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Abstract. In this paper we show that if the Nemytskii operator maps the
(φ, α)-bounded variation space into itself and satisfies some Lipschitz condi-
tion, then there are two functions g and h belonging to the (φ, α)-bounded
variation space such that f(t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R.
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El operador de Nemytskii en espacios de variación

acotada generalizados

Resumen. En este artículo demostramos que si el operador de Nemytskii lleva
el espacio de variación (φ, α)-acotada en sí mismo, y satisface cierta condición
de Lipschitz, entonces existen dos funciones g y h perteneciendo al espacio
de variación (φ, α)-acotada tal que f(t, y) = g(t)y + h(t) para todo t ∈ [a, b],
y ∈ R.

Palabras claves: p-variación de Riesz, variación (φ, α)-acotada.

1. Introduction

Two centuries ago, around 1880, C. Jordan (see [15]) introduced the notion of a function of
bounded variation and established the relation between these functions and monotonic
ones, when he was studying convergence of Fourier series. Later on the concept of
bounded variation was generalized in various directions by many mathematicians, such
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Vol’pert, N. Wiener, among many others. It is noteworthy to mention that many of
these generalizations where motivated by problems in such areas as calculus of variations,
convergence of Fourier series, geometric measure theory, mathematical physics, etc. For
many applications of functions of bounded variation in mathematical physics see the
monograph [13].

In his 1910 paper F. Riesz (see [27]) defined the concept of bounded p-variation
(1 ≤ p < ∞) and proved that, for 1 < p < ∞, this class coincides with the class of func-
tions f , absolutely continuous with derivative f

′

∈ Lp[a, b]. Moreover the p-variation of
a function f on [a, b] is given by Vp(f, [a, b]) = Vp(f) = �f ′�pLp[a,b].

In [3] the first and third named authors generalized the concept of bounded p-variation
introducing a strictly increasing continuous function α : [a, b] → R and considering the
bounded p-variation with respect to α. This new concept was called (p, α)-bounded
variation and denoted by BV(p,α)[a, b]. In [2] there was a further generalization, given
rise to the concept of (φ, α)-bounded variation. In this paper we show that the Nemytskii
operator is bounded in RBV(φ,α)[a, b].

2. Definitions and Notations

In this section, we gather definitions and notations that will be used throughout the
paper. Let α be any strictly increasing, continuous function defined on [a, b].

2.1. Lebesgue-Stieltjes measure and integral

Lebesgue-Stieltjes measure

Let α be a strictly increasing continuous function on R with finite value. Let
γ =

�
[a, b) : a < b

�
the set of all half-open intervals in R. Define µα : γ → R

+ by

µα([a, b)) = α(b)− α(a).

It is not hard to show that µα is σ-additive on γ, that is, if
�
[an, bn)

�
n∈N

is a disjoint
sequence of members of γ, then

µα




∞�

n=1

[an, bn)



 =

∞�

n=1

µα

�
[an, bn)

�
.

Then there exists a unique extension of µα into the Borel sets of R. The completeness
of this extension is call the Lebesgue-Stieltjes measure induced by α, defined on the σ-
algebra γ, and will be denoted as µα too (see, e.g., [12]). In the case α(x) = x we get
back the usual Lebesgue measure.

Example 2.1. Let α be a strictly increasing absolutely continuous on [a, b] with derivative
α′. In this case the corresponding measure µα is defined on all subsets of [a, b] which are
Lebesgue measurable, and for each subset of this kind

µα(A) =

�

A

α′(x) dx.
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Indeed, by virtue of the Lebesgue theorem, for each interval (c, d) we have

µα((c, d)) = α(d) − α(c) =

∫ d

c

α′(x) dx.

The Lebesgue-Stieltjes integral

Let µα be the Lebesgue-Stieltjes measure generated by a strictly increasing function α.
For this measure we define in the usual way the class of integrable functions and we
establish the concept of Lebesgue integral

∫ b

a

f(x) dµα(x).

One integral of this type taking with respect to a measure µα corresponding to a generated
function α, is called Lebesgue-Stieltjes integral and it is denoted by

(LS)

∫ b

a

f(x) dα(x),

and we may write f ∈ LS(α).

Example 2.2. If α is an absolutely continuous function, its Lebesgue-Stieltjes integral is

∫ b

a

f(x) dα(x) =

∫ b

a

f(x)α′(x) dx.

Theorem 2.3. If f is a continuous function on [a, b], then f ∈ RS(α) (RS(α) stands
for the set of all Riemann-Stieltjes integrable functions, see [12]). Moreover this integral
coincides with the Lebesgue-Stieltjes integral

(LS)

∫ b

a

f(x) dα(x) = (RS)

∫ b

A

f(x) dα(x).

Definition 2.4. A function f : [a, b] → R is said to be absolutely continuous with respect
to α if for every ε > 0 there exists some δ > 0 such that if {(aj, bj)}

n
j=1 are disjoint

open subintervals of [a, b], then

n∑

j=1

(α(bj)− α(aj)) < δ implies

n∑

j=1

|f(bj)− f(aj)| < ε.

Thus, the collection α-AC[a, b] of all α-absolutely continuous functions on [a, b] is a func-
tion space and an algebra of functions.

Definition 2.5. Let E ⊂ [a, b]. The set E has measure zero (in the Jordan sense) with
respect to µα if given ε > 0 there exists a numerable cover by open intervals of E
{In = (an, bn) : n ∈ N} such that

∑n
j=1(α(bn)− α(an)) < ε.
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Definition 2.6. Suppose f and α are real-valued functions defined on the same open
interval (bounded or unbounded). Suppose x0 is a point in this interval. We say f is
α-derivable at x0 if

lim
x→x0

f(x)− f(x0)

α(x) − α(x0)
exists.

If the limit exists we denote its value by f ′
α(x0), which we call the α-derivative of f at

x0.

Lemma 2.7. Let f ∈ α-AC[a, b]; then f ′
α exists and is finite on [a, b] a.e.[µα].

For the proof of Lemma 2.7 see [4, 14, 27].

2.2. Nemytskii Operator

Suppose I,M and N are nonempty sets. Given a mapping ϕ : I ×N → M , the operator
ϕ♮ : N I → M I defined by (ϕ♮g)(x) = ϕ(x, g(x)) for all x ∈ I and g ∈ N I is called the
Nemytskii operator.

The Nemytskii operator is, in Krasnosel’skii-Rutickii terminology [17], the “simplest”
classical nonlinear operator acting between function spaces, and its study is very well
documented (see, e.g., [1, 17]). This documentation is mainly done in many classical
function spaces, such as Hölder, Lebesgue, Orlicz, Sobolev, among others. To the best
of our knowledge, its properties on spaces of bounded variations and its generalizations
(even for intervals) is less studied.

In his 1982 paper, J. Matkowski (see [19]) has shown that the operator F generated by
f : [a, b] × R → R maps Lip[a, b] into itself and it is globally Lipschitz, there exists a
positive constant K such that

�F (u)− F (v)�Lip[a,b] ≤ K�u− v�Lip[a,b]

where u, v ∈ Lip[a, b] if and only if there exists g, h ∈ Lip[a, b] such that

f(t, x) = g(t)x+ h(t) (1)

for t ∈ [a, b], x ∈ R.

Remark 2.8. Note that there are function spaces where the Matkowski result does not
remain valid. For example, on the space C[a, b] and Lp[a, b] with p ≥ 1, take g : R → R

given by g(x) = sin(x) and define

f(t, x) = g(x), t ∈ [a, b], x ∈ R.

The function g is Lipschitz on R, but f does not satisfy the relation (1); however, the
operator F generated by f maps each the above spaces into itself and

�Fu− Fv�∞ = � sin(u(·))− sin(v(·))�∞

≤ K�u− v�∞
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Nemytskii operator on generalized bounded variation space 75

with u, v ∈ C[a, b], and

�Fu− Fv�Lip[a,b] =

(∫ b

a

| sin(u(t))− sin(v(t))|pdt

) 1
p

≤ K�u− v�Lip[a,b]

with u, v ∈ Lp[a, b], where K is the Lipschitz constant of g.

Matkowski’s result has been extended in the framework of various function spaces for
single-valued as well as multivalued Lipschitzian Nemytskii operators, cf. [18, 28, 7, 8,
9, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31].

2.3. Functions of (φ, α)-bounded variation

Definition 2.9. Let φ : [0,∞) → [0,∞) be a function such that

1. φ is continuous;

2. φ is strictly increasing;

3. φ(t) = 0 if and only t = 0;

4. limt→∞ φ(t) = ∞.

Then such a function is know as a φ-function.

Definition 2.10. Let f be a real-valued function on [a, b] and φ be a φ-function. Let
Π = {a = x0 < x1 < . . . < xn = b} be a partition of [a, b]. We consider

σR

(φ,α)(f ; Π) =

n∑

j=1

φ

(
|f(xj)− f(xj−1)|

α(xj)− α(xj−1)

)

(α(xj)− α(xj−1))

and
V
R

(φ,α)(f ; [a, b]) = V
R

(φ,α)(f) = sup
Π

σR

(φ,α)(f ; Π),

where the supremum is taken over all partitions Π of [a, b]. V
R

(φ,α)(f) is called the Riesz

(φ, α)-variation of f on [a, b]. If V
R

(φ,α)(f) < ∞, we say that f is a function of Riesz

(φ, α)-bounded variation. The set of all this functions is denoted by

BV
R

(φ,α)[a, b] = {f : [a, b] → R | VR

(φ,α)(f) < ∞}.

Note that if we set φ(t) = tp(1 � p < ∞) we get back the concept of (p, α)-bounded
variation defined in [3].

Definition 2.11. Let φ be a convex φ-function. Then

{f : [a, b] → R|∃λ > 0 such that λf ∈ BV
R

(φ,α)[a, b]}

= {f : [a, b] → R|∃λ > 0 such that V
R

(φ,α)(λf) < +∞}

is called the vector space of (φ, α)-bounded variation function in the sense of Riesz, and
we denote it by RBV(φ,α)[a, b].
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Conclusion:

RBV(φ,α)[a, b] =
�
BV

R

(φ,α)[a, b]
�
⊂ B[a, b],

where B[a, b] is the set of bounded functions.

Definition 2.12. Let φ be a convex φ-function . We introduce the norm

� · �R(φ,α) : RBV(φ,α)[a, b] → R,

with f �→ |f(a)|+ |f − f(a)|R(φ,α) = |f(a)|+ inf

�

ε > 0 : VR

(φ,α)

�
f
ε

�
� 1

�

.

In their 1987 paper, L. Maligranda and W. Orlicz gave a lemma which supplies a test
to check that some function spaces are Banach algebras (see [3]), specifically they stated
the following

Lemma 2.13. Let (X, � · �) be a Banach space whose elements are bounded functions,
which is closed under multiplication of functions. Let us assume that f · g ∈ X and

�fg� � �f�∞ · �g�+ �f� · �g�∞

for any f, g ∈ X. Then the space X equipped with the norm

�f�1 = �f�∞ + �f�

is a normed Banach algebra. Also, if X →֒ B[a, b], then the norms � · �1 and � · � are
equivalent. Moreover, if �f�∞ � M�f� for f ∈ X, then (X, � · �2) is a normed Banach
algebra with �f�2 = 2M�f�, f ∈ X and the norms � · �2 and � · � are equivalent.

We have the following results, proved in [2]:

Theorem 2.14. Let φ be a convex φ-function. Then

1. RBV(φ,α)[a, b] with the norm �f�R1 = �f�∞+�f�(φ,α) f ∈ RBV(φ,α)[a, b] is a Banach
algebra;

2. RBV(φ,α)[a, b] with the norm �f�R2 = 2max{1,M}�f�R(φ,α) f ∈ RBV(φ,α)[a, b] is a
Banach algebra, where

M = max






1

(α(b)− α(a))φ
�

1
α(b)−α(a)

� , (α(b)− α(a)φ−1

�
1

α(b)− α(a)

�




.

3. The norms � · �R(φ,α), � · �
R

1 and � · �R2 are equivalent.

Lemma 2.15. Let φ be a convex φ-function defined on [0,∞) with φ(0) = 0. Then the
function ψ : (0,∞) → R, with x �→ φ(x)/x, is increasing.
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Nemytskii operator on generalized bounded variation space 77

2.4. Medved’ev’s theorem

In what follows, we need to justify why we need to introduce another condition on φ
((∞1) condition) to avoid the theory became trivial.

Theorem 2.16. Let φ be a convex φ-function. Then RBV(φ,α)[a, b] ⊂ B[a, b], i.e., all func-
tion of (φ, α)-bounded variation in the sense of Riesz is a function of bounded variation.
Moreover

V(f, [a, b]) � (α(b)− α(a)) +
1

φ(1)
V
R

(φ,α) (f) .

Proof. Let Π = {a = x0 < x1 < . . . < xn = b} be a partition of [a, b]. Note that

n∑

j=1

|f(xj)− f(xj−1)| =
n∑

j=1

|f(xj)− f(xj−1)|

α(xj)− α(xj−1)
(α(xj)− α(xj−1)).

Let

E =

{

j ∈ {1, 2, . . . , n} :
|f(xj)− f(xj−1)|

α(xj)− α(xj−1)
� 1

}

.

If j ∈ E, then |f(xj)− f(xj−1)| � (α(xj) − α(xj−1)). If j /∈ E, then
|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

� 1

and by Lemma 2.15 we obtain

φ(1)

1
�

φ
(

|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

)

|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

,

and thus
|f(xj)− f(xj−1)|

α(xj)− α(xj−1)
�

1

φ(1)
φ

(
|f(xj)− f(xj−1)|

α(xj)− α(xj−1)

)

for j /∈ E.

Then
n∑

j=1

|f(xj)− f(xj−1)|

=

n∑

j∈E

|f(xj)− f(xj−1)|+

n∑

j /∈E

|f(xj)− f(xj−1)|

α(xj)− α(xj−1)
(α(xj)− α(xj−1))

�

n∑

j∈E

|f(xj)− f(xj−1)|+
1

φ(1)

n∑

j /∈E

φ

(
|f(xj)− f(xj−1)|

α(xj)− α(xj−1)

)

(α(xj)− α(xj−1))

�α(b)− α(a) +
1

φ(1)
V
R

(φ,α) (f) < +∞

for all partitions Π of [a, b]; therefore,

V(f, [a, b]) � α(b)− α(a) +
1

φ(1)
V
R

(φ,α) (f) . ����
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We will need the following:

Definition 2.17. Let φ be a convex φ-function. If lim
n→∞

φ(x)

x
= +∞, then we say that φ

satisfies the (∞1) condition.

We might observe that this limit exists since φ is convex. If the φ convex φ-function does

not satisfy the (∞1) condition, then there exists r > 0 such that limn→∞
φ(x)
x = r < +∞,

that is, there exists M > 0 such that φ(x) � rx for x � M . Since φ(x)
x is increasing

(Lemma 2.15), we have

lim
x→∞

φ(x)

x
= sup

x∈(0,∞)

φ(x)

x
.

Theorem 2.18. Let φ be a convex φ-function which does not satisfy the (∞1) condition,
that is, if there exists r > 0 such that

lim
x→∞)

φ(x)

x
= sup

x∈(0,∞)

φ(x)

x
< +∞,

then
BV[a, b] ⊂ RBV(φ,α)[a, b].

Moreover,
V
R

(φ,α) (f) � rV
(
f, [a, b]

)
.

Proof. Let f ∈ BV[a, b] and Π = {a = x0 < x1 < . . . < xn = b} be a partition of [a, b].
Let us consider

φ
(

|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

)

|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

� r, j = 1, 2, . . . , n.

Then

φ

(
|f(xj)− f(xj−1)|

α(xj)− α(xj−1)

)

(α(xj)− α(xj−1)) � r|f(xj)− f(xj−1)|, j = 1, 2, . . . , n,

σR

(φ,α) (f,Π) � r
n∑

j=1

|f(xj)− f(xj−1)|

for all partition Π of [a, b],
σR

(φ,α) (f,Π) � rVR

(φ,α) (f)

and
V
R

(φ,α) (f) � rV(f, [a, b]).

Therefore f ∈ RBV(φ,α)[a, b]. ����

From Theorem 2.16 and 2.18 we deduce
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Corollary 2.19. Let φ be a convex φ-function such that limx→∞
φ(x)
x = r < +∞. Then

RBV(φ,α)[a, b] = BV[a, b] and

1

r
V
R

(φ,α) (f) � V(f, [a, b]) � α(b) − α(a) +
1

φ(1)
V
R

(φ,α) (f) .

To avoid this case (Corollary 2.19) we will assume that φ satisfy the (∞1) condition.

Theorem 2.20. Let φ be a convex φ-function which satisfy the (∞1) condition, and let
f ∈ RBV(φ,α)[a, b]. Then f is absolutely continuous with respect to α on [a, b], that is,

RBV(φ,α)[a, b] ⊂ α-AC[a, b].

Proof. Let f ∈ RBV(φ,α)[a, b]. Given ε > 0, let us consider (aj , bj), j = 1, 2, . . . , n, a finite

collection of disjoint subintervals contained in [a, b]. Let m > 0 such that VR

(φ,α) (f) <
mε
2 .

Since φ satisfy the (∞1) condition, there exists x0 ∈ (0,∞) such that φ(x) � mx for
x � x0. Next, let us consider the following set:

E =

{

j ∈ {1, 2, . . . , n} :
|f(bj)− f(aj)|

α(bj)− α(aj)
� x0

}

.

If j ∈ E, then

x0 �
|f(bj)− f(aj)|

α(bj)− α(aj)
.

Since φ satisfy the (∞1) condition, we have

m
|f(bj)− f(aj)|

α(bj)− α(aj)
� φ

(
|f(bj)− f(aj)|

α(bj)− α(aj)

)

,

and thus

|f(bj)− f(aj)| �
1

m
φ

(
|f(bj)− f(aj)|

α(bj)− α(aj)

)

(α(bj)− α(aj)).

From this last inequality we obtain

m∑

j=1

|f(bj)− f(aj)|

=
∑

j∈E

|f(bj)− f(aj)|+
∑

j /∈E

|f(bj)− f(aj)|

�
1

m

∑

j∈E

φ

(
|f(bj)− f(aj)|

α(bj)− α(aj)

)

(α(bj)− α(aj)) + x0

∑

j /∈E

(α(bj)− α(aj))

�
1

m

n∑

j=1

φ

(
|f(bj)− f(aj)|

α(bj)− α(aj)

)

(α(bj)− α(aj)) + x0

n∑

j=1

(α(bj)− α(aj))

<
1

m
V
R

(φ,α) (f) + x0

n∑

j=1

(α(bj)− α(aj)).
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Now, choose 0 < δ < ε/(2x0). Thus, if
∑n

j=1(α(bj)− α(aj)) < δ, then

n∑

j=1

|f(bj)− f(aj)| <
ε

2
+ x0δ < ε.

Finally, collecting all of this information we conclude that, given ε > 0, there exists δ > 0
such that for all finite family of disjoint subintervals {(aj , bj) : j = 1, 2, . . . , n} of [a, b]
such that

∑n
j=1(α(bj) − α(aj)) < δ, then

∑n
j=1 |f(bj) − f(aj)| < ε, which means that

f ∈ α-AC[a, b]. ����

The coming result is a generalization of the result due to Medved’ev (see [16, 11]) and also
provide us with a characterization to find out the (φ, α)-bounded variation of a function
f in the sense of Riesz.

Theorem 2.21. Let φ be a convex φ-function which satisfy the (∞1) condition, and let
f : [a, b] → R. Then:

1. If f is α-absolutely continuous function on [a, b] and
∫ b

a
φ

(
|f ′

α(x)|
)
dµα(x) < ∞,

then f ∈ RBV(φ,α)[a, b] and

V
R

(φ,α) (f) �

∫ b

a

φ
(
|f ′

α(x)|
)
dµα(x).

2. If f ∈ RBV(φ,α)[a, b], that is V
R

(φ,α) (f) < ∞, then f is α-absolutely continuous on

[a, b] and
∫ b

a

φ
(
|f ′

α(x)|
)
dµα(x) � V

R

(φ,α) (f) .

Proof. Since f ∈ α-AC[a, b], by Lemma 2.7 f ′
α there exists a.e. [µα] on [a, b]. Let

x1, x2 ∈ [a, b] with x1 < x2; then

φ

(
|f(x2)− f(x1)|

α(x2)− α(x1)

)

(α(x2)− α(x1)) =φ

(∫ x2

x1
f ′
α(x) dα(x)

α(x2)− α(x1)

)

(α(x2)− α(x1))

�φ

(∫ x2

x1
|f ′

α(x)| dα(x)

α(x2)− α(x1)

)

(α(x2)− α(x1))

=φ

(∫ x2

x1
|f ′

α(x)| dα(x)∫ x2

x1
dα(x)

)

(α(x2)− α(x1))

�

∫ x2

x1
φ(|f ′

α(x)|) dα(x)∫ x2

x1
dα(x)

(α(x2)− α(x1))

=

∫ x2

x1

φ(|f ′
α(x)|) dα(x).
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Now, let us consider Π = {a = x0 < x1 < . . . < xn = b} is a partition of [a, b]. Then

n�

j=1

φ

�
|f(xj)− f(xj−1)|

α(xj)− α(xj−1)

�

(α(xj)− α(xj−1)) �

n�

j=1

� xj

xj−1

φ(|f ′
α(x)|) dα(x)

=

� b

a

φ(|f ′
α(x)|) dα(x) < ∞,

and hence for all partitions Π of [a, b] < we have

V
R

(φ,α) (f) �

� b

a

φ(|f ′
α(x)|) dα(x).

Therefore f ∈ RBV(φ,α)[a, b].

ii) Let f ∈ RBV(φ,α)[a, b]; then, by Theorem 2.20 f is absolutely continuous with respect
to α on [a, b] and thus f ′

α there exists a.e. [µα] on [a, b]. Let n ∈ N and Πn = {a =
x0,n < x1,n < . . . < xn,n = b} be a partition of [a, b] given by

xj,n = a+
j(b− a)

n
, j = 1, . . . , n.

Next, let us consider the sequence {fn}n∈N
with fn : [a, b] → R given by

fn(x) =






f(xk+1,n)− f(xk,n)

α(xk+1,n)− α(xk,n)
if xj,n � x < xj+1,n,

any other reasonable value if x = b.

We claim that {fn}n∈N
converge to f ′

α on those points where f is α-differentiable and
different of xi,n, i = 0, 1, . . . , n, that is, on

A =

�

x ∈ [a, b] : {f ′
α exists}\{xi,n : n ∈ N, i = 0, 1, . . . , n}

�

.

Let x ∈ A; then, for each n ∈ N there exists k ∈ {0, . . . , n} such that xk,n � x < xk+1,n,
so that

fn(x) =
f(xk+1,n)− f(xk,n)

α(xk+1,n)− α(xk,n)

=
f(xk+1,n)− f(x) + f(x)− f(xk,n)

α(xk+1,n)− α(xk,n)

=
α(xk+1,n)− α(x)

α(xk+1,n)− α(xk,n)

f(xk+1,n)− f(xk,n)

α(xk+1,n)− α(x)
+

α(x) − α(xk,n)

α(xk+1,n)− α(xk,n)

f(x)− f(xk,n)

α(x) − α(xk,n)
.

Therefore fn(x) is a convex combination of the points

f(xk+1,n)− f(xk,n)

α(xk+1,n)− α(x)
and

f(x)− f(xk,n)

α(x) − α(xk,n)
.
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Now, when n → ∞, then xn,k → x and xk+1,n → x. Since f is differentiable in x, the
expressions

f(xk+1,n)− f(x)

α(xk+1,n)− α(x)
and

f(x)− f(xk,n)

α(x)− α(xk,n)

go to the α-derivative of f in x, that is, f ′
α; from this we have

lim
n→∞

fn(x) = f ′
α(x), x ∈ A

a.e [µα] on [a, b]). Since φ is continuous, then

lim
n→∞

φ(|fn(x)|) = φ

(

lim
n→∞

|fn(x)|

)

= φ(|f ′
α(x)|), x ∈ A.

Using Fatou’s lemma, we obtain

∫ b

a

φ(|f ′
α|) dα(x) =

∫ b

a

lim
n→∞

φ(|fn(x)|) dα(x)

� lim inf
n→∞

∫ b

a

φ(|fn(x)|) dα(x)

= lim inf
n→∞

n−1∑

i=0

∫ xi+1,n

xi,n

φ(|fn(x)|) dα(x)

= lim inf
n→∞

n−1∑

i=0

φ

(
|f(xi+1,n)− f(xi,n)|

α(xi+1,n)− α(xi,n)

) ∫ xi+1,n

xi,n

dα(x)

= lim inf
n→∞

n−1∑

i=0

φ

(
|f(xi+1,n)− f(xi,n)|

α(xi+1,n)− α(xi,n)

)

(α(xi+1,n)− α(xi,h))

�V
R

(φ,α) (f) < ∞. ����

Corollary 2.22. Let φ be a convex φ-function that satisfies the (∞1) condition. If f ∈
RBV(φ,α)[a, b], then f is α-absolutely continuous on [a, b] and

∫ b

a

φ(|f ′
α(x)|) dα(x) = V

R

(φ,α) (f) .

Corollary 2.23. Let φ be a convex φ-function that satisfies the (∞1) condition. Then f ∈

RBV(φ,α)[a, b] if and only if f is α-absolutely continuous on [a, b] and
∫ b

a φ(|f ′
α|) dα(x) <

∞. Moreover,
∫ b

a
φ(|f ′

α|) dα(x) = V
R

(φ,α) (f) .

Corollary 2.24. Let φ be a convex φ-function that satisfies the (∞1) condition. Let
f ∈ RBV

0
(φ,α)[a, b]; then,

|f |R(φ,α) = inf

{

ε > 0 :

∫ b

a

φ

(
|f ′

α(x)|

ε

)

dα(x) � 1S (Λ)

}

.
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Proof. From Corollary 2.22 we have

|f |R(φ,α) = inf

�

ε > 0 : VR

(φ,α)

�
f

ε

�

� 1

�

= inf

�

ε > 0 :

� b

a

φ

�
|f ′

α(x)|

ε

�

dα(x) � 1

�

, f ∈ RBV
0
(φ,α)[a, b]. ����

3. Nemytskii operator on RBV(φ,α)[a, b]

We will use the Medved’ev generalized Lemma and the equivalent norms obtained by the
Maligranda-Orlicz Lemma to show the following

Theorem 3.1. Let φ be a convex φ-function which satisfies the (∞1) condition. Let
f : [a, b]× R → R. The Nemytskii operator associated to f defined by

F : RBV(φ,α)[a, b] → RBV(φ,α)[a, b]

u �→ F (u)

with F (u) = f(t, u(t)), t ∈ [a, b] act on RBV(φ,α)[a, b] and is globally Lipschitz, that is,
there exists K > 0 such that

�F (u1)− F (u2)�
R

(φ,α) � K�u1 − u2�
R

(φ,α),

u1, u2 ∈ RBV(φ,α)[a, b], if and only if there exist g, h ∈ RBV(φ,α)[a, b] such that

f(t, y) = g(t)y + h(t), t ∈ [a, b], y ∈ R.

Proof. Sufficiency. Let y ∈ R. Define

u0 : [a, b] → R

t �→ u0(t) = y (constant function)

and
F : RBV(φ,α)[a, b] → RBV(φ,α)[a, b]

with F (u0)(t) = f(t, u0(t)) = f(t, y). Then f(t, y) ∈ RBV(φ,α)[a, b], for all y ∈ R.

By hypothesis f(·, y) is α-absolutely continuous.

Let t, t′ ∈ [a, b], t < t′, y1, y2, y
′
1, y

′
2 ∈ R. Let us define u1, u2 by

ui : [a, b] → R

s �→ ui(s) =






yi, a � s � t;
y′i − yi

α(t′)− α(t)
(α(s) − α(t)) + yi, t � s � t′;

y′i, t′ < s � b.

Then we may observe that ui ∈ α-AC[a, b], i = 1, 2.
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We have

u1 − u2 : [a, b] → R

s �→






y1 − y2, a � s � t;
y′1 − y1 − (y′2 − y2)

α(t′)− α(t)
(α(s) − α(t)) + y1 − y2, t � s � t′;

y′1 − y′2, t′ < s � b.

Since u1 − u2 ∈ α-AC[a, b] its α-derivative exists and is given by

(u1 − u2)
′
α(s) =






0, a � s � t;
y′1 − y1 − (y′2 − y2)

α(t′)− α(t)
, t � s � t′;

0, t′ < s � b.

To calculate V
R

(φ,α)

�
u1−u2

ε

�
we use the theorem of Medved’ev:

� b

a

φ





�
�
�
�
�

�
u1 − u2

ε

�′

α

(s)

�
�
�
�
�



 dα(s) =

� t′

t

φ

��
�
�
�
y′1 − y1 − y′2 + y2
ε(α(t′)− α(t))

�
�
�
�

�

dα(s)

=φ

��
�
�
�
y′1 − y1 − y′2 + y2
ε(α(t′)− α(t))

�
�
�
�

�

(α(t′)− α(t)) < +∞.

Since u1 − u2 ∈ α-AC[a, b] we conclude that u1 − u2 ∈ RBV(φ,α)[a, b] and

V
R

(φ,α)

�
u1 − u2

ε

�

= φ

��
�
�
�
y′1 − y1 − y′2 + y2
ε(α(t′)− α(t))

�
�
�
�

�

(α(t′)− α(t)).

To calculate �u1 − u2�
R

(φ,α)| we make

V
R

(φ,α)

�
u1 − u2

ε

�

� 1

if and only if

φ

��
�
�
�
y′1 − y1 − y′2 + y2
ε(α(t′)− α(t))

�
�
�
�

�

(α(t′)− α(t)) � 1.

Next, applying φ−1 we have

�
�
�
�
y′1 − y1 − y′2 + y2
ε(α(t′)− α(t))

�
�
�
� � φ−1

�
1

α(t′)− α(t)

�

,

and this is equivalent to

�
�
�
�
�
�
�

y′1 − y1 − y′2 + y2

(α(t′)− α(t))φ−1
�

1
α(t′)−α(t)

�

�
�
�
�
�
�
�
� ε
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and thus

inf

�

ε > 0 : VR

(φ,α)

�
u1 − u2

ε

�

� 1

�

=
|y′1 − y1 − y′2 + y2|

(α(t′)− α(t))φ−1
�

1
|α(t′)−α(t)|

� .

Then

�u1 − u2�
R

(φ,α) = |(u1 − u2)(a)|+ inf

�

ε > 0 : VR

(φ,α)

�
u1 − u2

ε

�

� 1

�

= |y1 − y2|+

�
�
�
�
�
�
�

y′1 − y1 − y′2 + y2

(α(t′)− α(t))φ−1
�

1
α(t′)−α(t)

�

�
�
�
�
�
�
�
.

By hypothesis F (u1) and F (u2) belong to RBV(φ,α)[a, b] and thus also F (u1)− F (u2) ∈
RBV(φ,α)[a, b] with

F (ui) : [a, b] → R

s �→ F (ui)(s) = f(s, ui(s))

for i = 1, 2, with

f(s, ui(s)) =






f(s, yi), a � s < t;

f
�
s,

y′

i−yi

α(t′)−α(t) (α(s)− α(t)) + yi

�
, t � s � t′;

f(s, y′i), t′ < s � b.

Let us consider the partition Π = {a < t < t < t′ < b}; then,

φ

��
�
�
�
(F (u1)− F (u2))(t

′)− (F (u1)− F (u2))(t)

ε(α(t′)− α(t))

�
�
�
�

�

= σR

(φ,α)

�
F (u1)− F (u2)

ε
,Π

�

� V
R

(φ,α)

�
F (u1)− F (u2)

ε
,Π

�

� 1;

applying φ−1 we have

I
� �� ��
�
�
�
�
�
�

(F (u1)− F (u2))(t
′)− (F (u1)− F (u2))(t)

(α(t′)− α(t))φ−1
�

1
α(t′)−α(t)

�

�
�
�
�
�
�
�
� ε,

and hence

I � inf

�

ε > 0 : VR

(φ,α)

�
F (u1)− F (u2)

ε

�

� 1

�

.
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Finally,

I � |F (u1)− F (u2)(a)|+ inf

�

ε > 0 : VR

(φ,α)

�
F (u1)− F (u2)

ε

�

� 1

�

� �F (u1)− F (u2)�
R

(φ,α)

� K�u1 − u2�
R

(φ,α)

= K





|y1 − y2|+

�
�
�
�
�
�
�

y′1 − y1 − y′2 + y2

(α(t′)− α(t))φ−1
�

1
α(t′)−α(t)

�

�
�
�
�
�
�
�





 .

Then

�
�
�
�
�
�
�

f(t′, y′1)− f(t′, y′2)− f(t, y1) + f(t, y2)

φ−1
�

1
α(t′)−α(t)

�
(α(t′)− α(t))

�
�
�
�
�
�
�

� K





|y1 − y2|+

�
�
�
�
�
�
�

y′1 − y1 − y′2 + y2

(α(t′)− α(t))φ−1
�

1
α(t′)−α(t)

�

�
�
�
�
�
�
�





 .

Multiplying both sides by (α(t′)− α(t))φ−1
�

1
α(t′)−α(t)

�
we have

|f(t′, y′1)− f(t′, y′2)− f(t, y1) + f(t, y2)|

� K

�

(α(t′)− α(t))φ−1

�
1

α(t′)− α(t)

�

|y1 − y2|+ |y′1 − y1 − y′2 + y2|

�

.

Since φ satisfies the (∞1) condition, we obtain

lim
t′→t

(α(t′)− α(t))φ−1

�
1

α(t′)− α(t)

�

;

then,

|f(t, y′1)− f(t, y′2)− f(t, y1) + f(t, y2)| � k|y′1 − y1 − y′2 + y2|. (2)

Next, putting
y′1 = w + z; y′2 = w; y1 = z; y2 = 0

into (2), we have

|f(t, w + z)− f(t, w) + f(t, 0)− f(t, z)| � K|w + z − w + 0− z| = 0,
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and thus

f(t, w + z)− f(t, w) + f(t, 0)− f(t, z) = 0;

then
f(t, w + z)− f(t, 0) = (f(t, w) − f(t, 0)) + (f(t, z)− f(t, 0)).

Put
Pt(·) = f(t, ·)− f(t, 0);

hence
Pt(w + z) = Pt(w) + Pt(z).

Note that Pt(·) = f(t, ·) − f(t, 0) is continuous, so that the Cauchy functional equation
is satisfied and its unique solution is given by Pt(y) = g(t)y with g : [a, b] → R, y ∈ R.
Let be

h : [a, b] → R

t �→ h(t) = f(t, 0).

Then h ∈ RBV(φ,α)[a, b], and we can write Pt(y) = f(t, y)−f(t, 0) as g(t)y = f(t, y)−h(t);
therefore,

f(t, y) = g(t)y + h(t).

Since

f(t, 1)− f(t, 0) = (Pt(1) + f(t, 0))− f(t, 0) = g(t), t ∈ [a, b],

we conclude that g ∈ RBV(φ,α)[a, b]. Conversely, let g, h ∈ RBV(φ,α)[a, b] such that
f(t, y) = g(t)y + h(t), that is

f : [a, b]× R → R

(t, y) �→ f(t, g) = g(t)y + h(t).

The Nemytskii operator generated by f is given by

F (u)(t) = f(t, u(t)) = g(t)u(t) + h(t), f ∈ [a, b].

Since RBV(φ,α)[a, b] is an algebra, we conclude that

F : RBV(φ,α)[a, b] → RBV(φ,α)[a, b].

Let us show that F satisfy the global Lipschitz condition. Let the functions u1, u2 ∈
RBV(φ,α)[a, b]; then

�F (u1)− F (u2)�
R

(φ,α) = �f(·, u1(·))− f(·, u2(·))�
R

(φ,α)

= �g(·)u1(·)− h(·)− g(·)u2(·) + h(·)�R(φ,α)

= �g(·)(u1(·)− u2(·))�
R

(φ,α)

= �g(u1 − u2)�
R

(φ,α).
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By the Maligranda-Orlicz lemma we have

�F (u1)− F (u2)�
R

(φ,α) � �g�∞�u1 − u2�
R

(φ,α) + �u1 − u2�∞�g�R(φ,α)

� �g�∞�u1 − u2�
R

(φ,α) +max{1,M}�u1 − u2�
R

(φ,α)�g�
R

(φ,α)

=
�
�g�∞ +max{1,M}�g�R(φ,α)

�
�u1 − u2�

R

(φ,α).

Hence,

�F (u1)− F (u2)�
R

(φ,α) � K�u1 − u2�
R

(φ,α),

with
K = �g�∞ +max{1,M}�g�R(φ,α)

and

M = max






1

(α(b) − α(a))φ−1
�

1
α(b)−α(a)

� , (α(b)− α(a))φ−1

�
1

α(b)− α(a)

�




. ����
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