cambridge sense of a pedagogical and research tool to 
the semantic model, in the logical, model-theoretic sense. Robb tracked this 

1 For a brief discussion of the causal philosophical analysis see Torretti 1983/1996, 123; for the historical 
focus on non-Euclidean geometry see Walter (1999: 17-8), and Barrow-Green and Gray (2006: 337-9); 
Barrow-Green and Gray situate Robb at the intersection of geometry and relativity research at Cambridge 
alongside E. C. Cunningham and A. Eddington, noting the axiomatic approach, as does Darrigol in 
Darrigol (2014: 139-42); Warwick leaves Robb out of his analysis in Warwick (2003) of the appropriation 
of relativity theory by Cambridge physicists. 
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transition from the 19th- to the 20th-century conception with the earliest use 
of the term ‘model’ in the new sense. The evolving meaning of cone models 
illustrates and tracks Robb’s academic itinerary, from Cambridge to Göttin-
gen and back. It tracks also the parallel evolution of geometric theory through 
the late 19th-century history of European mathematics, from the standard of 
material axiomatics to the new logical approach to modern axiomatics intro-
duced by Hilbert and the Italian school, developed differently by American 
mathematicians and by Russell at Cambridge. Finally, the evolution of cone 
models tracks how Robb’s physical researches were informed by his interest 
in geometry, logic and the foundations of mathematics.

1. Relativity at Cambridge before the war, from an electromagnetic point 
of view

To appreciate the specificity of Robb’s logical turn and its application to 
his interest in geometry they should be set against the features of the local 
physics tradition. Those shared features led others to a predominant approach 
engaging relativity theory that I will describe briefly; yet Robb’s approach 
was markedly different. If fact, in a comprehensive study of this engagement 
at Cambridge the emphasis on the role of the local tradition includes the add-
ed role of an explicit rejection of Einstein’s and other German physicists’ “ax-
iomatic” presentations, that is, based on principles introduced without further 
justification (Warwick, 2003).2 But this was precisely also Robb’s approach 
to investigating space and time, which he pursued more explicitly and rig-
orously. His axiomatic approach was more in line with the new approaches 
in geometry and other branches of mathematics in Germany, America and 
Cambridge.

The culture of mathematical physics at Cambridge before the First World 
War had been handed down through teaching and research since Maxwell’s 
tenure through the 1870s, and developed further especially by researchers 
trained mainly at the Cavendish laboratory. Maxwell had introduced a project 
of mathematical physics based on the application of differential equations to 
represent the energy states of the electromagnetic ether. The propagation of 
waves in the elastic ether provided the basis for Maxwell’s synthesis of elec-
tromagnetism and optics. In its wake, British electromagnetic research was 
based on mechanical models of the ether (Hunt, 1991).

2 Despite its emphasis on the diversity of approaches at Cambridge, Warwick’s account identifies some 
diversity only within the application of the local standards leading to the predominant approach and leaves 
out Robb’s. 
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In the 1890s Joseph Larmor and J.J. Thomson added the existence of mi-
croscopic electrons to the fundamental understanding of matter and electro-
magnetic radiation. Taking a step further, they declared mechanical proper-
ties of matter of to be derivative from the more fundamental electromagnet-
ic properties of electrons and the ether. Larmor insisted on the even more 
fundamental role of the principles of energy and least action governing the 
ether. The electrons that constituted matter were also properties of the ether, 
movable singularities. The new theory offered a unification of matter theory, 
optics and electromagnetism (Larmor, 1900).

In several experiments in the 1880s Albert Michelson and Edward Morley 
attempted to detect the influence on electromagnetic effects, including the 
propagation of light, of motion through the ether. Larmor’s electron theory 
could also derive the hypothesis of the contraction of electronic matter mov-
ing through the ether, which George FitzGerald in 1889 and independently 
H.A. Lorentz in 1892 had introduced to explain Michelson and Morley’s null 
result. The space-time transformations that implied the contraction of matter 
also left invariant Maxwell’s equations of electromagnetism. For Larmor the 
experimental results gave support to his fundamental physical theory and the 
invariance placed Maxwell’s theory and the speed of light at its center.

Pre-war reactions to Einstein’s theory at Cambridge included corre-
spondence from G. F. C. Searle and work by Ebenezer Cunningham, Harry 
Bateman, G.A. Schott, H.R. Hassé, S.B. McLaren and J.W. Nicholson. In the 
late 1908, the German electron physicist Alfred Bucherer got Einstein to mail 
Searle a copy of a review article on the theory of relativity.3 Searle wrote back 
acknowledging apologetically the lack of understanding around him of the 
principle of relativity. By then Cunningham was engaged in electron research 
and followed Larmor in justifying the Lorentz transformations on the grounds 
that they preserved Maxwell’s equations and that the implied contraction of 
moving matter was predicted by the theory of the ether. 

For Cunningham and many others, Einstein’s theory, known as the Lor-
entz-Einstein theory, was an electron theory with a new presentation. The 
principle of relativity, the invariance of the laws of physics under the trans-
formations for uniform motions, was not fundamental; nor was the accom-
panying principle of the constancy of the speed of light, which for him fol-
lowed from the first. Einstein’s contribution was a mathematical treatment 
that emphasized the geometrical symmetries of space-time in the axiomatic 

3 Warwick discusses the episode in Warwick (2003: ch. 8). I borrow a selectively from the same chapter 
for the brief sketch of the Cambridge reaction.
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spirit but that were nevertheless derivative from the electromagnetic nature of 
the ether (a view also shared by Schott, Hassé and McLaren). With Bateman, 
Cunningham next sought a “new theorem of relativity” that generalized the 
“geometrical” transformations preserving Maxwell’s equations to the case of 
non-uniform motions. Nicholson then argued that Larmor’s electromagnetic 
theory already showed that the principle of relativity did not extend to rotat-
ing systems.

2. Relativity at Cambridge from a logical point of view (1): Russell and 
Campbell

Britain’s leading philosopher of logic and mathematics was Bertrand Rus-
sell, Fellow of Trinity College. Russell pursued more radically than Frege did 
in Germany, the project of logicism stated in the opening of The Principles of 
Mathematics (Russell, 1903: v): ‘the proof that all pure mathematics deals ex-
clusively with concepts definable in terms of a very small number of logical 
concepts, and that all its propositions are deducible from a very small number 
of fundamental logical principles.’ In the same Preface he acknowledged that 
it was a number of conceptual problems about dynamics that had led him 
to questions in geometry and arithmetic. But the assumption underlying the 
connection was that dynamics and geometry were first rational parts of pure 
mathematics, and ultimately of logic, and only subsequently they were em-
pirically applicable (Russell, 1903: vii).

Norman Campbell (1880-1949) entered Trinity College, Cambridge, 
where he received his undergraduate education with a University BA in 1902, 
Honors in the Mathematical Tripos and a College Fellowship in 1904. He 
conducted his experimental researches at the Cavendish Laboratory during 
the period 1902-1910. During the following four years he was the Cavendish 
Research Fellow in physics in the department at the University of Leeds, until 
the war broke out and he joined the National Physical Laboratory. 

In contrast with his experimental researches on radioactivity, in 1910 he 
published his first article on the theoretical status of the concepts of absolute 
and relative motion. Its title, ‘The Principles of Dynamics,’ and focus ech-
oed those of Russell’s The Principles of Mathematics. The book had been 
published a year before Campbell became a fellow of Trinity College, his 
own undergraduate College, where Russell was already a fellow. In fact, 
Campbell decided then to start writing on philosophical issues related to sci-
ence, an effort that led to a book manuscript titled after Euclid’s book on 
axiomatic geometry, Physics. The Elements, published immediately after the 
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war (Campbell, 1919). Campbell began the article by referring precisely to 
Russell’s book and the defense it contained of the concept of absolute motion 
(Campbell, 1910a: 169).

Next he distinguished between theoretical and empirical dynamics and 
their respective problems with a focus on the usefulness of mathematics and 
the fundamental propositions he also called ‘postulates of dynamics.’ (Camp-
bell, 1910a: 172). The postulational language loosely borrowed from Rus-
sell would become explicit and consistent in his discussion of relativity after 
reading Lewis and Tolman on relativity theory.4 The logical axiomatic tone is 
explicit not only in the postulational language. The problem of theoretical dy-
namics, which Campbell expressed in three questions, is this: ‘In what man-
ner are the fundamental propositions from which the conclusions of theoreti-
cal dynamics are deduced to be stated; what are the conceptions employed in 
those propositions, and what are the relations stated between them?’ (Camp-
bell, 1910a: 169). The empirical problem is derivative and consists, instead, 
in the application of those propositions to experiment and the measurement 
of the magnitudes associate with their concepts. Pointing to Russell again, 
Campbell kept up the logical tone of the discussion with a logical principle 
for the identification of concepts. Two concepts are identical only ‘if their 
definitions can be shown to be logically equivalent’ (Campbell, 1910a: 170). 

As Campbell had done in the previous discussions, in ‘The Common 
Sense of Relativity’ he focused on physical theory, which he defined as ‘a set 
of fundamental propositions from which experimental laws may be logically 
deduced.’ (Campbell, 1911a: 502; my emphasis). Despite emphasizing the 
experimental content, his analysis relied on a Russellian approach, adopting 
conceptual and logical standpoints to track logical deductions and eliminate 
‘fallacious’ and ‘apparently paradoxical’ conclusions, ‘confusions of thought’ 
and ‘misapprehensions.’ (Campbell, 1911a: 502).5 The source of the confu-
sions, according to Campbell in his strategy already deployed in the article 
of dynamics, laid in the meaning of the terms ‘velocity’ and ‘reality’, in other 
words, in the logical inequivalence between the relativistic concepts and the 
ones adopted by the classical, Newtonian physicist.

This logical perspective is symbolized terminologically through the asso-
ciation with Einstein’s principle of relativity –the standard denomination– of 
the axiomatic terminology of ‘theory’ and ‘postulates.’ That, in his own words, 

4 Lewis and Tolman (1909) and, on the postulational American development of relativity, Cat (2016).
5 In the 1919 book he noted that the propositions derived from the principle of relativity had been initially 
considered ‘self-inconsistent and contradictory’ (Campbell, 1919: 4 n.1).
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the ‘Principle is what is more often termed a “theory”’ might have been fur-
ther suggested by the title of Sommerfeld’s recent two-part article, ‘Zur Rela-
tivitätstheorie.’ (Sommerfeld, 1910a; 1910b). Campbell cited the second part 
in relation to the claim that Newtonian mechanics, as a fundamental theory, is 
inconsistent with the fundamental Principle of Relativity and must be aban-
doned as a result (Sommerfeld, 1910b: 684-89). The now-familiar term was 
introduced only in the title, whereas in the text Sommerfeld used through-
out Relativtheorie. The postulational characterization of Einstein’s two basic 
principles was suggested by Lewis and Tolman’s paper and Tolman sequel, in 
a way consistent with Russell’s axiomatic vocabulary. 

Like Lewis and Tolman, Campbell expressed a logical preoccupation, 
namely, with the logical relation between the two postulates and their exper-
imental implications (Lewis and Tolman, 1909; especially Tolman, 1910). 

Like them, especially Tolman, Campbell claimed that Einstein seemed to im-
ply that the second postulate can be derived from the first alone, but, he ar-
gued, ‘the Second Postulate cannot really be deduced from the First.’ (Camp-
bell, 1911a: 507). Also like Lewis and Tolman, Campbell saw in the theory 
of relativity an alternative to the Newtonian theory of mechanics; they raise a 
logical conflict: ‘If they are not logically equivalent they must be contradicto-
ry; in either case an “explanation” of one in terms of the other is impossible.’ 
(Campbell, 1911a: 516). 

For Campbell, what was at stake was the logical clarity and consistency of 
theoretical dynamics and its distinction from empirical dynamics. For Lewis 
it was the formulation of a system of non-Newtonian mechanics based on 
general but exact principles of invariance or conservation. In their path to 
relativity, Lewis, Tolman and Campbell paid attention to empirical research 
and results in the nature of physical theory and in personal methodological 
practice, but their analyses featured the empirical only from a logical point of 
view they found embodied, prior to Einstein’s theory, in ideals and standards 
of physical theory –dynamics for Campbell and thermodynamics for Lewis 
and Tolman–, of mathematics –geometry– and foundations of mathematics 
–Russell’s and Hilbert’s programs of axiomatics. 
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3. Relativity at Cambridge from a logical point of view (2): Enter Robb

Alfred Arthur Robb (1873-1936) began his studies at the Royal Belfast 
Academy and Queen’s College, Belfast, graduating in 1894. Evidence of his 
early interest in Euclidean geometry is a problem-solution set he contributed 
in 1891 to the mathematics section of the Educational Times Report.6 The 
contribution consisted in a method for dividing a circle into seven equal parts 
(the inscription of a heptagon in a circle by means of so-called Peaucellier 
cells), mentioned the following in a paper on geometrical approximations 
presented A.J. Pressland to the Edinburgh Mathematical Society (Pressland, 
1892: 27).7 

After graduating from Queen’s College he was admitted at Cambridge and 
St. John’s College the same year, graduating with a BA in 1897 receiving hon-
ors in the Mathematical Tripos.8 Joseph Larmor had been his most admired 
teacher and probably recommended Robb for the opportunity to spend two 
years at the Cavendish as an advanced student, receiving an MA in 1901. This 
period was the heyday of electron research at the laboratory under Thomson’s 
direction, with significant attention focused on the new kinds of radiation. 

According to the Thomson’s history of the Cavendish, Robb was affiliated 
with the laboratory during the 1906-1907 year (Thomson, 1910: 332). But his 
two publications during the pre-relativistic period 1905-1911 precede his of-
ficial affiliation (Robb, 1905a and b). They suggest an earlier return to Cam-
bridge, in 1905, reconnecting with local tradition of electron and ether theo-
ries, in particular, J.J.Thomson’s researches in ionic physics. As in his disser-
tation, his approach now was neither experimental nor inductive; he focused 
on the formal conditions of solubility of a second-order differential equation 
and their physical interpretation. The equation, for the distribution of electric 
intensities as a function of the current flow and the velocities of positive and 
negative ions, had been introduced in 1899 by Thomson in his treatment of 
the conduction of electricity through gases between parallel plates. It lacks 
a general analytic solution, but he solved it for the case of equal velocities 
of negative and positive ions. Robb proposed a transformation that renders 
the equation a characteristic for any gas independent of the current and for 

6 Educational Times Report vol. LV, 61, question 10865.
7 Robb contributed another problem in 1908, the differential equation d2y/dx2=Aymxn, see Educational 
Times Report March 2, 1908, 145, problem 16255.
8 Part I in 1897 and Part II in 1898.
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unequal velocities of the ions he identified additional solubility conditions, 
which he interpreted as two values of the ionic pressures –or velocity ratios 
(Robb, 1905a and b). 

A literary composition of the same year offered a portrait of Cavendish 
electron research in relation to ether theory and electromagnetic radiation, 
also closer to his own dissertation work. It consisted of the lyrics for a song, 
in the manner of Maxwell’s similar compositions, to be sung at the annual 
dinner of the laboratory’s research students on December 6, and published in 
Nature (Robb, 1906). The song’s title was ‘The Revolution of the Corpuscle.’ 
It began as follows:

Air: “The Interfering Parrott.” (Geisha.)

A corpuscle once did oscillate so quickly to and fro,

He always raised disturbances wherever he did go.

He struggled hard for freedom against a powerful

 foe –

An atom –who would not let him go.

The aether trembled at his agitations

In a manner so familiar that I only need to say,

In accordance with Clerk Maxwell’s six equations

It tickled people’s optics far away. (Robb, 1906)

It was also a period of electro-optical research in ether physics, conducted 
especially by Rayleigh, devising new ways to determine experimentally the 
velocity of light relative to the ether in the wake of Michelson’s negative re-
sults. Robb attended Rayleigh’s discussion of the results and its significance 
in ether theory at the meeting of the BAAA in 1902 (Robb, 1921: i). In 1903 
Rayleigh announced another negative result based on polarization effects, 
extending the scope of the classical principle of relativity. 

Robb succeeded in getting admitted to Göttingen in the winter semester 
of 1901 to pursue a doctorate under Woldermar Voigt, eventually writing a 
dissertation on the Zeeman effect (Robb, 1904). The effect was the splitting 
observed by Pieter Zeeman in spectroscopic absorption lines of atomic radi-
ation in the presence of an external magnetic field. Its research linked togeth-
er fields as diverse as chemistry, astronomy, mechanics, electron theory and 
radiation research. Voigt had three students specializing in different ways in 
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physical optics, Robb, the Scottish R.A. Houstoun and Walther Ritz. Optics 
of moving bodies was a central problem for the group, a problem introduced 
by Voigt’s own research.

4. Electron theory and the mechanical cone

In the wake of Michelson and Morley’s null-result, in 1887 Voigt studied 
the transformations that electromagnetic waves in the elastic ether should 
satisfy to preserve their equations for observers in inertial motion. He derived 
a set of transformations (anticipating properties of Lorentz’s) that preserved 
the velocity of light and included time dilation in moving clocks. The final 
application of this result was the propagation of wave surfaces in the shape of 
a light cone (Voigt 1887: 48-50).

In 1845 Faraday had detected a rotational effect magnetic fields had on 
the plane of polarization of light as it propagates through a crystal, but when 
in 1862 he tried to a magnetic field had on spectral lines he failed to find any 
effect. Subsequently, in 1877, Kerr had detected an effect on light reflected 
by magnetized iron (Lorentz, 1916: 98; Kox, 1997). Across the Channel, in 
Leiden, Lorentz’s colleague Pieter Zeeman replicated Faraday’s experiment 
in 1896, to detect a broadening of emission lines in sodium light. The same 
weekend of Zeeman’s announcement Lorentz extended his ideas about elec-
tron theory to Zeeman’s effect explaining it as a splitting of lines due to the 
oscillatory motion of bound electrons (atomic “ions”) in the external magnet-
ic field. 

According to Lorentz, the oscillating charges moved according the har-
monic law for atomic elastic (harmonic) forces and to his force law for ex-
ternal magnetic fields from 1892 that supplemented Maxwell’s theory of 
electromagnetism. Three separate components of the oscillations –the three 
degrees of freedom corresponding to modes along different directions– could 
be detected in a direction perpendicular to the orientation of the field (this is 
the direction of the force exerted by a magnetic field on a moving charge). As 
a result, where one line could be observed corresponding to one frequency, 
now a triplet appeared.9 

9 As Lorentz put it, ‘only a spectral line which consists of three coinciding lines can be changed into 
a triplet, the magnetic field producing no new lines, but only altering the positions of already existing 
ones.’ (Lorentz, 1916: 112). The coincidence condition is expressed by the equivalence of three degrees of 
freedom, with equal corresponding frequencies. The explanation can be extended to quartets, quintets and 
other line multiplets. The physical origin of the triplets is encapsulated by this mathematical constraint.
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Then, at the turn of the century, new observations were reported. Zeeman 
published observations of further splitting of spectral lines into additional 
line multiplets, contradicting Michelson’s recent interferometer observations. 
Voigt quickly formulated his own electron theory of the Zeeman effect. Ac-
cording to Voigt, the sets of lines linked to oscillating radiation were due to 
the vibrating motion of electrons bound by harmonic forces (Voigt, 1899).10 

Robb followed Lorentz and Voigt in applying classical dynamics to ex-
plain Zeeman’s sets of spectral lines in terms of the vibrating motion elec-
trons. To explain additional multiplets such as quintets, he postulated a struc-
ture of the radiating particle containing a coupled pair of electrons in oscillat-
ing in response to an elastic central force. The positions and motions of both 
electrons are coordinated, respectively, by coupling constraints of a quadratic 
form (Robb, 1904).11 

5. The axiomatic turn: physics and geometry

Robb’s dissertation already introduced postulational elements of the axi-
omatic approach that would characterize his geometrical formulation of rel-
ativistic motion. The role of the coupling conditions in Robb’s theory of the 
Zeeman effect is an instance of the role in theory-construction of basic prop-
ositions rather than inductive experimental generalizations. Indeed, in his in-
troductory methodological remarks he endorsed the role of what he called 
fundamental assumptions (Grundvoraussetzungen) or postulates (Postulate):

Bei dem Versuche, eine Theorie von irgend einem physikalischen Phänomen 
aufzustellen, muß man an gewisse Grundvoraussetzungen anknüpfen. 

Zuweilen geschieht es be idem Fortschritt der Wissenschaft, daß ältere Postu-
late sich zurückführen lassen auf andere, die einfacher zu sein scheinen; aber 
in jedem Falle ist dieses nur bis zu einem endlichen Grade möglich, und es 
kann sein, daß die Postulate, die schließlich erreicht warden, physikalische 
Grundwahrheiten sind, über die wir nicht hinausgehen können und die wir nur 
zu konstatieren vermögen. (Robb, 1904: 11)

10 Voigt applied classical dynamics to the degrees of freedom parallel to the external field but coupled to 
the degrees of freedom corresponding to the radiating oscillations perpendicular to it. In the case of weak 
fields, with the theory Voigt predicted asymmetries in separation and intensity of the lines around a central 
component, already suggested by Zeeman, and immediately reported, for the intensity differences, by 
Zeeman himself, H.M. Reese and others.
11 In the chapter on the Zeeman effect in Lorentz’s book on electron theory and its application to phe-
nomena of electromagnetic radiation, Lorentz criticized the artificiality of Robb’s coordination conditions 
(Lorentz, 1909).
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The dominant standard of geometric theory might have become further 
validated by the experience of Göttingen culture; at the same time, the broad-
er debates about axiomatics and the simplifying and revisable status of fun-
damental axioms such as the postulate of parallels might have suggested a 
less consistent terminological commitment to talk of axioms and the sort of 
qualification expressed by (inconsistent) talk of postulates.

 Göttingen was the academic home to scientists whose researches set the 
course of mathematics and physics on a new path: Hilbert, the foremost pro-
ponent of the new axiomatic foundations of geometry (after his predecessor 
Riemann) and physics (Corry, 2004), Minkowski, the mathematical physicist 
of recent arrival from Zurich (in 1902) who would become interested in Lor-
entz’s electron theory and would develop the four-dimensional geometrical 
reformulation that would eliminate some of the physical perplexities,12 and 
Abraham, the foremost proponent of the new electron theory and the elec-
tromagnetic worldview (also Wiechert, Kaufmann, Schwarzchild, Drude and 
Sommerfeld worked on electron theory or its testing).13 

Hilbert was entertaining the application of the axiomatization of mature 
theories to classical physics. Robb, electron theorist and geometrician, would 
have noticed. Most faculty mentioned above were members of Klein’s math-
ematical physics seminar devoted to interdisciplinarity and the unification of 
physics. In an autobiographical sketch appended to his dissertation, Robb list-
ed the names of professors whose lectures he had attended: Abraham, Hilbert, 
Klein, Manchot, Minkowski, Nernst, Riecke, Voigt and Wallach (Robb, 1904: 
‘Lebenslauf’). 

Klein placed mathematical physics between pure mathematical research 
and technical industrial application, fostering both. Mathematics played 
however a central unifying role. Nernst headed a newly created institute for 
physical chemistry; Nernst shared with Ostwald, at Leipzig, a systematic ap-
proach to energy physics (thermodynamics) from first principles, especially 
as the foundation of chemistry (the new discipline of physical chemistry). 
Also mechanics and electron theory were perceived and pursued as projects 
within the umbrella program of unification (this is the focus of theoretical 
physics at the core of Wien’s unified electromagnetic worldview, based on 
physical hypotheses rather than mathematical structures). In his lectures on 
mechanics, Minkowski joined Hilbert in defending the axiomatic structure of 

12 See Minkowski (1909/1911), Miller (1981), Walter (1999) and Darrigol (2000).
13 See Pyenson (1976) and (1979) and Miller (1981).
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mathematical and mechanical theories, with an emphasis, like Riemann’s and 
Helmholtz’s, on the origin of the axioms in physical facts and experiences 
(Pyenson, 1979: 66). 

One of the interdisciplinary seminars in mathematical physics focused on 
electron theory, through the works on electricity and optics by Hertz and es-
pecially Poincaré, on electrodynamics by Larmor, Hertz, Lorentz and Poin-
caré and works by local faculty research on electron theory and the optics 
of moving bodies. The leaders of the 1905 electron theory seminar, Hilbert, 
Minkowski, Wiechert and Helglotz stand out among their Göttingen col-
leagues as the sole ones who became interested in relativity theory. 

Younger faculty such as Born and Sommerfeld and students such as Robb, 
Ritz, Laub, Schlick and von Laue would also address relativity theory. Ritz 
developed an emission theory of light particles as an alternative to Einstein’s 
second principle and the velocity-dependence of mass, Laub would collab-
orate with Einstein on the concept of force with a critique of Minkowski’s 
dynamical assumptions and on the relativistic explanation of H.A. Wilson’s 
effect, the polarization of a dielectric rotating in a magnetic field. Laub subse-
quently publish his attempt at a relativistic dispersion theory and a widely-cit-
ed comprehensive discussion of experimental foundations of the theory and 
von Laue penned the first book-length treatment of the theory (Laub, 1910; 
von Laue, 1911). 

As Robb subsequently noted, his interest in relativity was rooted in Cam-
bridge researches by Larmor and Rayleigh on the problem of the detection 
of effects of uniform motion in the ether (Robb, 1921: Preface). He became 
reacquainted with the issues from the Cambridge perspective at from state-
ments by Rayleigh and Larmor at the 1902 meting of the British Association 
for the Advancement of Science in his hometown of Belfast, while he was 
already at Göttingen engaged in physical optics and electron theory in the 
Zeeman effect (at the meeting Robb presented a paper on the theory of de-
terminants). Researches at Cambridge and Göttingen are the roots of Robb’s 
combined interests in relativity theory and the physical basis of the relevant 
geometric concepts such as equality of length, which he revisited after be-
coming acquainted with Einstein and Minkowski’s geometrical and kinemat-
ic principles. 

During the decade that followed Robb’s Göttingen work, I will argue, his 
interests in geometry and the relation between mechanics and optics –in his 
dissertation, between the motion of electrons and their radiation– underwent 
a dual transformation that may be characterized as (1) a synthesis and, more 
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specifically, (2) an axiomatic and logical turn. This turn was more explicit and 
systematic than I have identified, above, in Campbell’s work. In particular, 
what became understood as his version of relativity theory was the result 
of (1) addressing a few problems similar to Einstein’s and (2) the project of 
solving them by providing an axiomatic, geometric foundation of physics by 
means of an axiomatic, physical foundation of geometry. 

To understand this systematic development, one should look to (1) the 
publication Einstein’s special theory of relativity and Minkowski’s formu-
lation in terms of a four-dimensional geometry of space-time considered, 
with Robb, as contributions to physical geometry,14 and, I suggest, also to 
(2) Robb’s education in the new developments in geometry and his selective 
engagement and eclectic mix –a further synthesis– of different strands among 
the new trends: Helmholtz, Poincaré, Hilbert, the Italian school, Russell and 
the so-called American postulationists. 

Robb’s commitment to axiomatization was informed by an interest in 
logical properties –the logical structure of theory–, but not in logicism –the 
logical foundation of theory. Each was related to a different tradition of math-
ematical logic, one of mathematics in logic (ex., Boole, Schröder, Peano) and 
the other, more recent, of logic in mathematics (ex., Bolzano, Frege, Rus-
sell).15 

In the axiomatic foundations of mathematics, two different epistemological 
perspectives corresponded with different locations for the epistemic grounds 
for those theories. From the perspective I call externalist, the grounds were 
external to the system, and the abstract character of the basic propositions 
and their concepts did not show any relation to those origins or motivations 
or even justifications; this approach was shared by Riemann, Pasch, Hilbert, 
the Italian School and Poincaré. From the other, internalist, perspective, new 
foundations were expressed by new axioms; this was shared by Helmholtz, 
Russell, Frege and Robb.

Rather than taking place in the context of the Cavendish research, the 
particular evolution of Robb’s work might have been facilitated by the mem-
bership in the more mathematical orientation of the Cambridge Philosophical 
Society and the London Mathematical Society (to which he was elected in 
1905 and 1910, respectively). 

14 The more obvious physical precursor works in relativity and in geometry available to Robb, including 
Russell and Whitehead at Cambridge, have been briefly noted in Sánchez Ron (1987), Walter (1999) and 
Barrow-Green and Gray (2006).
15 Mancosu notes the prevalence of this distinction at Göttingen in Mancosu (2003).
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Outside the Cavendish, Cambridge offered Robb access to Russell and his 
work on the logical foundations of mathematics, including geometry. In the 
wake of Einstein’s publications, which like so many colleagues, Robb would 
have related to his work in electron theory, he also followed theoretical devel-
opments in Göttingen, especially by Minkowski. The principled formulation 
of Einstein’s theory in 1905 and Minkowski’s four-dimensional space-time 
geometric rendition of 1908 fitted with the logical and axiomatic elements in 
the foundations of geometry (and mathematics). Robb didn’t separate neatly 
the two projects; one served the other. 

Minkowski introduced his non-Euclidean geometric account of the kine-
matics of relativity theory within the tradition of evolving axiomatic formu-
lations of geometry and mechanics. He worked in the footsteps of his friend 
Hilbert, who had laid out a project of axiomatization of physics in lectures 
during 1905 and at a seminar on electron theory jointly convened by the two 
of them with the participation of other faculty and a seminar on electrody-
namics led by both (Corry, 1997). For Hilbert and Minkowski the applica-
tion of the axiomatic method served the epistemic function of identifying 
and evaluating physical and mathematical assumptions, including definitions 
implied in empirical claims and mathematically proven results (Corry, 1997: 
280). Considering, as most scientists did, that Einstein’s paper of 1905 was a 
contribution to electrodynamics and electron theory, Minkowski asked Ein-
stein for a copy for discussion at the 1905 seminar. He considered it from 
the point of view of Hilbert’s program and his own mathematical interests, 
in this case geometry. The result helped articulate the radical implications of 
Einstein’s proposal and to arouse wider interest among theoretical physicists 
and mathematicians. 

In his now classic talk from 1908 ‘Raum und Zeit’ Minkowski formulated 
its central idea in the form of a fundamental postulate, namely, of the positive 
value of the space-time interval, which he interpreted kinematically as the 
limiting value of the speed of light. Geometrically, it introduced an absolute 
perspective in physical geometry that recognized independent reality only in 
four-dimensional space-time (Minkowski, 1909/1911). Physical geometry is 
a temporal geometry. Minkowski went beyond the mere juxtaposition of sep-
arate axioms of geometry and mechanics that Hilbert had endorsed in 1905 
in a lecture on the axiomatization of laws of motion (Corry, 1997: 293). For 
Hilbert the analysis of motion required only adding axioms about two basic 
properties of time, its uniform passage and unidimensionality. In his new, 
integrated framework, Minkowski represented the two-dimensional invariant 
relation between x and t, that is, ct2-x2=1, with a hyperbolic curve. The curved 
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also expressed the transformations of subluminal uniform velocities bounded 
by the absolute value of c –the Lorentz group of transformations Minkowski 
now interpreted as a group of rotations in four-dimensional space-time. The 
curve is contained within the geometric form of a cone of light signals with 
an absolute velocity. The null interval provides the equation for the geometric 
figure of the cone. The negative values of the time variable defined the fore-
cone (Vorkegel) –that is, the past cone– and the positive value the aft-cone 
(Nachkegel) –that is, the future cone (Minkowski 1909/1911: vol. 2, 438).

He presented his condition on the space-time interval as the space-time 
version of Einstein relativistic group-invariance principle and called it first 
an axiom, next he suggested ‘Relativity Postulate’ (Relativitätspostulat) but 
rejected it as ‘weak’ since it appeared limited to the manifestation of four-di-
mensional space-time by phenomena; finally, in his own terms, he called 
it the Postulate of the Absolute World, or World-Postulate, for short (Welt-
postulat) (Minkowski 1909/1911: vol. 2, 437). In an earlier talk aiming to 
include dynamics, electromagnetism and gravitation, Minkowski detailed 
how the equations of electrodynamics of moving bodies would follow from 
the postulate and two other axioms about transformations of quantities and 
equations relating them (Minkowski, 1915).16 In line with Hilbert’s program, 
Minkowski called them axioms. The so-called postulate didn’t just adopt, like 
Poincaré had done, the general invariance of mechanics and electrodynamics 
as an inductive generalization about the absence of absolute rest among the 
properties of observable phenomena. For Minkowski relativity was a norma-
tive principle, a constraint on the construction or discovery of new physical 
theories of observable phenomena. Needless to say, postulate-talk is hardly 
Hilbert’s and resonates with the vocabulary of classic Euclidean geometry 
and Italians’ new approach to axiomatics (see below). It was just not Ein-
stein’s principle of relativity, whose designation Minkowski used for the prin-
ciple of covariance of physical laws under Lorentz transformations.

Göttingen was not the source exclusively of Hilbert-style, formal axiomat-
ics. Robb’s education in electron theory alone, if not also in geometry, would 
have led him to Helmholtz and Poincaré, who had written both on electro-
magnetism and geometry. Russell’s would work too (including his exchanges 
with Poincaré). The diversity of doctrines, then, would have led him to adopt, 
broadly speaking, a foundational, axiomatic perspective with an emphasis on 
logical considerations of demonstration and of consistency and independence 

16 The talk, from 1907, was published posthumously.
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of axioms. Then he resolved the issue of which specific doctrine to adopt on 
terms set by his own particular dynamical model of radiating electrons and 
the more fundamental kinematic perspective of relativity theory.17

In the context of the Göttingen interdisciplinary seminar, Hilbert projected 
extending the mathematical standard of axiomatics to mathematical physics, 
by appealing of first physical principles and concepts. But his axiomatization 
of geometry followed earlier German formulations by Pasch and formula-
tions by Peano and his followers in the Italian school such as Padoa, Pieri and 
Veronese in leaving his symbolic axioms abstract. In this way they remained 
independent of any interpretation, except internal, formal implicit definitions 
of the concepts, in Veronese’s analogy, like roots of a system of logical equa-
tions. Consistency itself was a formal property that determined the existence 
of mathematical entities and the truth of propositions about them. From an 
externalist point of view, the axioms provided, as axioms of geometry, a log-
ical analysis of human spatial intuitions, stating, as he put it, fundamental 
facts about them (Hilbert, 1899). In general, however, Hilbert’s formalistic 
approach to axiomatics constituted and was most influential as what has been 
called an image –a standard or ideal– rather than a body of mathematical 
knowledge.18

6. Axiomatics and physical geometry

While Russell and Whitehead were publishing at Cambridge axiomatic 
systems of geometry and defending their famous reductive project of logi-
cism, Robb engaged, instead, the empiricist physical approach he encoun-
tered in Helmholtz. This earlier German doctrine on the foundations of geom-
etry was more in fitting with Robb’s commitment to dynamical description as 
well as the quasi-axiomatic and geometric formulations of relativity theory.19 
It was Riemann at Göttingen who had first pitted non-Euclidean geometry 
against the Kantian idealist doctrine on geometry and famously declared that 
geometry’s foundations were constituted by hypotheses.

17 Walter has offered a brief examination of the latter as an instance of non-Euclidean trend in relativity 
theory that included Minkowski, Sommerfeld and Robb; see Walter (1999). Here I emphasize, instead, the 
evolving synthesis of logical and physical aspects of Robb’s interest in axiomatics in physical geometry.
18 On the distinction see Corry (2004).
19 On the interpretation of Helmholtz’s philosophy of geometry I follow Torretti (1978) and DiSalle 
(1993).
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Not unlike Helmholtz, and then partly in Robb, Riemann’s epistemolog-
ical approach to geometry rested on his background in experimentation and 
the application of analysis in physics, especially in ether physics –in relation 
to electric and magnetic forces– end energy physics (Ferreirós, 2006; Torretti 
1978). At Göttingen he had developed interests in electricity and geometry 
alongside his teachers Gauss and Wilhelm Weber, who had collaborated on 
empirical determination of units of measurement in geometry and electro-
magnetism. Riemann’s so-called problem of space, then, consisted in iden-
tifying the empirical hypotheses that singled out Euclidean geometry. From 
what I have called an externalist perspective, the hypotheses were traceable 
to the physical experience of space, the possibility of empirical measurement 
in it and the related motion of objects.20 

Helmholtz sought to ground Riemann’s geometrical hypotheses, internal-
ly, on axioms describing more fundamental empirical facts. The empirical 
character of the fundamental facts was linked to Helmholtz’s ideas about the 
origins of visual space in anatomy, physiology and learning habits. Learning 
from the experience of physical objects and developing ‘intuitions of fixed 
typical relations’ was the general context for more specific scientific facts, 
the mechanical conditions of geometrical measurements. The fundamental 
grounds for geometry concerned the free mobility of rigid objects required 
for the comparison of spatial magnitudes. While the factual grounds chal-
lenged the Kantian idealist doctrine of the a priori status of Euclidean geom-
etry, in this context and in the foundation of physics on energy conservation 
Helmholtz retained Kant’s causal standard of intelligibility of Nature.21 

In this tradition, Minkowski’s non-Euclidean geometry of space-time was 
the latest significant contribution. 

20 Riemann’s five hypotheses, simplified, are the following: (1) space –that is, the concept of geometrical 
space– is a continuous differentiable manifold of n-dimensions (a set of points whose n-coordinates were 
the result of measurements); (2) space has 3 dimensions; (3) space allows for the definition of an element 
of length in the form of the square root of a quadratic differential expression of the coordinate functions 
(metric); (4) the curvature of space is constant; (5) space has constant zero curvature (flatness).
21 The axioms at the basis of the system of Euclidean geometry are the following: (1) space is a n-dim 
manifold whose points are characterized by the n coordinates with values resulting from the measurements 
of n continuous differentiable variables (non-factual definition that enables the application of analysis in 
geometry and physics); (2) rigid bodies exist in space characterized by movable point pairs whose relations 
are unaffected by the body’s motion (rigidity is an empirical idealization); (3) rigid bodies can move freely 
to any points in space; (4) the rotation of any rigid bodies can take it, without reversal of motion, back to 
its initial position; and (5) space has 3 dimensions. 
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7. Russell’s logical point of view: philosophy of mathematics between 
philosophy of logic and philosophy of language

In relation to Riemann’s axioms, or hypotheses, Helmholtz intended his 
third axiom to prove Riemann’s fourth, on the constant curvature of space. 
Subsequent authors such as Peano, Padoa and Russell introduced more ab-
stract, purely kinematic versions, namely, de-materizalized, acausal condi-
tions of free mobility without distortion of spatial magnitudes in terms of 
mathematical transformations. From their point of view, especially Russell’s, 
geometry preceded dynamics.

Russell’s philosophy of mathematics, logic and knowledge more general-
ly developed in reaction to fundamental assumptions and claims of idealist 
and rationalist doctrines encountered at Cambridge and Oxford (his referenc-
es and target included both Kant and Leibniz). The character of the engage-
ment changed from being critical but sympathetic to being by the end of the 
century outright dismissive. 

The gradual rejection of idealism required a conceptually coherent theory 
of geometry. The coherence of geometry, and mathematics more generally, 
relied on its reduction to concepts of numbers and next to concepts of logic. 
Although for Russell, axiomatics reflected the conception of geometry as a 
branch of logic, he also defended, like Frege, an empirical interpretation of 
the origins of geometrical concepts and principles, especially Euclidean (un-
like in Hilbert’s presentation); the doctrine provided the model of his episte-
mology of atomic sensations as the basis for the logical construction of the-
oretical entities (his solution to the problem of the knowledge of the external 
world that inspired Carnap). Similar views had been shared by Mach and 
Poincaré’s, who also defended a conventional approach to the axiom basis ad-
mitting of empirical and mechanical explanations (defended also by Riemann 
and Helmholtz).

The new rigorous mathematics and mathematical logic showed the 
way. This Russell learned from German mathematicians such as Bolzano, 
Dedekind, Weierstrass, Cantor and Pasch and, especially, from Peano. Russell 
heard Peano first in 1897 at the Congress of Mathematicians held in Zurich, 
where Peano presented his symbolic notation for a mathematical logic, and 
then in Paris in 1900 at the Congress of Philosophy, where Peano presented a 
logic of relations and undefinable terms. This doctrine shared with Leibniz’s 
project of characteristic universalis the ideal of a universal symbolic language 
on which philosophical method could rely to solve philosophical problems. It 
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also contrasted with Hilbert’s formulation of axiomatics; and yet both yielded 
a modern new image of mathematics, a standard established at the new foun-
dational space between mathematics and philosophy. 

From a symbolic standpoint, the generality of logic and mathematics was 
based on unrestricted character of variables (concepts). But then every prop-
osition would, on his realist metaphysics, contain every entity; this cannot be 
a condition of actual knowledge and its boundaries, since it challenges the 
boundary of the mind’s grasp, which excludes the infinitely large or complex, 
and also the boundary between logic and non-logic as matter of generality of 
scope. 

Here problems of philosophy of language and mathematics dovetailed. 
Terms in propositions cannot denote without restrictions.22 Similarly, num-
bers cannot be just classes of similar classes of objects. In both cases Russell 
encountered famous paradoxes and inconsistencies. His solution involved 
distinctions between logical levels. In the mathematical case of numbers, the 
distinction between functions and their arguments introduce levels of types. 
In the linguistic case, the denoting concept or term cannot be part of the con-
tent of the proposition. On a related basis Russell developed a general the-
ory of descriptions and of knowledge, in which he famously distinguished 
knowledge by acquaintance of elementary constituents –whether logical or 
perceptual– and knowledge by description of higher-level constructs. 

In mathematics, his rejection of idealism rested on the defense of the re-
ductionist program of logicism, known then as logistics. The first formulation 
of the program along with discussion of the issues in metaphysics and lan-
guage appeared in Principles of Geometry (Russell, 1903). There he followed 
on the steps of Peano and others in the so-called Italian school. They shared 
the new symbolic, logical preoccupation with axiomatizing geometry and 
arithmetic; but they differed in the epistemic assumptions about the status, 
interpretation and sources of the axioms. 

In Russell’s case, the particular ambivalent stance towards the basic prop-
ositions of geometry received linguistic expression in the interchangeable use 
of the terms ‘axioms’ and ‘postulates’ in relation to the revisable axioms of 
parallels in Euclidean geometry (for different reasons, the same stance and 
expressions are apparent in Poincaré’s views). This epistemic lack of consen-
sus was pushed to the limit by challenges raised by Poincaré’s convention-

22 On denoting see Russell (1903) and (1905b).
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alism and American mathematicians’ postulational philosophy. It challenged 
the notion that any view was necessary and opened a domain of freedom of 
exploration, like non-Euclidean geometries had done in their specific domain. 

In order to pursue the reduction of geometry to numbers and then to logic, 
Russell offered a comprehensive study of different geometries, descriptive, 
projective and metric. He distinguished between pure and applied geometry; 
the former studied hypothetical properties of abstract structures, which in the 
latter are studied as representations of the properties of space in the actual 
world. In the latter he identified three axioms reminiscent of Riemann’s and 
Helmholtz’s empirical solutions of the so-called problem of space: the axiom 
of dimension, the axiom of distance and the axiom of free mobility (Russell, 
1899; Torretti, 1978). His ambition however aimed at a more general under-
standing of geometry, in relation to the standards set by earlier projects of a 
rigorous arithmetization of analysis and the formal organization and classifi-
cation of different branches of mathematics, whether in terms of the algebra 
of group theory or of logic of axiomatization. While Poincaré was declaring 
that geometry is the study of certain groups, Russell declared that ‘geometry 
is the study of series of one or more dimensions.’ (Russell, 1903: 372).

8. Robb’s logical turn and the application of new axiomatics

Unlike Russell, Robb was a physicist. He was interested in principled 
approaches in physics and the geometrical formulations of relativity theo-
ry raised the more specific issue of the application of geometry in physics. 
Already familiar with Hilbert’s program of axiomatics in mathematics and 
physics, he read into Russell’s new ideas the importance of the preoccupa-
tion with logic, the formal standard set by the Italians, the shifting status of 
interpretation and motivation of axioms and the post-Riemannian, abstract 
kinematic axioms of geometry. These assumptions were compatible with his 
project of physical geometry and were independent of Russell’s particular 
project of logicism, for which Robb had no use. Still, Russell’s terminology 
of logic, axioms/postulates, terms, order, series and classes found physical 
application in Robb’s axiomatic project of 1911 and 1914.

Pursuing his interests in physical geometry and the logical aspects of ax-
iomatics, Robb remained engaged in ongoing foundational debates. In the 
process, he encountered and rejected two opposite doctrines: Poincaré’s 
conventionalism and Russell’s logicism. Between logicism, idealism and 
Helmholtz’s physical empiricism, Poincaré had defended conventionalism. 
Robb would have been familiar with Poincaré’s work in relation to two active 
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subjects of research at Göttingen, geometry and electron theory. According 
to Poincaré, the lesson from non-Euclidean systems of geometry was that 
geometric axioms were convenient conventions, linked to ideas from human 
experience but not necessitated by it (Poincaré, 1902). The preference for the 
Euclidean system of geometry combined elements of ancestral adaptation of 
the human species and elements of choice based on the exercise of the will in 
scientific contexts involving practices such as measurement and theorizing. 
Unlike for the case of arithmetic, in geometry Poincaré sought to avoid what 
he took to be pitfalls of overly limiting Kantian idealism and Mill’s naïve 
empiricism. Poincaré’s was an account of the foundations of geometry but, 
like Riemann and Helmholtz’s, it was an anti-foundationalist one, rejecting 
the old notion of axioms providing firm foundations, as either self-evident or 
universal and necessary propositions. The necessity of disguised definitions 
is as illusory as the stability of their geometrical facts and hypotheses.

Robb’s more general interest in logical and mathematical matters relating 
to Russell’s ideas he pursued briefly and privately, at least in correspondence 
with Russell himself. Upon his return to Cambridge, Robb was elected to 
the Cambridge Philosophical Society (November 1905) and subsequently to 
the London Mathematical Society, where he presented, inter alia, some of 
the ideas that developed into his Optical Geometry of Motion. It must have 
been during this period that he became further acquainted with work in foun-
dations of mathematics such as Russell’s in, for instance, The Principles of 
Mathematics (1903).

In 1908 and 1914 Robb engaged in a brief correspondence with Russell.23 
It began with a letter to Russell of 29 August, 1906, which Russell labeled 
‘from A.A. Robb, a distinguished geometer’ and annotated indicating that 
Robb had applied himself to the contradiction, or Russell’s paradox, in the 
theory of classes (Russell, 1903) –in fact, also contradictions discussed in the 
treatment of definite descriptions (Russell, 1905b). In a letter of 5 February 
1908, he complained to Russell that the paper had been rejected by Mind, 
on a recommendation from a referee designated as ‘R.’ Robb would write a 
paper on the subject of the contradiction in terms of differences of definitions 
of terms involved (sameness of extensions) and preventing self-referential or 
reflexive increases of extensions applicable, per Russell’s request, also to the 

23 Bertrand Russell Archives, McMaster University, documents:
2637/054860/5.39/RA1 710, 79662/054861/5.39/RA1 710, 79663/054862/5.39/RA1 710, 
79664/054863/5.39/RA1 710, 79665/054864/5.39/RA1 710, 79666/054865/5.39/RA1 710, 
75368/250221/7.28/RA3 1027 and 79668/0548666/5.39/RA1 710. 
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liar’s paradox (letter of 11 February). He also used the example of the law 
of non-contradiction to illustrate the idea that propositions do not refer to 
themselves. 

In the Cambridge physical tradition (traceable to Maxwell’s molecu-
lar model of the mechanical ether), Robb modeled an argument or train of 
thought in terms of closed connected systems of cogwheels that might pre-
vent connected motion unless in even number, illustrating the different ways 
to identify and resolve a paradox or contradiction (the different possible un-
warranted assumptions), the logical counterpart of the mechanical problem 
(letter of 15 February). Similarly, in Optical Geometry of Motion, the elim-
ination of apparent contradiction resulting from non-uniqueness of relative 
time in the theory of relativity is removed by the right representation of the 
causal connection between particles. 

Robb pursued a defense of his paper on contradiction in three other letters 
of the same month and an acrimonious letter of March 1st objects to Rus-
sell’s unwillingness to correspond on the matter. Nevertheless, Robb would 
send Russell a copy of his manuscript of A Theory of Time and Space and in 
a letter of 18 January 1914 acknowledged Russell’s favorable report on the 
manuscript for publication by Cambridge University Press.

Robb introduced his treatment of relativity from a logical point of view: 

‘This remarkable suggestion [relativity of simultaneity] was at once seized 
upon with it apparently not being noticed that it struck at the very foundation 
of logic. That a thing cannot ‘be and not be at the same time’ has long been 
accepted as one of the first principles of reasoning, but there it appeared for 
the first time in science to be definitely laid aside.’ (Robb 1914b, 2).24

The correspondence evinces Robb’s interest and reputation in the foun-
dations of geometry and Russell’s work more broadly, which was based on 
axiomatic and hierarchical structures and the philosophical use of formal 
logical language and the constructive techniques of formal logic. The corre-
spondence also reflects Robb’s attention to the journal Mind, where Russell 
had published significant essays, including ‘On Denoting’, with a discussion 
of a paradox in the philosophy of language and the application of logic to pre-
vent it (Russell, 1905b). In 1905 Russell had also published an unfavorable 
review of the new English edition of Poincaré’s Science and Hypothesis (with 

24 Goldberg has noted Robb’s reaction to relativity theory as resting on a logical fallacy, although only 
as an example of British physicists’ failure to understand relativity; the new wine, to follow his analogy 
about the reception of revolutions, was kept in old bottles that left it in the dark; see Goldberg (1984: 234).



67Images and Logic of the Light Cone: Tracking Robb’s Postulational   /   Jordi Cat
Turn in Physical Geometry

/

a preface by Robb’s mentor Larmor) criticizing the conventional, rather than 
the experimental, view of principles of geometry and mechanics (Russell, 
1905a).

While Robb rejected Poincaré’s conventionalism explicitly in 1911 in 
Optical Geometry of Motion (Robb, 1911), Russell’s philosophy he ignored. 
In Russell he nevertheless might have learned about related works from the 
Italian school that had also informed Hilbert’s project of axiomatics. By 1914 
he had subsequently incorporated related insights from Russell, the Italians 
and the American school, integrating them into the development of the 1911 
work, A Theory of Time and Space (Robb, 1914b). This time Russell not only 
received the work favorably; he also adopted its key earlier ideas in his new 
discussion of empirical theory of knowledge of the same year (Russell, 1914).

Robb’s engagement of logic, axiomatics and related issues in the foun-
dations of geometry shifted noticeably between 1904 and 1911 and after. By 
1911 Robb’s new work on physical geometry had shown a new though rela-
tively limited engagement (and acquaintance) with the debates in geometry 
and new positions in foundations of geometry and axiomatics, not even Rus-
sell’s. Readings of the relevant works, especially by members of the Italian 
School, may have been prompted much earlier by his own interest in the field, 
Russell’s own work, and even the more traditional specialized papers at the 
Mathematical Society. They may have been prompted also by reading Veblen 
sometime after 1911, which includes references to Italians also in Russell’s 
Principles, and to fellow Americans Young and Huntington. 1910-1913 is 
also the period of publication of the three volumes of Russell and Whitehe-
ad’s Principia Mathematica. In the Preface to the first volume, Russell and 
Whitehead declare that in geometry ‘we have had continually before us the 
writings of v. Staudt, Pasch, Peano, Pieri, and Veblen.’ (Whitehead & Russell, 
1910: vol. 1, ix). 

9. Robb’s Italian and American sources

Besides German and British sources, we should mention the Italian and 
American. They combined distinctive approaches to the foundations of math-
ematics from an axiomatic point of view a marked . The so-called Italian 
school, around Veronese, Peano, Padoa and Pieri, broke ground with an un-
compromising and systematic effort to formulate logical systems of arithme-
tic and geometry. Veronese’s Fondamenti di Geometria (1891) referred to 
Euclid’s postulates, otherwise for the general new foundations he mentioned 
axioms (assiomi). Peano, concerned with universal artificial languages for 
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precise mathematical concepts and proofs, looked to Grassmann and Pasch, 
and wrote in terms of fundamental propositions (proposizioni fundamentali), 
which he divided into definitions (definizioni) and primitive propositions or 
axioms (proposizioni primitivi o assiomi). He also referred to the fundamen-
tal or primitive propositions as, equivalently, ‘axioms or postulates’ (‘assi-
omi o postulati’), but the main operative terms were ‘definition’, ‘axiom’ and 
‘theorem, especially in I Principii di Geometria Logicamente Esposti (1889). 

Padoa similarly declared the purpose of formulating ‘a system of unprov-
en propositions (postulates) from which (from definitions and axioms) one 
could prove all other propositions.’ (Padoa, 1904)25. Members of the Italian 
school such as Peano believed, despite the symbolic nature of the languages 
employed, in the perceptual or empirical origin of the propositions represent-
ed by the axioms: ‘if one wants to give this work the name of geometry it is 
necessary that such hypotheses or postulates express the result of simple and 
elementary observations of physical figures.’26 

The main exception to the widespread consideration of axioms in the first 
decade of the 20th century would be Poincaré and the so-called American 
postulate theorists. Poincaré referred to the parallels postulate as Euclid’s 
postulate and more generally to the postulates and axioms of geometry in 
Science and Hypothesis (1902) and his review of Hilbert (1902), translated 
by Huntington (1903). Huntington preserved Poincaré’s separate use, adopt-
ing a pre-axiomatics standard use, maybe apparently indicating the historical 
change in the status of Euclidean geometry and therefore the revisability sta-
tus of its postulates; and, more generally, the conventional nature of all ge-
ometrical axioms. Poincaré formulated his theory of relativity precisely with 
an emphasis on the formal general elements such as the principle of relativity 
and the groups of transformations. Unlike Einstein, however, he believed in 
the empirical, inductive origin of the first principles.27 

 The so-called American postulate theorists such as Huntington, Veblen 
and Young, who often recover not just the disjunction ‘axiom, or postulate’, 
but make primary use of the term ‘postulate’ (most notably by Huntington) 
or else introduce alternatives such as ‘assumption’ (by Veblen and Young).28 

25 Presented at the Paris Second International Congress of Mathematics 1900.
26 Quoted in Corry (2004: 44); see also Torretti (1978), comp. Schlimm (2003).
27 By contrast, his a priori commitments were the concepts of electron and ether; see Goldberg (1984).
28 The rubric of American postulationists was introduced in Corcoran (1980) and examined further in 
Scanlan (1991). My account of American postulationism goes beyond the characterization in Scanlan 
(1991).
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In a presentation to the American Mathematical Society of results from his 
doctoral dissertation, Huntington offered what he called ‘a complete logical 
basis for a deductive mathematical theory’ of absolute continuous magnitudes 
(Huntington, 1902).29 The logical basis of the theory from which the relevant 
theorems are deduced is formed by six propositions he called postulates, with 
the following clarification:

Following the usual distinction, we use “postulate” to mean a proposition the 
acceptance of which is demanded or agreed upon as a basis for future rea-
soning, reserving “axiom” to mean “a self-evident proposition, requiring no 
formal demonstration to prove its truth, but received and accepted as soon as 
mentioned. (Huntington, 1902: 264n)

The use of the term ‘axiom’ indicates, by contrast, the view that basic 
propositions express ‘the essential characteristics’ of the magnitude in ques-
tion.30 

We find further clarification of this attitude towards basic propositions in 
a logical treatment of mathematical theory in Veblen and Young’s subsequent 
formulation of an axiomatic system of projective geometry. Echoing Hilbert, 
they wrote: ‘The starting point of any strictly logical treatment of geometry 
(and indeed of any branch of mathematics) must be a set of undefined el-
ements and relations, and a set of unproven propositions involving them.’ 
(Veblen & Young 1910: vol. 1, 1; Veblen, 1903). Now, they explained that 
given the purely formal or abstract nature of the symbols, devoid of concrete 
content (‘application or representation’), ‘it is manifestly absurd to speak of a 
proposition involving these symbols as self-evident’, thus ‘the unproved prop-
ositions referred to above must be regarded as mere assumptions.’ (Veblen & 
Young 1910: vol. 1, 2). Yet, their motivation differed from Huntington’s and 
the customary use in ignoring the axiom/postulate distinction and attributing 
the absence of self-evidence less to the absence of essential information than 
to the formal status: ‘It is customary to refer to these fundamental proposi-
tions as axioms or postulates, but we prefer to retain the term assumption as 
more expressive of their real logical character.’ (Veblen & Young 1910: vol. 
1, 2). Axioms or assumptions, in this logical sense, are characterized by their 

29 His dissertation at Strassbourg in 1901 included a discussion of complex quantities.
30 Ibid., 264; in his dissertation, Huntington refers to the Archimedes postulate and the postulate of conti-
nuity, but also refers to them as axioms and uses, more generally, the expression ‘das Axiom oder Postu-
lat’; Huntington (1901: xvi).
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status as unproven, in particular not being deduced from other such axioms, 
and fundamental in their joint capacity of the set of axioms to derive every 
proposition associated with, for instance, Euclidean geometry. 

In 1911, Veblen again re-stated his original position:

the first propositions of all cannot be deduced, because there are no previ-
ous propositions to deduce them from. There must therefore be assumptions. 
These may be stated so plausibly that no one doubts their truth, but whether 
they are true or not cannot affect the correctness of the reasoning based upon 
them, nor the fact that they are assumptions. We shall not enter into the met-
aphysical question as to whether these assumptions are self-evident truths, 
axioms, common notions, experimental data or what not, but shall try to keep 
within the realm of mathematics by using the non-committal word assump-
tions. (Veblen, 1911: 4-5, original italics)

Huntington distinguished axioms from postulates or assumptions as state-
ments of fact, whereas the word ‘postulate’ recovers the classic meaning of 
unsettled demand that might or not be satisfied (Huntington, 1911: 171). Ve-
blen added in a footnote that truth becomes a hypothetical matter of testable 
validity: ‘the truth of a statement can be determined only by testing all its 
consequences, so that the real test of the validity of the hypotheses of geom-
etry is the validity of the theorems.’ (Veblen, 1911: 4n). 

Veblen cast in the new terms or at least the new conception of axioms as 
basic statements the old Euclidean project of geometry:

the problem of the foundations of geometry is to find a system of axioms that 
is necessary and sufficient for geometry, –necessary, in that no axiom can be 
dispensed with, and sufficient for the deduction of the whole system of ge-
ometrical knowledge. (Veblen, 1903: 309)

For Veblen and Huntington this is the standard that grants the status of sci-
ence (Huntington, 1911: 158). The new standard included also the rejection 
of Euclidean geometry as the unique solution and Hilbert’s new conception 
of mathematics as ‘a body of propositions stated about certain elements in 
terms of certain relations.’ (Veblen, 1903: 304). The new formalistic perspec-
tive championed by Hilbert was based on relations between uninterpreted 
symbols, ‘devoid of content’, and the derivation of theorems by the methods 
of formal logic. According to Veblen the new perspective implied the new 
postulational attitude:
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Since it is manifestly absurd to speak of a proposition involving these symbols 
as self-evident, the unproved propositions referred to above must be regarded 
as mere assumptions. It is customary to refer to these fundamental proposi-
tions as axioms or postulates, but we prefer to retain the term assumption as 
more expressive of their real logical character. (Veblen & Young, 1910: vol. 
1, 1-2).

Huntington emphasized two connected aspects of postulates that suggest 
his distinctive commitment to postulate-based axiomatics was motivated also 
by his focus on algebra rather than geometry. Conditions expressed by pos-
tulates are lack propositional content, therefore they can’t be self-evidently 
true because they lack truth-value altogether. To categorize them, Huntington 
borrowed Russell’s notion of propositional function (Huntington, 1911: 172). 

Moreover, he appealed to the original meaning of the term ‘postulate’ as a 
demand, rather than a description, that systems might fail to meet. He gave 
the example of army admission conditions in the form of requirements or in-
structions that a class of men might not satisfy (Huntington, 1911: 172). This 
constructionist approach fits the case of algebraic systems. The relevant sys-
tems to each the postulates apply, that is, that are eligible for satisfying them, 
consist of a class of elements such as geometrical points or numbers, and 
relations they obey such as order or betweenness. One may think, instead, in a 
formal mode, of regulating the meaning of terms, ‘points’ and ‘betweenness.’ 
In the case of algebraic systems, the specific types of relations between ele-
ments in a system are rules or operations, which fit the character of demand 
or instruction that distinguished postulates.

In a review of subsequent work by Huntington, N.J. Lennes drew attention 
to this precise significance in the by now anomalous terminological choices; 
his diagnosis combined Huntington’s terminology with Veblen’s interpreta-
tion:

The original name for the unproved propositions of a mathematical science 
was “axiom,” –a truth so simple that everyone must assent to it whenever 
the statement is fully comprehended. In this respect, the point of view has 
changed completely. If a, b, (+), (.) are purely abstract symbols, then no prop-
ositions whatever is evident about them. Hence the word “axiom” with its 
old connotation is being discarded. The paper under review uses “postulate.” 
Other writers, as Veblen and Young, are using “assumption”. (Lennes, 1911: 
364-5)
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Their terminological particularity adopted along with the focus on either 
postulates or axioms understood in new epistemological ways has been as-
sociated with a broader uniformity of interest and approach to foundational 
mathematical research.31 The explicit rejection of the traditional foundation-
alist connotation of the term ‘axiom’, when not the introduction of the postu-
lational rubric, marks changing commitments to axiomatics and to the logical 
and epistemological status of axioms. It is a commitment to foundations with-
out foundationalism.

Their work emphasizes the distinction between the syntactic undefined ex-
pressions in the systems, or postulate sets, and their semantic interpretations. 
On the basis of the distinction Veblen and Huntington followed Hilbert in 
developing formal metatheoretical conditions of adequacy of the sets such as 
consistency, sufficiency and independence (or irreducibility), which together 
characterized the completeness of a set of postulates and granted them the sta-
tus of logical basis for a deductive mathematical theory (Huntington, 1902: 
264; Huntington 1911). With an explicit and systematic semantic approach 
missing in Hilbert’s formulation of axiomatics, Veblen and Huntington ar-
ticulated a model-theoretic conception of the metalogical categories in terms 
of satisfaction and truth, including the notion of equivalence of classes of 
objects satisfying the same sets of postulates, that is, ‘that there is essentially 
only one class of which the twelve axioms are valid.’ (Veblen, 1904: 346, 
original italics). Veblen introduced for this property the term ‘categorical.’32 
Neither author used the word ‘model.’ Huntington described the equivalence 
between ‘assemblages’ in terms of isomorphism, or one-to-one correspond-
ence; then he proves a theorem:

any two assemblages M and M’ which satisfy the postulates 1-6 are equiva-
lent; that is, they can be brought into one-to-one correspondence in such a way 
that a o b will correspond with a’ o b’ whenever a and b in M correspond with 
a’ and b’ in M’ respectively. (Huntington, 1902: 277)

31 Corcoran (1980) and especially Scanlan (1991), although he glosses over the above distinctions. Ac-
cording to these proposals, members of the school of American postulationists include L.E. Dickson, E.H. 
Moore, E.V. Huntington, O. Veblen, J.W. Young, R.L. Moore, B.A. Bernstein, R.E. Hendrick, J. R. Klein, 
H.M. Sheffer, C.H. Langford and C.J. Keyser. Their locations are predominantly Chicago (E.H. Moore and 
his student Dickson), Princeton (Veblen) and Harvard (Huntington).
32 According to Veblen, the term was suggested by John Dewey; ibid. Huntington introduced it in 1911 as 
the term of a sufficient set of postulates (Huntington, 1911: 171n).
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Veblen subsequently called the objects satisfying a consistent set of as-
sumptions their interpretation and, equivalently, their concrete representa-
tion or application of an abstract science (Veblen & Young, 1910: vol. 1, 3 
and 336). 

After the First World War postulationism was identified and defended as 
a doctrine in the philosophy of mathematics by Cassius Jackson Keyser at 
Columbia and, more generally, by D.R. Carmichael then at Illinois, Urba-
na-Champaign (Cat, 2016). Carmichael’s commitment dates back to his pre-
war work on relativity. 

10. Relativistic postulationism

Veblen’s attitude towards assumptions is the view at work in Einstein’s 
original choice of the term ‘presuppositions’ (Vorausetzungen) and the view 
adopted also by Carmichael in his postulate formulation of relativity theory 
(Carmichael, 1912; 1913). While familiar with the wok of Huntington and 
others, in relation to relativity, Carmichael borrowed the emphasis on pos-
tulates from Lewis and Tolman (1909; and Tolman 1910). So did, I believe, 
Einstein himself, von Laue and then others adopted too, at least in relation 
to the name and status of the basic principles becoming the two postulates 
of relativity.33 By 1911 Einstein, had read G.N. Lewis and Richard Tolman’s 
paper on the new non-Newtonian system of mechanics after receiving copies 
probably from Lewis himself, whom Einstein had met in Zürich in 1901. 
Also von Laue had read it as well as Tolman’s follow-up paper and cited it in 
his textbook treatment of the theory, which Einstein read as well (von Laue, 
1911). Einstein praised Lewis and Tolman’s paper to Vladimir Varičak as a 
beautiful study.34 Further proof of his re-acquaintance with Lewis’ work was 
his recommendation to his collaborator Jakob Laub to contact Lewis for em-
ployment at the MIT laboratory of physical chemistry.35 

In light of Einstein’s physico-chemical researches it is not surprising that 
in 1901 in Zürich he received the visit of Ostwald’s former assistant and col-
league George Bredig and his American visitor G.N. Lewis.36 Bredig was ap-

33 I offer a study of this development as part of a multidisciplinary history of relativity in America in Cat 
(2016).
34 Einstein’s letter of 3 March, 1911, CPAE vol. 5, doc. 257a, 7 (The Collected Papers of Albert Einstein, 
Princeton, NJ: Princeton university Press).
35 Einstein’s letter of 9 November, 1910, CPAE vol. 5, doc. 231, 166.
36 Lewis’ letters to Einstein, 23 February 1921 and 27 July 1926, CPAE vol. 12, doc 62, 100, and vol. 5, 
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pointed to the ETH in 1910 and was Einstein’s colleague there between 1912 
and 1914. Like T.W. Richards, his Harvard advisor before him, Lewis had 
taken the opportunity to spend a year in Germany with Ostwald in Leipzig 
and Nernst in Göttingen. It was only after reading Lewis and Tolman’s paper 
and possibly also Tolman’s follow-up sometime in 1910 that Einstein would 
gradually drop talk of principles of relativity in favor of postulates, especially 
in the context of work in the new general theory.

The adoption of the American postulational terminology and perspective 
was consistent with Minkowski’s own choice in 1908. His application of 
non-Euclidean geometry was not the sole distinctive disciplinary resource 
and incentive for mathematicians (and mathematical physicists). The axio-
matic structure was part and parcel of the new mathematical approaches, at 
least in post-Euclidean geometry. To mathematicians it was as important to 
their reception, reconstruction and development of relativity as was the ge-
ometric perspective37 and group algebraic invariants.

In fact, his choice of postulate terminology might seem somewhat per-
plexing, and stems from Minkowski’s distinction between three different 
concepts of relativity: he had labeled the ‘relativity theorem’ Lorentz’s ad hoc 
(‘artificial’) hypothesis, the ‘relativity postulate’, Poincaré’s inductive gener-
alization and Einstein’s empirically motivated reconceptualization of time, 
and ‘relativity principle’ the generalized covariance principle for the relations 
between observable magnitudes (Corry, 2004: 193-4). The principle of rela-
tivity is, strictly speaking, the third of the axioms from which he derived the 
equations of electrodynamics. Following Hilbert’s axiomatic epistemology in 
geometry, the goal was the clarification of relativity as an axiom probing the 
redundancy and inconsistency in the foundations of mechanics.

11. Robb’s turn to axiomatic foundations of geometry beyond Russell

The contrast between Robb’s 1911 and 1914 books parallels the contrast 
between Russell’s 1903 and 1910-1913’s books. It is not the exploration of 
logicism that had changed in Russell, but his turn to explicit axiomatic pres-
entation in order to apply his philosophical method of analysis. He applied 
the logical techniques to problems in metaphysics, epistemology and phi-
losophy of language. It is this method and the logical structure of axiomatic 
systems, not the logicist project, that Robb might felt prompted to follow. 

262n.
37 This is the focus of Walter (1999).
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His exchange with Russell of 1908 might not have distanced him from 
Russell’s general project in philosophy of mathematics as much as did his 
original physical perspective and the specific physical challenge posed by 
the theory of relativity. Robb and Russell pursued different philosophical and 
theoretical projects in relation to geometry. So Robb relied on alternative 
sources, Italian and American, older and more recent, along with some of 
their foundational attitudes and vocabulary. 

Then in 1912 Robb made his acquaintance at least with some of the oth-
er protagonists of the axiomatics movement themselves, and his subsequent 
works would show it, citing them and not Russell –or even Hilbert. The spe-
cial occasion was the International Congress of Mathematicians that took 
place in Cambridge in August 1912.38 In the morning of August 23rd met a 
session of the Philosophy and History subsection of section IV (Philosophy, 
History and Didactics), chaired by Russell. The papers read addressed foun-
dational issues with an emphasis on axiomatics: by G. Itelson (on the essence 
of mathematics), E. Zermelo (on the axiomatic and genetic methods), H. 
Blumberg (on a set of postulates for arithmetic and algebra), E.V. Huntington 
(on a set of postulates for abstract geometry) and A. Padoa (on the principle 
of induction) (Hobson & Love, 1913: vol 1, 53-4).

Peano too was attending the conference. Robb attended the session, likely 
among others, and participated alongside Padoa and N.A. Whitehead in the 
discussion of the paper by Blumberg, who had recently received his doctor-
ate from Göttingen under Edmund Landau. Notice that it is the Continen-
tal-educated Americans, Blumberg and Huntington, who, as Robb would too, 
referred to sets of postulates. This linguistic marker helps tracks changing 
commitments to axiomatics and to the logical and epistemological status of 
axioms.

Veblen’s preoccupation with the logical independence of axiom systems 
followed recent work by his advisor at the University of Chicago, E.H. Moore. 
Moore had criticized Hilbert’s claim of the independence of his system of ax-
ioms by proving that one of them (II, 4) was redundant (Moore, 1902). Veblen 
also echoed Peano’s defense of the primitive character of points and Padoa’s 
recent criticism of Hilbert’s set of basic terms, for basic elements, ‘point’, 
‘line’, and ‘plane’, and for basic relations, ‘situatedness’ and ‘betweenness,’ 
are reducible to two undefined terms, ‘point’ and ‘betweenness.’39 

38 22-18 August 1912, see Hobson and Love (1913), vol.1.
39 Veblen (1903), Peano (1889) and (1894) and Padoa (1900).
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In the Italians’ footsteps Veblen then proposed a system of axioms, or 
assumptions, and definitions for Euclidean geometry based on the undefined 
term ‘point’ for the basic class of elements and ‘order’ for the basic relation 
between them (Veblen, 1904; 1911). Veblen and Huntington picked up the 
theme of the independence of basic assumptions or postulates in their 1911 
essays collected in a monograph edited by Young (Veblen, 1911; Huntington, 
1911). It was also an issue Huntington addressed in his presentation at the 
Cambridge conference of 1912.

Shortly after, Robb turned his attention to Peano’s system of axioms 
for the geometry of the straight line to examine their independence (Robb, 
1913a). He concluded that one of the axioms, IX, could be proven, that is, it 
was not independent. Next in a follow-up note he published a second proof 
to the effect that also another axiom, VI, was, borrowing Veblen and Moore’s 
terminology, reducible (Robb, 1913b). In 1914 he referred to Peano’s axiom 
as redundant (Robb, 1914b: 105). In the aftermath of the Cambridge confer-
ence, the logical analysis of Peano’s axioms provides the link to his system of 
geometric postulates that integrates the kinematic results of relativity theory.

The effects of the exposure and contribution to new developments in the 
foundations of geometry during the period 1911-1913 are evident in the tran-
sition between Optical Geometry of Motion (1911) and A Theory of Time and 
Space (1914). The distinctive aspect of the 1911 book is the emphasis on the 
physical interpretation; the distinctive aspect of the subsequent book of 1914 
is the attention to the logical structure. In 1911 Robb didn’t consider the spe-
cific set of geometric axioms and the logical structure it supported, nor their 
logical properties such as independence and consistency.

The focus on the foundations of geometry became the core of his ap-
proach to Einstein’s resolution of the difficulties that beset electrodynamics 
in his theory of relativity. It informed his new view of the theory of relativ-
ity, developed more explicitly and in more detail in A Theory of Time and 
Space (1914). The book, however, should be understood in the tradition of 
Peano, Veblen and Huntington, with the particularity of the physical founda-
tion that updates Helmholtz’s project and integrates Einstein’s results after 
Minkowski’s geometric formulation. The subtitle of Optical Theory of Mo-
tion, A New View of the Theory of Relativity made clear the intended focus 
in 1911. Yet in 1914 the treatment of relativity is incidental except as the 
spatio-temporal framework for integrating the different strands in the founda-
tions of geometry. The themes of formal logic, the elimination of paradoxes, 
the axiomatic approach to geometry, the physical interpretation of its axioms 
and the rejection of Poincaré’s conventionalism (despite its endorsement of 
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the empirical and mechanical bases for geometry) all appear mentioned in 
the Introduction to Optical Geometry of Motion (1911), but not developed. 
Robb defended a physical approach to the foundations of geometry, as an 
axiomatic system, rather than a logical approach in the logicist sense, that 
is, considering geometry a branch of formal logic (Robb, 1911: Preface). But 
it is in 1914 that he would recast the geometrical project in explicit terms of 
postulates with the inclusion of Veblen’s and Huntington’s meta-theoretical 
considerations of independence and consistency.

The central motivation was geometrical, the axiomatic foundations of 
geometry, and choice and interpretation of its axioms. Both are clearly set 
against a logical axiomatic structure of geometry. Robb sought explicitly to 
reject Poincaré’s conventionalism (as well as Minkowski’s abstract four-di-
mensional algebraic-geometrical treatment) and to adopt a position closer to 
Riemann’s and Helmholtz’s, distinguishing between axioms with a logical 
basis and axioms with a physical basis; the latter expressed the chronologi-
cal ordering of mechanical and optical facts at spatio-temporal points. In the 
Preface to the book of 1911 Robb declared that geometry was from the stand-
point of pure mathematics a branch of logic, but its origins lie with a physical 
problem (Robb, 1911: Preface). Another logical motivation concerned his ar-
ticulation of relativity theory, as had done also for Einstein and Minkowski, 
namely, avoiding paradox or contradiction. Robb noted the second logical 
consideration in a footnote:

It rather seems to the writer that the assumption of a unique time is intimately 
bound up with the logical principle of non-contradiction, whereby a thing 
cannot both be and not be at the same time. The conception of the index of a 
particle at an instant appears to avoid this difficulty. (Robb, 1911: 7n; Robb, 
1914b: 2-4).

The emphasis on the physical, in connection to his early work on electron 
theory and radiation, dominated the treatment of geometry his title advertised 
as a new view of relativity theory. The role of logic, explicit but marginal in 
1911, had become more prominent, even central, by 1914, in relation to the 
first explicit axiom system, presented in terms of postulates. There the same 
critical remarks about the relativity of simultaneity appear in the main text of 
the Preface (Robb, 1914b: 2).

The physical aspect, he noted, had been studied by Helmholtz and it 
could now supplement the logical aspects (Robb, 1914b: 1). From his teach-
er Minkowski’s abstract physical geometry of space-time Robb adopted the 
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graphic representation of the cone limiting subluminal velocities and the 
commitment to the integration of space and time. Minkowski had expressed 
the spirit of integration with these words: ‘space by itself, and time by itself, 
are doomed to fade away into the shadows, and only a kind of union of the 
two will preserve an independent reality.’ Robb expressed the integration and 
the absolute perspective with similar words, although from quote by Carlyle 
that begins as follows: ‘But deepest of all illusory Appearances, for hiding 
Wonder, as for many other ends, are your two grand fundamental world-en-
veloping Appearances, SPACE and TIME.’ (Robb, 1911: epigraph from Car-
lyle’s Sartor Resartus, original emphasis). In 1914 Robb considered the axi-
omatic system of physical geometry to be expressing a logical theory of time 
that, he concluded, had to imply ‘the Unchangeable.’ The final words are also 
by Carlyle, and express the same fundamental role for time in the analysis 
of space and the consistent absolute perspective he had found in Minkowski 
rather than in Einstein: ‘Know of a truth that only the Time-shadows have 
perished, or are perishable; that the real Being of whatever was, and whatever 
is, and whatever will be, is even now and forever.’ (Robb, 1914b: 371). The 
emphasis on the absolute as an alternative to what he considered to be Ein-
stein’s logically paradoxical emphasis on relativity appeared in the title of the 
firs post-war version of the book, The Absolute Relations of Space and Time 
(1921). The focus would turn to an absolute time order.

With a focus on the (non-Euclidean) geometry of trajectories of particles 
and light flashes, geometry is then physical geometry, an optical geometry 
of motion. According to Robb, its basic axioms would include logical and 
physical propositions, the latter expressing optical rather than logical facts. In 
other words, optical facts constitute an interpretation of geometrical concepts 
(Robb, 1911: 2). But Robb offered no such axioms in Optical Geometry of 
Motion (1911). It was a matter of emphasis on the physical basis:

It is proposed in the following pages to refer briefly, in the first place, upon 
which we might suppose some of the chief axioms to have their foundations.; 
and then to employ these to establish on a new basis some of the groundwork 
of the theory of “Relativity.”

The writer does not propose, in the present paper, to go into the more minute 
Logical details of the foundations of Geometry; as it seems to him that these 
would tend to obscure the general standpoint which he desires to emphasize. 
For this reason he prefers to reserve them for a future occasion. (Robb, 1911: 
1-2).
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In 1914 he still insisted on interpreting the theory of relativity as a particu-
lar approach to the more general ‘investigation of the relations of Time and 
Space in connection with the physical phenomena of Optics.’ (Robb, 1914b: 
1). And he located the theoretical roots of the project, and of his contribution 
to it, in the electron theory of his teacher Larmor and of Lorentz.40 Accord-
ing to Larmor, the electromagnetic properties of the electrons constituting 
ponderable matter could account for the null result of the Michelson-Morley 
experiment, the Lorentz-FitzGerald contraction hypothesis and the ensuing 
impossibility of distinguishing by optical or electromagnetic means between 
systems at rest or in uniform motion, which Robb referred to as Einstein’s 
symmetries.41

In response to the problem of optics of moving bodies that dominated 
Cambridge and Göttingen physics and to Einstein’s relativistic solution, 
Robb sought a particular physical basis for his system of geometry. It re-
quired absolute quantities and relations exhibiting an absolute order. With 
Helmholtz’s precedent, he built on his own physical researches in the motion 
of radiating electrons. The geometry of coordinates describes the motion of 
elementary particles and flashes of light emitted between them, in Einstein’s 
manner and recovering in passing Einstein’s theory’s kinematic results and, 
as a consequence, by putting it on a new basis (Robb, 1914b: 2).42 

In 1911, for Robb the notion of congruence and the axiom that introduc-
es it in the system of geometry receive physical meaning from the absolute 
character of the finite value of the speed of light. The physical interpretation 
involves the physical fact that light travels at a finite speed (but he did not 
assume isotropy, that the speed was the same in every direction). He consid-
ered the simultaneous emission of a flash of light to three different particles 
and the reception of the flash back at the emitting particle. Then he declared 
the lines spanning the distance between those particles as equal or congruent. 
Moreover, if flashes sent to two of the receiving and returning particles arrive 
simultaneously back at the emitting particle, the system of the three particles 
is not rotating in its plane (Robb, 1911: 4). He considers this physical scenario 
as giving physical meaning to the notion of absolute rotation.

40 ‘Although generally associated with the names Einstein and Minkowski, the really essential physical 
considerations underlying the theories are due to Larmor and Lorentz.’ (Robb, 1914b: 1).
41 ‘It was then shown by Larmor that the electromagnetic equations could, by a linear substitution, be 
made to assume the same form when taken with respect to a system moving with uniform velocity as they 
had when taken with respect to a system “at rest,” and similar results were arrived at by Lorentz.’ (Robb, 
1914b: 1).
42 See also Windred (1933), Torretti (1983), Walter (1999).
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Finally he defined absolute distance in similar physical terms. He intro-
duced a new variable associated with a particle at an instant, its index, which 
tracks the time order of the transmissions of light flashes between particles.43 
For Robb the focus on the index solved the psychological difficulty of non-
unique time orders he associated with the relativity of simultaneity in the usu-
al presentation of Einstein’s theory, and the logical contradiction he perceived 
accordingly, with events simultaneously being and not being, at least from the 
absolute standpoint of a unique time (Robb, 1911: note). Simultaneity made 
sense only locally; and Robb sought to avoid identifying time determinations 
at distant positions. He distinguished an index of departure (emission), Nd, an 
index of arrival, Na, and an index of return (reception), Nr (the first and last 
indices are properties of the first particle, the second index, a property of the 
second particle). 

Absolute distance to a particle in motion relative to a fundamental particle 
in the so-called system of permanent (geometric) configuration is the same for 
each particle in the system and is defined by ½(Nr-Nd) and is always positive 
(echoing Minkowski’s postulate). The index of arrival becomes ½(Nr+Nd), 
which may not coincide with the actual instant of arrival or require the same 
speed for the propagation of light in each direction (Robb, 1911: 7).

Since the representation of distance is physically based on the propagation 
of light, it is restricted to the scope of its reach. Then the uniform motion of a 
particle on a place relative to the index of a particle in the permanent system 
will be represented by a line at an angle smaller than 45 degrees; the latter is 
the angle of the line corresponding to the propagation of light. Robb calls this 
the standard cone with respect to a point on the index line (Robb, 1911: 8).

To conclude the optical interpretation the system of physical geometry, 
Robb ventured a physical interpretation of the particle’s index. The most sig-
nificant aspect is its reliance on his earlier research in the electronic theory of 
spectral lines:

The number of vibrations corresponding to a definite spectrum line of a par-
ticular substance, which are executed in any interval, is proportional to the 
difference of index of the particle emitting the light at the beginning and end 
of the interval, the constant of proportion being fixed for each particular line. 
(Robb, 1911: 32).

43 He acknowledged that a particle’s index was effectively a measure of time, but only in the particle’s 
neighborhood, but he dismissed the general identification of the two concepts (Robb, 1911: 5).
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The physical facts at the basis of the space-time geometry yield a new 
geometry. He avoided conflict with classical intuitions, the Galilean law of 
additivity of velocities is preserved by a non-Euclidean, hyperbolic, triangle 
between the lines of three particles representing new quantities he called uni-
form relative “rapidities.” It recalled Minkowski’s geometrical treatment.44 
For a rapidity w, the absolute velocity relative to a non-rotating system of 
permanent configuration is v=tanh w.

Only in the more systematic explicit treatment of 1914 did Robb present 
an axiomatic system of geometry after the example set by Huntington and 
Veblen (and their Italian predecessors such as Peano and their system of ge-
ometric axioms) with their rejection (not Russell’s or the Germans’) of an 
exclusive talk of axioms (Veblen, 1911).45 By then, as I pointed out, Robb had 
become acquainted with their work –and in 1912 two of the authors them-
selves– and followed in their footsteps with a critical examination of Peano’s 
system. In his system of algebra, Huntington had introduced the fundamental 
concept of element and the relations of rule of combination; in geometry 
Peano and Veblen had adopted the fundamental concepts of points and the 
relations of spatial betweenness and order, respectively.46 For the system of 
physical geometry based on a logic of time, Robb introduced the fundamental 
concept of elements and the relations of so-called conical ordered based on 
temporal relations of before and after. Robb was seeking to integrate what 
he considered new physical geometry, kinematics, and the new logical foun-
dations of pure geometry. He was not alone; in 1912 Huntington and Robert 
Carmichael had formulated different postulate systems for relativity theory. 
Still, Robb cited neither despite his recent familiarity with at least Hunting-
ton’s work and adoption of his terminology.47 

Robb’s system of geometry rests on twenty-one postulates and separate 
definitions. The kinematic structure of relativity becomes absorbed into a 
non-Euclidean, hyperbolic structure of physical geometry that integrates, af-
ter Minkowski’s abstract geometry, both space and time, that is, spatial and 

44 Robb mentions a similar derivation by Sommerfeld from Minkowski’s postulate of relativity (Sommer-
feld, 1910a; 1910b). As Barrow-Green and Gray note, Varičak arrived independently at a similar result 
in 1912.
45 Barrow-Green and Gray focus on the post-war period and note Robb’s references to Peano and Veblen 
in 1921 and then suggest the omission of Hilbert’s name was due to a post-war anti-German sentiment; 
clearly the speculation doesn’t apply to the same references in 1914.
46 Huntington (1902) and (1911), Peano (1894) and Veblen (1911); Veblen following Moritz Pasch rather 
than Hilbert.
47 Carmichael (1912) and (1913) and Huntington (1912); for details see Cat (2016).
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temporal orders. The axioms establish the so-called conical order out of two 
primitive concepts: element of a class or set and the relation of after between 
instants, or elements, of time. He concluded that he had ‘shown how from 
some twenty-one postulates involving the ideas of after and before it is possi-
ble to set up a system of geometry in which any element may be represented 
by four coordinates x, y, z, t.’ (Robb, 1914b: 369, original italics). 

Robb insisted on the phenomenological nature of the system. The system 
of physical geometry is also a system of experienced geometry, ‘a representa-
tion of the space and time of our experience in so far as their geometrical 
relations are concerned.’ (Robb, 1914b: 367). In fact, he placed the phenom-
enological dimension in the very determination of the fundamental concepts, 
that is, the elements of time standing in the fundamental relation are ‘any two 
elements of time of which I am directly conscious.’ (Robb, 1914b: 4). The 
very logical difficulty he had perceived behind the ‘beauty and symmetry’ at 
the heart of the relativity of simultaneity, ‘that “a thing cannot both be and 
not be at the same time”’ (Robb, 1914b: 2), he also cast in psychological 
terms, as ‘something that was psychologically very strange.’ (Robb, 1914b: 
2). He was not alone; also Tolman and Lewis had cast the conceptual matter 
as a psychological difficulty (Lewis & Tolman, 1909; Tolman 1910). But this 
psychological dimension emphasizes the empirical dimension of physical 
space and time concepts more than it expresses any form of idealism. Robb 
doesn’t explicitly defend any operationalist account of such concepts in terms 
of measurement procedures, as Einstein did, only their depedence on physical 
processes. As I show below, Robb also thought of logic, not just geometry, as 
a mechanical matter, in this case of a mental process that could be represented 
mechanically. In this sense, both his geometry and logic combine older me-
chanical foundations with the abstract logical features of the new axiomatics 
and foundations of mathematics.

The set of instants form a series in linear order satisfying five conditions 
(Robb, 1914b: 4, original italics):

(1) If an instant A be after an instant B, the instant B is not after the instant A, 
and is said the be before it.

(2) If A be any instant, I can conceive of an instant which is after A and also 
of one which is before A.

(3) If an instant A be after an instant B, I can conceive of an instant which is 
both after B and before A.
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(4) If an instant B be after an instant A and an instant C be after the instant B, 
the instant C is after the instant A.

(5) If an instant A be neither before nor after an instant B, the instants A and 
B are identical.

Space-time points are the locations of physical events. In physical time 
those events satisfy what Robb called the conical order, represented geomet-
rically by relations between sets of cones associated with any events at any 
space-time points. Thus, at any point occupied by a physical event we can 
define two cones sharing the same apex and axis, one opening upwards and 
another opening downwards. One event, B, is after another, A, if the point 
corresponding to B’s space-time location lies within or on A’s upward –that 
is, forward- cone. Similarly, B is before A if its space-time location lies within 
or on A’s downward –that is, backward– cone. The order introduced by the 
cones is universal or uniform in the sense that at any different points cones 
share the orientation of their up-down axes and the cones’ angle.

What makes the conical order a case of physical geometry is the physical 
meaning of the lines that define the cones. Robb distinguishes between three 
kinds of lines: inertial lines, optical lines and separation lines. Inertial lines 
are the lines connecting events inside a cone; they represent uniform motion. 
Optical lines are the lines defining a cone, making up its surface. They iden-
tify the physical meaning of the geometrical figure as the set of light rays 
leaving or arriving at a point at an absolute (universal) speed, or a two-di-
mensional light pulse. Separation lines are the lines connecting A to points 
outside its cones, that is, points that are neither before nor after A. 

In physical space-time the conical order makes geometric sense of the 
kinematic fact that two events can be simultaneous only if they take place at 
the same spatial as well as temporal location (Robb, 1914b: 6, 13 and 47). 
The absolute character of the speed of light expresses the objective, absolute, 
significance of the inseparability of space and time, echoing Minkowski’s 
insight. It’s the same geometry that can express also Minkowski’s hyperbolic 
structure of non-uniform relative motions, limited by asymptotes that repre-
sent optical lines, or the speed of light (Robb, 1914b: 364).

Robb developed the system of physical space-time geometry after the 
standard of axiomatics introduced in the systems by Peano, Veblen and Hun-
tington. Half-way through Robb’s exposition of his axiomatic system, theo-
rem 69 relates the parallel optical lines running through three points connect-
ed by a separation line (Robb, 1914b: 100). Robb then draws an analogy with 
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the notion of betweenness at the foundation of Peano’s axioms of the straight 
line he had analyzed and criticized a year earlier (Robb, 1914b: 104; 1913a 
and 1913b). Next, after theorem 197, he argues that the three-dimensional 
geometry of the three types of lines for any three points are equivalent to the 
axioms of order from which Veblen deduced the system of Euclidean geom-
etry (Robb, 1914b: 334).48 

The role of Peano’s and Veblen’s systems, however, is more fundamen-
tal than Robb localized analogies suggest. His disavowal of axiom talk is a 
distinctive of Veblen, Young and Huntington and, although less consistently 
so, of Italians such as Peano and Padoa. And, as I mentioned above, talk of 
order can be traced to Veblen’s assumptions of order in his monograph on the 
foundations of geometry, while talk of elements and postulates can be traced 
to Huntington’s work, included in the same volume of monographs edited 
by Young containing Veblen’s monograph (Robb, 1914b: 339; Huntington, 
1911). Moreover, the first five postulates in Robb’s system are analogous to 
some of the first assumptions or axioms in Veblen’s and Peano’s cited sys-
tems.

Robb’s Postulate I of the Conical Order is ‘if an element B be after an 
element A, then the element A is not after the element B.’ (Robb, 1914b: 10). 
Veblen’s corresponding assumption of order is Assumption II: ‘if points A, 
B, C are in order [ABC] they are not in the order [BCA].’ (Veblen, 1911: 5). 

Robb’s Postulate II is ‘(a) if A be any element, there is at least one element 
which is after A’ and ‘(b) if A be any element there is at least one element 
which is before A.’ (Robb, 1914b: 10). Peano’s corresponding axiom is Axi-
om II: ‘If A is any point, there is a point distinct from A.’ (Robb, 1913a: 121; 
Robb, 1914b: 104).

Robb’s Postulate III is ‘if an element B be after an element A, and if an el-
ement C be after the element B, the element C is after the element A.’ (Robb, 
1914b: 10). The corresponding axiom in Peano’s system is Axiom VIII: ‘If A 
and D are distinct points, and C is a member of AD, and B of AC, then B is a 
member of AD.’ (Robb, 1913a: 122; Robb, 1914b: 104).

Robb’s Postulate IV is ‘if an element B be after an element A, there is at 
least one element which is both after A and before B.’ (Robb, 1914b: 10). The 
corresponding assumption in Veblen’s system is Assumption IV: ‘If A and B 
are two distinct points, there exists a point C such that A, B, and C are in the 

48 He cites Veblen (1911) and mentions the other references therein (Robb, 1914b: 339).
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order [ABC].’ (Veblen, 1911: 5). We can find a corresponding axiom also in 
Peano’s system, Axiom IV: ‘If A and B are distinct points, there is at least one 
point lying between A and B.’ (Robb, 1913a: 121; Robb, 1914b: 104).

Robb’s Postulate V is ‘if A be any element, there is at least one other ele-
ment distinct from A which is neither before nor after A.’ (Robb, 1914b: 10). 
The corresponding assumption in Veblen’s system is Assumption VI: ‘There 
exist three distinct points, A, B, C, not in any of the orders [ABC], [BCA], 
[CAB].’ (Veblen, 1911: 6).

Finally, Robb adopted from Veblen and Huntington also their concern 
with logical properties of the systems of postulates or assumptions such as 
consistency, sufficiency (or “categoricalness”) and independence. They had 
addressed those properties in earlier work on systems of geometry and alge-
bra,49 and they get attention again in the monographs of 1911 (Veblen, 1911; 
Huntington, 1911).50 At the end of his monograph Veblen actually deferred to 
Huntington’s explanation (Veblen, 1911: 49). Huntington devoted a separate 
section to each property –followed by a defense of the use of the terms “pos-
tulate” and “assumption” instead of “axiom” (Huntington, 1911: 165-71). 

Conditions or postulates are consistent, in Huntington’s own terms, if 
there exists a system that satisfies them all (Huntington, 1911: 165). The ba-
sic postulates are independent if none is, as he put it, reducible or redundant, 
that is, none is a consequence of another (Huntington, 1911: 169). The system 
is sufficient if all the systems consisting of a class of elements and a basic 
relation or rule connecting them and satisfying the postulates are, in Hun-
tington’s terms, isomorphic, or can be put on a one-to-one correspondence 
(Huntington, 1911: 170).

Robb concluded the exposition of his system of geometry by turning brief-
ly to the questions of consistency, independence and sufficiency. He had first 
noted in passing the sufficiency of the system of propositions as a basis for 
Euclidean geometry in the same way Veblen had defended his own (Veblen, 
1904: 334 and 337). In the conclusion he raised the ‘question of the consist-
ency of the whole twenty-one postulates’ and concluded that he had left ‘little 
doubt that they are all consistent with one another.’ (Robb, 1914b: 369-70). 
As I have mentioned, Robb had discussed the redundancy or independence 
of axioms first in 1913, criticizing the independence of one of Peano’s axi-

49 See for instance Huntington (1902) and Veblen (1904).
50 Like Veblen and Huntington, also Robb might have been aware, while in Göttingen, of Hilbert’s interest 
in the independence and consistency of axioms.
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oms in the footsteps of Veblen similar critique of Hilbert. He mentioned the 
result in relation to the analogy with Peano’s system (Robb, 1914b: 105). In 
the conclusion he turned to his own system: ‘The question as to whether the 
postulates are all independent is mainly a matter of logical nicety and is of 
comparatively little importance provided the number of redundant postulates 
be not large.’ (Robb, 1914b: 370). He acknowledged that of the twenty-one 
postulates, not all are independent. Postulate II is a consequence of V and VI 
and that VI and XI could be combined (Robb, 1914b: 370).

In June of 1914, prior to the publication of the book, Robb wielded his 
logical approach in a letter to the editor of Nature. His target was Cunning-
ham’s recent papers on the principle of relativity. Robb questioned the con-
ceptual consistency of Cunningham’s formulation on the grounds that the 
idea of an absolute and definite velocity for light was inconsistent with the 
alleged indefiniteness (relativity) of measurements of length and simultane-
ity. He concluded with a veiled demand on Cunningham that expresses his 
commitment and the attempt to set the rules of the discussion of relativity 
theory accordingly: ‘Query- What are Mr. Cunningham’s fundamental con-
cepts?’ (Robb, 1914a: 454). Cunningham’s reply must have seemed to Robb 
simplistic and logically inadequate, but it contained an acknowledgment of 
Robb’s distinctive new perspective:

the “fundamental” concepts in the representation of physical phenomena are 
space and time. But the articles did not profess to describe in detail a logical 
scheme of the universe of motion. Mr. Robb’s forthcoming work in which this 
is attempted is anticipated with much interest. (Cunningham, 1914: 454)

12. The image and logic of the light cone: from intuitive methodological 
model to semantic logical model too

The transition of Robb’s research interests from physics to physical geom-
etry, that is, from electron theory to space-time theory, lays out a connected 
series of guiding elements. First, Einstein’s theory was widely understood as a 
reformulation of electron theory; and electron research, especially in relation 
to radiation, connected the theoretical and experimental activities at Cam-
bridge and Göttingen. Second, at Göttingen Minkowski shifted the focus on 
relativity from electrodynamics to space-time geometry. Third, geometry was 
the subject of sustained meta-mathematical, or foundational, analysis and re-
construction, with an emphasis on axiomatic systems and logical properties. 
I have discussed these elements above. In this final section, I discuss briefly a 
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fourth connecting element: Robb’s major works, in 1904, 1911 and 1914, fea-
ture conic geometric models with a varying meaning. The evolution is part of 
a longer genealogy preceding Robb’s cones. By 1914, the geometrical model 
is not only a concrete physical model; it is also a logical model in the seman-
tic, model-theoretic sense, at the service of logical claims. Moreover, Robb 
kept the term ‘model’ to designate both conceptions, the physical-geometric 
and the logical, providing continuity between both traditions. 

1) Geometric and physical models

A geometric model is a geometric entity or a combination thereof with 
specific geometric properties satisfying the propositions of some abstract ge-
ometric theory such as Euclidean geometry. Its role is illustrative, to provide 
a particular example. A cone is a geometric model. Geometry was Robb’s 
earliest scientific interest in Belfast. In the Cambridge tradition within which 
Robb would later study and write, a geometric illustration displayed spatial 
intuitive qualities that facilitated the application of more general and abstract 
relations such as mathematical equations. The cognitive value was of spe-
cial use in communication or education situations such as problem-solving 
in examinations (Cat, 2001; Warwick, 2003). Alternatively, the concrete il-
lustration might have methodological use. For instance, it provided the rep-
resentation of geometrical properties of an empirical system for a predictive 
and explanatory purposes, as in astronomy or cartography, or constructive, as 
in architecture and engineering. 

Geometric models are visualizable, but not always visual. Diagrams are 
the types of visual models representing geometric properties; they facilitate 
ultimately much of the communicative as well as computational and others 
roles. Three-dimensional objects with the relevant geometric features were 
typical educational aids. Robb was obviously familiar with geometric models 
and diagrams from his early interest in geometry and subsequent education 
at Cambridge.

Physical models were typically understood as specific representations 
of physical properties or relations according to more general and abstract 
representations. They had their own concrete instantiations, like geometric 
models, in this case three-dimensional concrete material objects. Whether de-
scriptions or concrete material objects, physical models displayed selected 
relevant features. The selection was grounded on relations of instantiation 
and analogy. Even when the model described possible systems, the specific 
description was meant to satisfy the more abstract and general relations. This 
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semantic relation of satisfaction enabled the functions of relative concrete-
ness and analogy. Their different functions could be illustrative, computa-
tional, predictive or methodological, enabling the application of more general 
principles or relations to the representation of empirical systems.

Geometric models may be also part of physical models, populating treat-
ments of optics and mechanics or research publications in those areas. Me-
chanical theorizing placed spatial properties at the center of the description of 
mechanical systems characterized by structural features such shapes and kin-
ematic behavior such as trajectories. Diagrams provided adequate visual rep-
resentations of the relevant spatial properties or analogs. While the tradition-
al relation between geometry and mechanical and optical properties lied in 
practices and instruments of geometric construction and measurement, Robb 
subscribed to Riemann’s and Helmholtz’s foundational account of physical 
geometry provided a foundational relation, with principled accounts of the 
dependence of geometric notions and axioms on mechanical and optical phe-
nomena. Physical models could be also part, then, of geometric ones.

Mechanical theory and 19th-century mechanical engineering placed me-
chanical models at the center of a diversity of scientific and technological 
practices. At Cambridge, the role of models was based on the fundamental 
cognitive status of spatio-temporal and mechanical features. The mathemat-
ical theory of mechanics, extended to the hypothetical ether, enabled the in-
tuitive mathematization of phenomena such as the propagation of light and 
the action of electric and magnetic forces. In particular, Maxwell and Kelvin 
famously succeeded in bringing electromagnetic phenomena under the new 
mathematical theory of energy physics, including optics. Maxwell’s legacy at 
the Cavendish and among followers beyond involved the appeal to mechani-
cal models of fluid flows, elastic solids and connected spheres and cogwheels 
in education and electromagnetic research. Research in electron theory and 
radiation extended this tradition.

2) Precursors to Robb’s geometric and physical cones and their precursors

Robb’s use of conic models as geometric and physical models includ-
ed two-dimensional diagrams. This tangle didn’t just extend an earlier local 
modeling tradition. It also extended a more recent tangled genealogy of conic 
models both at Cambridge and Göttingen.

As I have mentioned above, Voigt derived a set of transformations (antici-
pating properties of Lorentz’s) that preserved the velocity of light and applied 
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this result to the propagation of wave surfaces in the shape of a light cone 
(Voigt, 1887: 48-50; Sommerfeld, 1910a: 666, Fig. 4). This is one in a series 
of cone models serving different but connected theoretical projects including 
Robb’s. In several of Voigt’s books, both on mechanics and on electricity and 
magnetism, conic models appear occasionally playing one of two roles: the 
illustrative application of a physical principle and the technique for solving a 
problem. In both cases the cone model operates as a geometrical constraint or 
boundary condition (Voigt, 1896; 1901). 

In 1904 Robb followed Lorentz and Voigt in applying classical dynamics 
to explain Zeeman’s sets of spectral lines in terms of the vibrating motion elec-
trons. He postulated a structure of the radiating particle containing a coupled 
pair of electrons in oscillating in response to an elastic central force (Robb, 
1904). Inspiration had come from a treatise on dynamics written by the Ed-
ward J. Routh, Cambridge’s most successful Tripos examination coach, and 
which included examples from examination problems (Routh, 1892: vol. 2).51 

As a possible geometric constraint on the coordinates and velocities of 
two bodies Robb borrowed from Routh’s text the example of motion on a 
cone. The cone model serves in the treatise a tripe role of illustrating general 
physical principles, help with calculation (especially in the application of sol-
id geometry to treatments of rotation) and help the student practice the formal 
application of the physical principles to specific geometric situations. A num-
ber of examples involving cones were borrowed from exam problems that 
Robb would have studied in preparation for his own Tripos examination.52 

In the geometric treatment of rotation due mainly to Poinsot, Routh intro-
duced a specific use of the model of the dynamics of a cone to represent time 
(Routh, 1892: vol. 2, art. 198):

Poinsot has shown that the motion of the body may be constructed by a cone 
fixed in the body rolling on a plane which turns uniformly round the invaria-
ble line. If, as in the preceding theory, we suppose the plane rough, and to be 
turned by the cone as it rolls on the plane, the angle turned by the plane will 
measure the time elapsed.

51 See Robb (1904: 13-14).
52 See, for instance, examples in arts. 198 and 229 of Routh (1892).
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Robb’s strategy in his dissertation fits with the Cambridge tradition of 19th 
century mathematical physics, in which physical research was guided by the 
application of mathematics, especially the calculus, and the focus on certain 
systems as set in examination problems.53 

V-shaped geometric space-time diagrams began appearing in electron 
theory after Robb defended his dissertation in February 1904. In July 1904 
Sommerfeld presented before the Göttingen Royal Society of Sciences the 
two installments of his treatment of the electron’s surface charge distribution 
at uniform speeds below and over the speed of light. He presented the second 
installment in June 1905. Both installments included space-time diagrams 
depicting electron motion (Fig. 1).54 

Figure 1. Sommerfeld’s space-time diagram depicting electron 
motion (1904).

He was then professor of mechanics at Aachen, where graphic techniques 
were valued for use in engineering (Pyenson, 1979: 81). 

One X-shaped diagram in Voigt’s later Magneto- und Elektrooptik repre-
senting electric potential lines (Fig. 2) is graphically reminiscent of the space-
time diagram in Sommerfeld’s articles on electron theory of 1904 and 1905 
(Voigt, 1908: 365, Fig. 71). 

53 The role of the Cambridge Tripos exams in the introduction and research application of the calculus has 
been studied by Warwick in Warwick (2003). See also Cat (2001).
54 Sommerfeld (1904: 429, Fig. 7), and Sommerfeld (1905: 230, Fig. 14).
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 Figure 2. Voigt’s spatial diagram for electric fields (1908).

Despite the graphic similarity with Voigt’s diagram, it is Sommerfeld’s 
explicit space-time diagrams that in turn constitute the immediate geometri-
cal predecessor of the space-time cone diagram in Minkowski’s 1908 lecture 
(Pyenson, 1979: 84). They all constitute a family of close graphic precursors 
of Sommerfeld’s and Robb’s subsequent cone diagrams, tools in their transi-
tion from electron theory to relativistic geometry in 1910 and 1911, respec-
tively.55

Minkowski’s use of space-time diagrams relied on a prior commitment 
to visual thinking, in particular through visual-geometrical intuition as a tool 
for discovery (Galison, 1979: 87). He had appealed to spatial and geometri-
cal intuition first for insight into mathematical concepts in number theory in 
Geometry of Numbers (1896), then for insight into physics of space-time and 
electrodynamics (1908). Throughout he assumed a pre-established harmony 
between mathematics and nature. 

For Minkowski relativity theory was justified as a contribution to the 
electromagnetic worldview; his contribution was clarifying how the motion 
of electrons was informed by the physical reality of space-time geometry. 

55 Sommerfeld discussed Minkowski’s diagram especially in Sommerfeld (1910a: 752; 1910b: 666).
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Lorentz had constructed an electrodynamics of moving bodies on the back 
of mathematical transformations and hypothesis of physical contractions. 
Minkowski understood them from the standpoint of the aesthetic value of 
symmetry and the structure of groups of geometric rotations and four-dimen-
sional invariants (an analysis borrowed from Poincaré). This algebraic inter-
pretation received geometric expression in the representation of the invari-
ant interval as a hyperboloid that contains the representation of all possible 
space-time coordinates of a physical event. 

Minkowski represented graphically the hyperboloid on a V-like axis sys-
tem two-dimensional space-time centered on an event placed at the origin of 
coordinates. The V-shape represented two-dimensionally a space-time cone. 
He then generalized the diagram to an X-shaped axis system that included 
the central event’s past. The transformation curves are contained in what he 
called the fore-cone (Vorkegel) and the aft-cone (Nachtkegel) (see Figure 3) 
(Minkowski 1909/1911: vol. 2, 433 and 438).56 

  

Figure 3. Minkowski’s space-time diagram and light cones (1908).

The fore-cone contains all the (past) points that emit light towards the cen-
tral event, while the aft-cone contains all the (future) points that receive light 
from it. They are light cones in the physical geometry of space-time.

56 The cones are now known as the future and past cones, respectively.
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3) Robb’s geometric & physical cone models.

In Optical Geometry of Motion (1911) Robb introduced the geometry of 
uniform motions relative of a given particle –the fundamental particle– at a 
point on an axis that represented the particle’s index. On this axis, the index 
represents local time in terms of the order of events of light emission and 
reception at the fundamental particle. The propagation of a flash of light emit-
ted in the direction of a moving particle is represented by a line at a 45-degree 
angle relative to the index axis. Relative to the location C=(a, b, c) of the 
particle, all the lines representing the motion of light lie on a cone centered 
around the index axis, z, (x-a)2 + (y-b)2 - (z-c)2 = 0. (Robb, 1911: 8). This is 
the physical light cone; he called it the standard cone relative to the point 
C. Robb extended the model relative to the location of a uniformly moving 
particle with two cones, representing reception and emission of light flashes, 
around its index line (Fig. 4) (Robb, 1911: 11). The geometric and physical 
properties are inseparable; the geometric model is in fact a model of physi-
cal geometry. Further, a diagram depicted the bi-conic geometric model with 
the geometric properties of the physical standard cone, that is, of a physical 
model.

   

Figure 4. Robb’s light cones (1911).

The cones allowed Robb the calculate relations between the indices of the 
particle in uniform relative motion and establish the non-Euclidean geometry 
for rapidities, which satisfy the classical relation of additive composition.
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Next Robb’s geometric project underwent an “axiomatic” turn. As I have 
discussed above, in A Theory of Time and Space (1914) Robb represented 
the physical geometry of space-time embedded in a system of postulates. 
And to that effect, he re-introduced the conic model as a ‘geometrical illus-
tration.’ (Robb, 1914b: 4). It illustrated the fundamental concept of order that 
he had borrowed from prior axiomatizations of Euclidean geometry. But the 
so-called conic order was a geometric model of the physical geometry of 
space-time and, like its 1908 and 1911 predecessors, it concerned local time 
relations of before and after between space-time events. The two relations 
required two cones; the geometric model is, again, a bi-conic model. Among 
the temporal relations, Robb was particularly interested in the relation of sim-
ultaneity, the source of much logical dissatisfaction towards Einstein’s theory. 
The cone system illustrated the possibility of events that were neither before 
nor after each other. In his system, Robb restricted the relation of simultaneity 
to events occurring at the same place (Robb, 1914b: 6). 

The model was also physical beyond the temporal dimension: the physical 
geometry of the cones was defined by limiting optical lines that represented 
the trajectory of light signals to or from a particle, that is, emission and recep-
tion events located at the cones’ vertex. Lines representing the trajectory of 
particles at subluminal speeds are contained within the cones. The future and 
past cones contain the subluminal local physical histories accessible to the 
system at the vertex, the local conic order. As in 1911, Robb also portrayed 
the model graphically, with a geometrical diagram (Fig. 5) (Robb, 1914b: 5).
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Figure 5. Robb’s light cones (1914)

  

4) Logical models and the logic of cones

I have situated Robb’s light cone model in a genealogy of graphic and 
physical cone models; it includes space-time diagrams physical models in 
electron theory and mechanics in his early work and work by teachers at 
Cambridge and Göttingen. Now, any elements of continuity get further com-
plicated by the additional, logical role of the light cone model in 1914. The 
logical turn is the expression of Robb’s engagement with recent trends in the 
foundations of mathematics that I have documented above, especially after 
two events: the publication of Young’s volume of monographs in 1911, which 
included one by Veblen and another by Huntington, and the 1912 meeting 
of the International Congress of Mathematics at Cambridge with the pres-
ence of Peano, Padoa, Zermelo and Huntington –the last three speaking at the 
meeting of the Philosophy Section with Robb’s attendance on record. Robb’s 
new axiomatic standard for his space-time geometry included a concern with 
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the (meta)logical dimensions of axiomatics that the Americans Veblen and 
Huntington introduced reaching beyond Russell’s and Hilbert’s work at Cam-
bridge and Göttingen, respectively. 

I call a logical model a semantic model or interpretation of symbolic ax-
ioms at the service of logical features of an axiom system. Interpretations of 
sentences make them truth-valued, they become models when they satisfy 
the sentences or make them truth in that interpretation. The modern under-
standing of model theory under this term is associated with Tarski, appearing 
early in his 1935 definition of logical consequence: ‘The sentence X follows 
logically from the sentences of the class K if and only if every model of 
the class K is also a model [Modell] of the sentence X.’ (Tarski, 1936/1956: 
417).57 Tarski was explicit that the concept of model reflected the semantic 
role in axiom theory:

an arbitrary sequence of objects which satisfies every sentential function of the 
class L’ [of sentential functions] will be called a model (Modell) or realization 
(Realisierung) of the class L of sentences (in just this sense one usually speaks 
of models of an axiom system of a deductive theory). (Tarski, 1936/1956: 417; 
Tarski, 1936/1986: vol. 2, 279, original italics).

In fact, von Neumann had already introduced the term ‘model’ (Modell) 
in his paper of 1925 with an axiomatization of set theory. His use adopted the 
semantic meaning that Veblen and Huntington had associated with sets, sys-
tems, classes or assemblages that satisfy a given system of axioms (or rather, 
in their case, assumptions or postulates): von Neumann presented as equiva-
lent the statements ‘to find a system Σ satisfying the axioms’ (‘ein System Σ 
zu finden, welches den Axiomen genügt’) and ‘find a model of set theory’ (‘ein 
Modell für die Mengenlehre findet’) (von Neumann, 1925: 235).

Robb used the light cone model –that is, the bi-conic model– in the logical 
sense, as an interpretation of postulates relevant to proving properties of the 
system of geometry such as the independence and consistency of its postu-
lates. In 1913 he had followed Veblen’s and Moore’s criticism of Hilbert’s 
system of Euclidean geometry to criticize the independence of Peano’s axi-
oms. Now in 1914 he applied the same standard to prove the independence of 
the fifth condition of the conic order, about the possibility of events that are 
neither before nor after each other: ‘that [the fifth condition] is in reality no 
logical consequence of the other conditions may be shown by the help of a 
geometrical illustration.’ (Robb, 1914b: 4). He added: ‘We may have two ele-

57 Original in Tarski (1936/1986: vol. 2, 278).
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ments, of which one is neither before nor after the other, but which yet are not 
identical, without our being involved in any logical absurdity.’ (Robb, 1914b: 
6). By the end of the book, Robb seems to have loosened, at least temporarily, 
his commitment to the absolute value of independence: ‘The question as to 
whether the postulates are all independent is mainly a matter of logical nicety 
and is of comparatively little importance provided that the number of redun-
dant postulates be not large.’ (Robb, 1914b: 370). What is significant is the 
acknowledgment and application of the new standards of axiomatics.

In the spirit of formalism, he also acknowledged that the status of the 
model is semantic, interpreting or illustrating the logically basic conditions 
without replacing them: the ‘illustration is suggestive, but the development 
of our theory is in no logical sense dependent upon it.’ (Robb, 1914, 4). The 
emphasis on illustration and interpretation provide the link between the Cam-
bridge-style methodological type of model and the semantic one. Strictly 
speaking, as I have noted above, a semantic role is part of the Cambridge 
tradition of geometrical and mechanical models, but it is embedded in a the-
oretical framework, without the additional foundational, logical function I 
draw attention to by referring to logical models (Cat, 2001). The duality of 
types of models is clearly derivative from the duality of functions.

Another element of continuity between the traditions is terminological. 
The use of the same term ‘model’ in both contexts provides a linguistic link 
between the earlier, physical tradition and the more recent, semantic one in 
logic and axiomatics. Robb’s use in the latter sense is one of the earliest in-
stances of the use of the term with a semantic meaning in the new, model-the-
oretic sense. He had used it in his dissertation in German, Modell, in the 
mechanical and methodological senses familiar to German audiences mainly 
from the work of Maxwell and his British followers. The mechanical model 
of radiating electrons describes a connecting mechanism of interaction and 
the geometric properties of their constrained motion (here the cone is even-
tually introduced) (Robb, 1904: 65).58 To the illustrating mechanical model, 
Robb added a visually illustrating graphic representation.

58 The distinguishing features of the Cambridge, Maxwellian standard are evident in Robb’s introduction 
of the model: ‘Im Folgenden ist ein Modell beschrieben, das eine solche geometrische Verbindung illustri-
ert und das vielleicht von einigem Interesse ist. Selbsverständlich beabsichtigen wir nicht damit zu sagen, 
daβ der Mechanismus dieser Modelle irgend etwas mit dem wirklichen Mechanismus, der die Elektronen 
verbindet, gemeinsam hat.’ (Robb, 1904: 65, original italics).
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According to Robb, the model with the system of cones provided, an “in-
terpretation”, “visualization” and “clarification” of the fundamental relations 
of the conic order and other postulates:

Results involving only three coordinates x, y and t may be visualized by 
means of the three-dimensional conical order described in the introduction, 
but a certain amount of distortion appears in a model of this kind, since equal 
lengths in the model do not in general represent equal lengths as we have 
defined them.

The optical signification of the Posts. I to XVIII are however made clear by 
such models, and it is easily seen that the assertions made in these postulates, 
when interpreted in the manner described, are in accordance with the ordinar-
ily accepted ideas.

Post. XXI also finds an interpretation in such a model, but its significance is 
concerned rather with the logic of continuity than with any observable physi-
cal phenomenon. (Robb, 1904: 368-9)

Finally, Robb addressed the model’s (meta)logical role in proving the con-
sistency of the system of postulates:

Of the postulates used: nineteen, namely I to XVIII and Post. XXI, may easily 
be seen to have an interpretation in three-dimensional geometry by making 
use of cones as described in the introduction.

It follows that if ordinary geometry be consistent with itself, these nineteen 
postulates must be consistent with one another. (Robb, 1904: 369).

Robb’s axiomatization of space-time geometry constitutes not only the 
earliest axiomatic treatment of non-Euclidean physical geometry as a pres-
entation of relativity theory. It was also one of the earliest axiomatizations in 
physics by the new standards of axiomatics and with attention to its metama-
thematical or metalogical foundations.

In the succession of models of cones, I have identified dimensions of par-
tial continuity: geometric models, mechanical models (motion of particles 
and light), graphic models (diagrams) and linguistic labels. In the tangled 
genealogy, Robb’s shifting use of cones changed from the geometric and me-
chanical to including the graphic and the logical. In doing so, the evolution 
tracked his changing commitments and interests engaging related new devel-
opments in both physics –electron theory and relativity– and the foundations 
of mathematics –axiomatics and postulationism.
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Conclusion

 I have argued that Robb’s transition to an axiomatic approach to both ge-
ometry and relativity is a synthesis of Cambridge electrodynamics, represent-
ed by Robb’s mentors Joseph Larmor and J.J. Thomson, and modern foun-
dations of geometry, especially axiomatics, represented by Russell in Britain 
and, as his references and use of postulates rather tan axioms indicate, also by 
Veblen, Young and Huntington in America. In addition, one may recognize 
in the synthesis the enabling role of familiar work in geometry, relativity and 
electrodynamics at Göttingen, especially by Hilbert, Sommerfeld, Minkowski 
and his dissertation advisor Voigt. The transition to work in space-time ge-
ometry and the role of new work in the foundations of mathematics may 
seem surprising that in the light of his neglected initial research. Here I have 
documented his subsequent engagement of new foundations of mathematics 
and argued that its role can be tracked by the evolving use and significance 
of cone models that I have documented in his different works. The role of 
foundational movement in Germany, Britain and America explains in turn the 
evolution of the cone models. It also places his research in seamless contact 
with physics, geometry, logic and the foundations of mathematics.
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