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ABSTRACT 

A review of the concrete dam’s structural performance is a complex 

issue comprised of many dimensions. This article proposes a method 

to assist in monitoring the displacements of structures and 

foundations of dams, considering the action of environmental 

conditions. Multivariate techniques are used to analyze the data 

pendulums, extensometer bases and multiple rods extensometer, 

along with environmental variables of the concrete surface 

temperature, ambient temperature and the reservoir water level. 

Specifically applies to Canonical Correlation Analysis to evaluate the 

influence of environmental variables in the displacement of structures 

and foundations. Factor Analysis identifies the factors inherent to the 

variability of the data. 
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This technique makes it possible to order the variables considering the action of 

factors. This applies also to Cluster Analysis on the data of dates of measurements, 

according to the similarities present in the observations. Then, Discriminant Analysis 

evaluates the formed groups for uniformity. The results demonstrate that the method 

can distinguish the dam responses and identify the effects of variations in 

environmental conditions over the displacements of structures and foundations. 

Keywords: structural monitoring; concrete dam; multivariate analysis 

1. INTRODUCTION 

 The concrete dam structures are subject to changes caused by the incidence 

of phenomena, such as displacements, strains, stresses, pressures, etc. 

(CARVALHO; ROMANEL, 2007). This occurs because these structures have strong 

interaction with environmental, hydraulic and geomechanical factors, as the 

temperature of the concrete, the hydrostatic pressure and the effect of time (LI; 

WANG; LIU, 2013). Therefore, these factors should be taken into account during 

structural evaluation. 

 Structural Monitoring is accomplished by visual inspection, geodetic 

measurement using vertical and/or horizontal displacements, bathymetric surveys 

and monitoring instrumentation (CRUZ, 2006). The instruments used in this 

monitoring include pendulums, extensometer bases, triple orthogonal meters, flow 

meters, piezometers, multiple rod extensometers (MATOS, 2002). 

 The instrumentation data set is useful for assessing the safety of dam’s 

performance, especially if the current measures are compared with the entire series 

data through statistical and structural identification tools (DE SORTIS; PAOLIANI, 

2007). Reports on instrumentation and visual inspections are useful in this case 

because they cover all aspects of the dam since its construction up to the operational 

phase (KUPERMAN et al., 2005).  

 Detailed analysis of instrumentation data requires a combination of 

knowledge, especially of Engineering, Mathematics and Statistics, and should be 

done by an experienced technical team, with the assistance of computational 

resources (VILLWOCK et al., 2013). 
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 This work presents a helper method in the structural monitoring of concrete 

dams, combining multivariate statistical techniques to: (1) quantify the influence of 

environmental conditions on displacements of structures and foundations; (2) 

identification of the most relevant sensors with respect to the variability of the data; 

(3) grouping of the dates of measurements, according to the similarities. 

 The text structure is composed of six sections, with Introduction being the first 

one. The second section presents the review of the literature on the use of statistical 

techniques in the structural monitoring of concrete dams. Section 3 discusses the 

theory related to multivariate techniques of Canonical Correlation Analysis, Cluster 

Analysis, Discriminant Analysis and Factorial Analysis. The proposed method is 

described in the fourth section. Then, the results obtained in applying the method are 

conferred and discussed. The last section grants the conclusion of the article and 

suggestions for future research.  

2. STRUCTURAL SECURITY 

 The interest in perfecting techniques for structural monitoring of dams has 

grown in recent decades mainly due to the need for greater security in order to avoid 

the consequences of disasters caused by structural problems (MEDEIROS; LOPES, 

2011).  

 The methods used to monitor the structural safety of dams usually consist of 

comparing loads and safety factors used in the projects of dams with the behavior of 

all structures over the years (KUPERMAN et al., 2005).  

 The selection of data, during the process of monitoring the behavior of 

structures, involves the choice and type of method, number and location of the 

sensor, and hardware acquisition/storage/data transmission. This process is specific 

to each application. Economic issues play an important role in making these 

decisions. The time interval in which data should be collected is another point that 

should be considered (FARRAR; WORDEN, 2007). 

 In situations that have uncertainties inherent in the system adopted, the 

statistical analysis is indicated Farrar and Worden (2007) to sort an amendment of 

the parameters as from the structural condition change (failure) or modification of 

environmental and/or operating conditions. 
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 As the data may represent measures of different natures and scales, it is 

important to standardize the data to enable the damage identification process. 

Accordingly, Figueiredo et al. (2011) points out that standardization of data is an 

inherent procedure for data acquisition, feature extraction and statistical modeling in 

structural monitoring process, such as to remove the effects of operational and 

environmental variables with the extracted resources. 

 In addition, Farrar and Worden (2007) it is stressed the need to identify and 

minimize sources of variability in the data acquisition process and in the monitored 

system. However, not all sources of variability can be eliminated, for example, the 

variation caused by various environmental conditions such as temperature, humidity, 

loading and boundary conditions. Therefore, it is necessary to make appropriate 

measures so that these resources can be quantified statistically. 

 According to the literature, the statistical modeling of the structures monitoring 

data has been applied, mainly, to achieve classification, association, forecast values 

and outliers detection. Among multivariate statistical techniques, the most used for 

this purpose are discriminant analysis, canonical correlation, multiple linear 

regression and principal component analysis. Reports and discussions of these 

applications can be found at  (BUZZI, 2007; CHENG; ZHENG, 2013; DENG; WANG; 

SZOSTAK-CHRZANOWSKI, 2008; DE SORTIS; PAOLIANI, 2007; FIGUEIREDO et 

al., 2011; GUEDES; DE FARIA, 2007; JIN-PING; YU-QUN, 2011; LI; WANG; LIU, 

2013; MATA, 2011; MATA; TAVARES DE CASTRO; SÁ DA COSTA, 2013; MUJICA 

et al., 2014; XU; YUE; DENG, 2012). 

3. THEORETICAL 

 A collection of n observations of p distinct random variables, taken from the 

same item, compose a multivariate sample, which can be represented in matrix form 

(Eq. 1), where each Xj vector containing the n observations of the variable j, for all j = 

1, 2, ..., p. 
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(1)

 Multivariate analysis provides methods and techniques for the theoretical 

interpretation of jointly sample. The main purposes that justify the use of multivariate 

analysis methods and techniques are: data reduction and structural simplification; 

sorting and grouping; investigation of dependence between variables; forecast; 

construction and hypothesis testing. 

 The following are the theoretical aspects of multivariate techniques called 

canonical correlation analysis, factor analysis, cluster analysis and discriminant 

analysis used in this study. 

3.1. Canonical Correlation Analysis 

 The Canonical Correlation Analysis is an interdependence analysis technique 

that allows researchers to identify and quantify the associations between two groups 

of variables (X and Y). The basic idea is to find the linear combination of variables X 

and linear combination of variables Y that produce the highest correlation between 

the two groups (JOHNSON; WICHERN, 2007). 

 The first group (X) is composed of p decision variables, also called, 

explanatory variables (independents). While the second (Y) is formed by q response 

variables (dependents on explanatory).  

 The vectors X and Y have covariance matrices and, respectively, and the 

relationship is summarized in the cross-covariance matrix between these vectors, 

that is.  
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 Given that U and V are linear combinations of the vectors in X and Y (Eq. 2), 

respectively, the canonical problem is to obtain the vectors of coefficients a and b 

that maximize the correlation between U and V (Eq. 3). The vectors a and b, in this 

case, are solutions of a system of equations (Eq.  4). The linear combinations U and 

V, in this case, are called canonical variables. 

Xa'=U                  Yb'=V  (2)
 

 
bΣb'aΣa'

bΣa'
=λ=VU,Corr

YX

XY

 
 

(3)

  01 =aλΣΣΣΣ XYXYXY 

  

  01 =bλΣΣΣΣ XXYXYX 

(4)

 

 Where λ is the largest eigenvalue of the matrix or, equivalently, of the matrix 

 XYXXYXYY ΣΣΣΣ 11   . 

 Thus, each pair of canonical variables have unit variance, maximum 

correlation and is not correlated with others pairs of canonical variables. The number 

of pairs of canonical variables that can be obtained is equal to the lowest value of p 

and q. In general, we try to get a few pairs of canonical variables that explain much of 

the interdependence between the two sets of observable variables. 

3.2. Factorial Analysis 

 The application of multivariate technique of Factorial Analysis allows the 

explanation of the correlations between many variables of a set of data through a 

limited number of unobservable random variables, called factors. (JOHNSON; 

WICHERN, 2007).  

 Verification of the viability of the factor model used is made by applying the 

Bartlett Test (Eq. 5), and the quality of fit of the model to the data set is estimated by 

the Criterion Kaiser-Meyer-Olkin (KMO). The KMO coefficient (Eq. 6) varies between 

0 and 1. The closer to 1, the better the adjustment factor model to the data. 

ppApp IρHI=ρH   ::0  

(5)
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 Where qij is the element belonging to the i-th row and j-th column of the matrix,  

DDR=Q 1
 with    1

1


Rdiagonal=D . 

 The factor model (Eq. 7) considers that each variable can be written as a 

linear combination of the common factors (Fk) and specific factors. During the 

process of obtaining the factors, are estimated the factor loadings (lji), the 

commonalities (hi), the specific variances (εj) and the factorial scores (fjk) that are 

measurements with explanatory properties of great interest to the researcher. 

 The load factor is a measure of the variable correlation with the factor. The 

commonality is the portion of the variance of each original variable from the extracted 

factors. The remainder of the variability, which can be owed to other factors, is 

measured by specific variance. 
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(7)

 The factor scores (Eq. 8) are estimates for the values of the factors for each 

sample element. They may be used to sort sample components or as input variables 

for further statistical analysis. 

    n,=i,xxL'LL'=f izzzi
 1,2,1  (8)

3.3. Cluster Analysis 

 The use of Cluster Analysis seeks to find, within a heterogeneous set of data, 

a small number of homogeneous groups, whose variation within the group is 

substantially smaller than the total variability of the data set. 
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 Initially, in the hierarchical agglomerative method, each observation forms a 

separate group. At each step of the process, the groups join according to the 

similarities, forming new groups, until remains only one group with the total number 

of observations included. 

 Similarity is a measure of proximity between two groups. One way of 

calculating this measure is the Mahalanobis distance (Eq. 9). 

   ji
1

jiij xxΣ'xx=D  2  (9)

 Where Σ is the complete data set of covariance matrix X. 

3.4. Discriminant Analysis 

 Discriminant Analysis is a technique that enables, starting from independent 

variable, to study the profile, performing classification and differentiation of two or 

more group elements. The number of groups should be known in advance. The 

discrimination is made based on a mathematical rule, which minimizes the likelihood 

of incorrect classification errors. 

 In the perspective of Mahalanobis (Eq. 10), is calculated the distance ( 2
gD ) of 

each observation to the centroid of each group ( gx ). Then, the observation is 

allocated to the nearest centroid group. 

   g
1

Wgg xxΣ'xx=D  2  (10)

 Where ΣW is the covariance matrix within the group between the independent 

variables. 

4. METHODOLOGY 

 The evaluation of the responses of a dam structure, considering the 

instrumentation data and taking into account interaction with the environment, is a 

problem composed of various dimensions. Therefore, it is necessary to use 

techniques that allow the joint analysis of monitoring data, reduce the magnitude of 

the problem and assist decision-making. 
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 The multivariate statistical techniques, called Canonical Correlation Analysis, 

Factorial Analysis, Cluster Analysis and Discriminant Analysis meet these 

requirements and, therefore, constitute the method used in this work. 

 As illustrated in Figure 1, the method consists of five steps. The first is the 

selection of instruments, the definition of the time period and data collection. If there 

is a difference in frequency of the measurement instruments, it is necessary to 

equate the periods, using for example, the monthly average of observations. 

Furthermore, in this step are identified and filled in the gaps coming from the 

absence of readings in the period. The filling is made with modeling and forecasting 

time series. 

 Then, the Box-Plot and Scatterplot graphics are used to identify the 

occurrence of outliers. For each detected outlier, it is need to evaluate its 

maintenance or exclusion from the data set. If you choose to exclude it, you must 

make a new value forecast, using the same procedure of filling the gaps. 

 Thus, it is composed a sample data matrix (X), with n lines (monthly average) 

and p columns (sensors of the instrument). If there are differences of magnitude and 

in the scale of the observations, owed to the use of different kinds of instruments, the 

data must be standardized. The standardized data matrix (Z) is, then, used as input 

to the procedures listed in the following steps. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  

Composition of the data matrix (Z) 

Canonical Correlation Analysis of displacement and 
environmental conditions 

Factorial Analysis of the data set 

Discriminant Analysis of clusters 

Cluster Analysis of the dates of the readings 

Figure 1: Flow chart of model 
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 The second step is the application of Canonical Correlation Analysis to study 

the relationship between the group of sensors, which measure the displacements of 

the dam structures and their foundations, and the group of indicators of 

environmental conditions. 

 Then, in step 3, the Factorial Analysis is used to estimate the influence of 

environmental conditions in shifts, perform the ranking of the instruments according 

to their importance in the factor model and identify factors that can be used as criteria 

for the overall assessment of displacements. 

 In the next stage, the scores of factors are subjected to Cluster Analysis for 

the formation of homogeneous groups of measurements dates. 

 In the last step, Discriminant Analysis tests the formed groups, with reference 

to the sensors with higher ranking in the Factorial Analysis. 

4.1. Application in the Context of Structural Monitoring of Dams 

 The proposed method was applied to a structural monitoring process of a 

concrete dam. The data set used consists of the observations recorded in the period 

between January 1990 and December 2013, which were obtained through manual 

measurements of the installed instrumentation in D7 and D8 key blocks (Fig. 2), the 

D portion (Dam Right Side, built in blocks buttresses) of the Itaipu dam, and the 

hydrometeorological data from the same period. 

 
Figure 2: Layout of instrumentation installed in key blocks D7 and D8 of the Itaipu 

dam 
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 Table 1 shows the sensors 42 considered in this study, corresponding to the 

direct pendulums, inverted pendulums, extensometer bases, multiple rods 

extensometers, thermometers and Limnimetric ruler. 

Table 1: Phenomena monitored by instruments and respective sensors 
Phenomena Instrument Sensor ID 

Radial displacement Direct pendulum Z1, Z5 

Radial displacement Inverted pendulum Z3 

Tangential displacement Direct pendulum Z2, Z6 

Tangential displacement Inverted pendulum Z4 

Opening and closing of joints between 
blocks 

Extensometer base 
Z7, Z9, Z11, Z13, Z15, 
Z17 

Horizontal sliding between blocks Extensometer base Z8, Z12, Z14, Z18 

Differential settlement between blocks Extensometer base Z10, Z16 

Surface temperature of block 
Concrete thermometer – 
downstream 

Z19 

Surface temperature of block and water 
reservoir 

Concrete thermometer – 
upstream 

Z20 

Deformations of rocky massive Multiple rod extensometer Z21, ..., Z40 

Ambient temperature Thermometer Z41 

Water level of the reservoir Limnimetric Ruler Z42 

4.1.1. Composition of the Sample Data Matrix 

 Given that the frequency of measurements gauged with the different 

instruments (sensors) was not the same, it was decided to use the monthly average 

of the observations. The implementation of a computational procedure, performed 

with the help of Matlab software (Matlab R2013, 2013), allowed to create a monthly 

average observations of each of the 42 sensors and to identify the existence and 

location of gaps, corresponding to periods (months) that measurements were not 

performed. 

 It was found that there are eight incomplete series, totaling 15 deficiencies 

resulting from the lack of measurements at some point. There were created two (sub) 

series for each sensor that detects the occurrence of gaps: one with previous 

observations to the missing data and the other with subsequent information to the 

same issue. The forecast of this data was performed using the 

forecasting/backforecasting procedure, which consists in modeling each (sub) series, 

making value forecast and fill the gap with the average value of the two forecasts. 
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The ARIMA models were used for the realization of the forecasts, with the help of 

Statgraphics software (Statgraphics Centurion XVI, 2010).  

 After completing the sensor data series, we proceeded the analysis of the 

Box-plot and Scatterplot graphics of each series, in search of the occurrence of 

outliers. Outliers were identified in the data reservoir water level  (Fig. 2). The cause 

of this occurrence was the incidence of drought (low rainfall) in the months of the 

summer season of the years 1999/2000 and 2012/2013. It was decided to keep the 

values as observed, to check the influence of this occurrence in the dam’s answers.  

 Owing to differences in quantities and measuring scale on the variables, 

because of the nature of the sensors, it was necessary to carry out the 

standardization of data. 

 Thus, it was made the sampling data matrix (Z), order 288×42, whose lines 

correspond to the dates (month/year), the columns to the variables (sensors) and the 

elements to standardized data. 

 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)    
 

 
 
 
 
 
 
 

Figure 3: (a) Box-Plot and (b) Scatterplot graphic of the reservoir water level (RWL) 
from Itaipu dam, from Jan /90 to Dec /13 
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4.1.2. Canonical Correlation Analysis of displacements and Environmental 

Conditions 

 The Canonical Correlation Analysis was used to study the relationship 

between the sensors clusters that measure displacement (Z1 to Z18 and Z21 to Z40) 

and indicators of environmental conditions (Z18, Z19, Z41 and Z42). As shown in 

Table 2, all the eigenvalues were considered significant at a confidence level of 95% 

(p-value <0.05). It was decided to discuss the results of the canonical correlation of 

higher value. 

Table 2: Canonical correlation of displacement sensors vs. environmental conditions 

Eigenvalue 
Canonical 
Correlation 

Wilks'lambda χ2 
Degree of 
Freedom 

p-value 

λ1 = 0,973 0.986 0.003 1537.080 152 0 

λ2 = 0,717 0.847 0.114 577.122 111 0 

λ3 = 0,437 0.661 0.402 242.062 72 0 

λ4 = 0,286 0.535 0.714 89.492 35 0 

 The canonical correlation between the two groups was 0.986. This measure 

indicates the strong influence that the environmental conditions (V1) have on the set 

of sensors that measure the displacements of the dam’s structures (U1). 

 The correlations between the 38 variables of the first group and four of the 

second were estimated.  Table 3 lists the variables with the highest correlations (| ρ | 

> | 0.8 | and p-value < 0.05), with predominance of multiple rod extensometers (Z23, 

Z24, Z35, Z38, Z40) related to temperatures (Z19, Z20 and Z41). Appear, also, three 

sensors pendulums (Z2, Z3 and Z5) associated to the block surface temperatures in 

the upstream (Z20) and environment (Z41). 

Table 3: Strongly correlated variables 
Sensors Correlations 

Z35 – Z20 -0.913 

Z24 – Z20 -0.910 

Z24 – Z41 -0.889 

Z23 – Z20 -0.888 

Z23 – Z41 -0.872 

Z5 – Z41 -0.855 

Z40 – Z19 -0.855 

Z40 – Z41 -0.843 

Z3 – Z41 -0.829 

Z2 – Z20 -0.820 

Z35 – Z41 -0.815 
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Sensors Correlations 

Z23 – Z19 -0.814 

Z24 – Z19 -0.812 

Z38 – Z19 -0.811 

 

 In the region where is located the Itaipu dam, the range of monthly average 

ambient temperatures, observed in the same year, may reach 20° C. The strong 

correlation of the sensors with temperature variables confirmed this. The negative 

correlation, with dominant presence in the first rows of the table, indicated an inverse 

relationship between the variables. That is, in periods of low temperature, the 

displacements were larger than those registered in periods of high temperature were. 

 Moreover, the reservoir water level alone showed a small positive correlation 

with just a few sensors. Possibly because the low variability in this variable led the 

forces acting on the dam almost constant. Another reason may be the need for the 

reservoir water level interaction with the temperature to influence the displacements. 

 Confronting the canonical variables U1 and V1, through the Scatterplot (Fig. 

3), it was confirmed the existing linear relationship between these variables, showing 

the possibility to predict the dam's structural performance in a given time, depending 

on the measuring sensors offsets. It was also noted the distance of a point compared 

to the others. This point was referring to measurements made in July 2000, when it 

was recorded one of the monthly average lower to room temperature. 

 
Figure 4: Scatterplot of the canonical variables U1 and V1 
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 Table 4 presents the most correlated sensors (| ρ |> | 0.9 | e p-value < 0.05) 

with the first pair of canonical variables. It is observed that the rod of multiple rod 

extensometers Z23, Z24, and Z35 were the more influenced sensors by 

temperatures Z20, Z41. 

Table 4: Key correlations between canonical variables and sensors of each group 
Sensor U1 Sensor V1 

Z23 -0.924 Z20 0.989 
Z24 -0.943 Z41 0.936 

Z35 -0.926   

 Quality assessment of the potential of canonical variables was based on the 

proportion of variance explained by the canonical variables for each group. The 

canonical variable U1 explained 38.7% of the variance observed in shifts, while the 

proportion of the variance explained by V1 to the "Environmental Conditions" group 

was 65.6%. Thus, the groups "Displacement" and "Environmental Conditions” were 

well represented by the first pair of canonical variables, since the canonical 

correlation between these groups was 0.986, while the other pairs have lower values. 

 Therefore, if the "Environmental Conditions" group was the cause of the 

variability observed in the group "Displacement", then U1 can be used as the best 

predictor and V1 the most likely criterion for the realization of the dam's structural 

performance prediction, in what concerns to offsets. 

4.1.3. Factorial Analysis of displacements and Environmental Conditions 

 The application of Factorial Analysis by principal components resulted in a 

model composed of five factors, identified based on the greatest factor loadings of 

sensors, able to explain 91.12% of the variance of the set of comments. 

 The factors were named according to the sensors more correlated with them, 

that is, as the greatest factor loadings. The first factor, due to its positive correlation 

with most of the stems of multiple rod extensometers, especially with Z21, Z22, Z25, 

Z26, Z29, Z30, corresponds to the "Foundation’s Movement". This was the most 

important among factors identified because accounts for 45.88% of the observed 

variability in the data set. 

 The second factor, named "Horizontal Movement Structure in Normal 

Direction", explained 30.83% of the variance and is associated with the openings and 

joints between the dam block and the horizontal displacement in the normal direction 
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(perpendicular to the direction of water flow). The "Horizontal Movement Structure in 

the Flow Direction", third factor identified, accounted for 9.66% of the variability. The 

dominant variables in this factor were the temperatures (Z19, Z20, Z41), with the 

multiple rod extensometers (Z23, Z24, Z38, Z40) and the horizontal displacements in 

the direction of water flow of D8 block (Z3 and Z5). 

 The fourth and fifth factors, called "Block D7 Structure Geometry" and 

"Hydrostatic Pressure" were related to horizontal displacements in the direction of 

water flow of D7 block (Z1) and the reservoir water level (Z42), respectively. 

Furthermore, the "Block D7 Structure Geometry" accounted for 2.41% of the total 

variability, while the influence of "Hydrostatic Pressure" was 2.34%. 

 The variability in the readings of each sensor, arising from identified factors, 

were estimated by commonality. Thus, a commonality low (less than 0.60) would 

indicate that the variable would not be sufficiently explained by the model and could 

be discarded. The results pointed to the preservation of all sensors considered in this 

study. 

 Using as a measure of commonality as a measure of importance of each 

variable to the factorial model, there was obtained the ranking of the sensors. 

Therefore, the most important instruments for the D7 and D8 blocks were 

respectively rods extensometer multiple Z33, Z34, Z35 (even borehole) and 

extensometer bases (opening) Z7, Z9. Furthermore, the reservoir water level (Z42) 

was the variable related to the environmental conditions highest classified. 

 The factor, being a latent variable, cannot be measured directly. However, the 

values of factors, called factor scores, are estimated based on factor loadings and 

the sensor values that dominate this factor. Obtained the factor scores for each of the 

288 dates of the readings, with respect to each factor, took place the Cluster and the 

Discriminant analysis. 

4.1.4. Grouping the dates of the measurements 

 Using the method of the group average and the Mahalanobis distance, were 

identified three homogeneous groups of dates (Fig. 4), adding 190 elements in the 

first (G1), 83 in the second (G2) and 15 in the third (G3). The first group comprised 

essentially of the months from November to May, period in which were recorded the 

highest temperatures, while most months, with lower temperatures, were gathered in 
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G2. The third group brought together the dates in which were recorded the lowest 

water levels of the reservoir. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Group by the middle connection method, using the Mahalanobis distance 

 Discriminant Analysis, considering the sensors Z7, Z9, Z33, Z34, Z35 and 

Z42, chosen because they have the greatest commonalities, tested the classification 

of 288 observations. Due to the large difference in size of the groups, we considered 

the proportionality of the number of observations per group. The results are in Table 

5. The high percentage of correct classification, 94.1%, has confirmed the 

discriminating power of the sensors regarded in the analysis. 

Table 5. Classification of the dates of the measurements into three groups 
Current 
Group 

Size of the Group Proportion
Provided Group

 Cumulative percentage 
1 2 3 

1 190 65.97% 178 11 1 93.68% 
2 83 28.82% 5 78 0 93.98% 
3 15 5.21% 0 0 15 100% 

TOTAL 288 100% 183 89 16 94.10% 

 Two functions were considered statistically significant, at the confidence level 

of 99%, to distinguish the observations belonging to each group (Fig. 5). The first 

function discriminates High Temperature and Low Temperature groups, while the 

second group discriminates the Low Water Level of Reservoir (LWLR) group from the 

others. 
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Figure 6: Dispersion of the elements according to discriminant functions between 
groups. 

 Ranking functions of observations in groups (Eq. 10) are linear combinations 

of the sensors. These functions can be used to classify new dates readings. To do 

so, simply calculate the scores of each new element in each group and, then, 

allocate it in that with highest score. 

G1 =   -0,664 + 0,664*Z53 - 1,332*Z52 - 0,075*Z54 + 0,323*Z9 +   0,134*Z61 - 0,881*Z7 

(1)G2 =   -3,398 - 0,446*Z53 + 2,866*Z52 + 0,073*Z54 – 1,284*Z9 +  1,656*Z61 + 2,674*Z7 

G3 = -23,805 + 5,944*Z53 + 1,009*Z52 + 0,544*Z54 + 3,013*Z9 - 10,866*Z61 - 3,636*Z7 

5. CONCLUSION 

 The method proposed in this paper consists in the multivariate analysis of the 

displacements of the structures and foundations of a concrete dam, taking into 

account the interaction with the environment. 

 The results of Canonical Correlation Analysis allow us to infer that these shifts 

are strongly influenced by environmental conditions. In general, the instrumentation 

registers larger dislocations during periods of low temperatures. The set of 

instruments that comprises pendulums, extensometer bases and multiple rods 

extensometer can be used to predict the structural performance of a dam, with 

respect to displacement, according to the variability criteria of environmental 

conditions. 
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 The dates of the observations recorded by instrumentation, when subjected to 

Cluster and Discriminant analyses, can be grouped into "High Temperature", "Low 

Temperature" and “Lower Reservoir Water Level”. 

 Most of the measurement data variability is due to factors: Foundation’s 

Movement; Horizontal Movement Structure in Normal Direction; Horizontal Movement 

Structure in the Flow Direction; Block D7 Structure Geometry and Hydrostatic 

Pressure. 
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