
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 28 - DOI: 10.9781/ijimai.2015.354

Abstract —We present an SMT-based bounded model checking
(BMC) method for Simply-Timed Systems (STSs) and for the
existential fragment of the Real-time Computation Tree Logic. We
implemented the SMT-based BMC algorithm and compared it with
the SAT-based BMC method for the same systems and the same
property language on several benchmarks for STSs. For the SAT-
based BMC we used the PicoSAT solver and for the SMT-based
BMC we used the Z3 solver. The experimental results show that
the SMT-based BMC performs quite well and is, in fact, sometimes
significantly faster than the tested SAT-based BMC.

Keywords — RTECTL, SMT-based bounded model checking,
STS

I.	 Introduction

Verification of soft real-time systems is an actively developing field
of research [2,9,10]. Popular models of such systems include, among
others, timed automata [1], and simply-timed systems (STSs) [5], i.e.,
Kripke models where each transition holds a duration, which can be
any integer value (including zero).

The fundamental thought behind bounded model checking (BMC)
is, given a system, a property, and an integer bound , to define
a formula such that the formula is satisfiable if and only if the system
has a counterexample (of the length at most) violating the property.
The bound is incremented until a satisfiable formula is discovered or a
completeness threshold is reached without discovering any satisfiable
formulae. The SMT problem [3] is a generalisation of the SAT problem,
where Boolean variables are replaced by predicates from various
background theories, such as linear, real, and integer arithmetic. SMT
generalises SAT by adding equality reasoning, arithmetic, fixed-size
bit-vectors, arrays, quantifiers, and other useful first-order theories.

There are three main reasons why it is interesting to consider STSs
instead of standard Kripke models. First, STSs allow for transitions
that take a long time, e.g. 100 time units. Such transitions could be
simulated in standard Kripke models by inserting 99 intermediate
states. But this increases the size of the model, and so it makes the
model checking process more difficult. Second, STSs allow transitions
to have zero duration. This is very convenient in models where some
steps are described indirectly, as a short succession of micro-steps.
Third, the transitions with the zero duration allow for counting specific
events only and thus omitting the irrelevant ones from the model
checking point of view.

The original contribution of this paper consists in defining a SMT-
based BMC method for the existential fragment of RTCTL (RTECTL)
interpreted over simply-timed systems (STSs) generated by simply-
timed automata with discrete data (STADDs). We implemented our
SMT-based BMC algorithm and we compared it with the SAT-based
BMC method for RTCTL and STSs. For a constructive evaluation of

our SMT-based BMC method we have used two scalable benchmarks: a
modified bridge-crossing problem [8] and a modified generic pipeline
paradigm [7].

The rest of the paper is organised as follows. We begin in Section II
by introducing simply-timed automata with discrete data, simply-timed
systems, and we present the syntax and semantics of RTECTL over
simply-timed systems. In Section III we present our SMT-based BMC
method for RTECTL and simply-timed systems. In Section IV we discuss
our experimental results. In the last section we conclude the paper.

II.	 Preliminaries

In this section we first define simply-timed automata with discrete
data and simply-timed systems, and next we introduce syntax and
semantics of RTECTL. The formalism of STADD was introduced in
[12] and formalism of STS in [10].

A.	 Simply-timed automata with discrete data and simply-timed
systems

Let be the set of integer numbers, a finite set of integer

variables , , , and . The
set of all the arithmetic expressions over is defined by
the following grammar: . Next, for

 and , the set of all
the Boolean expressions over is defined by the following grammar:

 .

For , , denoting the empty sequence, the
set of all the simultanoues assignments over is defined

as , where and
any appears on the left-hand side of at most once.

A variables valuation is a total mapping . We extend this
mapping to expressions of in the usual way. Moreover,
we assume that a domain of values for each variable is finite.
Satisfiability of a Boolean expression by a valuation ,
 denoted , is defined inductively as follows: ,
 iff , iff and

, iff or , iff ,
 iff . Given a variables valuation and an
instruction , we denote by a valuation such
that: if , then ; if , then for all
it holds if , and otherwise;

if , then .

Checking RTECTL properties of STSs via SMT-
based Bounded Model Checking

Agnieszka M. Zbrzezny, Andrzej Zbrzezny

MCS, Jan Długosz University in Częstochowa, Poland

Regular Issue

- 29 -

Definition 1. Let be a set of atomic propositions and
. A simply-timed automaton with discrete data

(STADD) is a tuple , where is a finite set
of actions, is a finite set of locations, is an initial location, is a finite
set of integer variables,
is a transition relation, is a duration function, and

 is a valuation function that assigns to each location a set
of propositional variables that are assumed to be true at that location.

The semantics of the STADD is defined by associating to it a simply-
timed system as defined below.

Definition 2. Let be a set of atomic propositions,
an initial variables valuation, and a
simply-timed automaton with discrete data. A simply-timed system
(or a model) for is a tuple , where is a

finite set of actions of , is a set of states,
is the duration function of , is a valuation function

defined as , and is the initial
state, is the smallest simply-timed transition relation

defined in the following way: for , iff there
exists a transition such that ,
. We assume that the relation is total, i.e., for any

 there exists and an action such that
(or).

A path in is an infinite sequence of
transitions. For such a path, and for , by we denote the

-th state . For , denotes the finite sequence

 with transitions and states.
The (cumulative) duration of such a finite sequence is

 (hence when). By we
denote the set of all paths starting at .

B.	 RTECTL: an existential fragment of a soft real-time
temporal logic.

In the syntax of RTECTL we assume the following: is
an atomic proposition, and is an interval in of
the form: or , for and . The RTECTL
formulae are defined by the following grammar:

Intuitively, we have an existential path quantifier , and the
symbols , , and that are the temporal operators for “neXt time”,
“bounded until”, and “bounded release”, respectively. The formula

 means that it is possible to reach a state satisfying via a
finite path whose cumulative duration is in , and always earlier
holds. The formula means that either it is possible to reach a
state satisfying and via a finite path whose cumulative duration
is in , and always earlier holds, or there is a path along which
holds at all states with cumulative duration being in . The formulae
for the “bounded eventually”, and “bounded always” are defined as

standard: , .

An RTECTL formula is true in the model (in symbols)
 iff (i.e., is true at the initial state of the model). For
every the relation is defined inductively as follows:

- iff and

- iff or

- iff

- iff 	

- iff 	

 .

III.	SMT-based bounded model checking

In this section we define the SMT-based BMC method for the
existential fragment of RTCTL (RTECTL) [9]. Similarly to SAT-based
BMC, the SMT-based BMC is based on the notion of the bounded
semantics for RTECTL ([10]) in which one inductively defines for
every the relation . Let be a model, a bound,
an RTECTL formula, and let denotes that is -true
at the state s of . The formula is -true in (in symbols

) iff (i.e., is -true at the initial state of the
model).

A.	 Bounded Semantics for RTECTL

Let be a model, a bound, an RTECTL formula, and
 denote that is -true at the state of .

The formula is -true in (in symbols) iff
(i.e., is -true at the initial state of the model M).

For every , the relation (the bounded semantics) is defined
inductively as follows:

•	 iff

•	 	

•	 	

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 30 -

Theorem 1 ([10]). Let be a model and an RTECTL formula.
Then, the following equivalence holds: iff there exists
such that .

The bounded model checking problem asks whether there exists
 such that . The following theorem states that for a

given model and an RTECTL formula there exists a bound such
that the model checking problem () can be reduced to the
BMC problem (). The theorem can be proven by induction
on the length of the formula .

B.	 Translation to SMT

The translation to SMT is based on the bounded semantics. Let
be a simply-timed model, an RTECTL formula, and a bound.

The presented SMT encoding of the BMC problem for RTECTL and
for STS is based on the SAT encoding of the same problem [10,11], and
it relies on defining the quantifier-free first-order formula

that is satisfiable if and only if holds.

The definition of the formula assumes that states of the
model are encoded in a symbolic way. Such a symbolic encoding
is possible, since the set of states of is finite. In particular, each
state can be represented by a vector (called a symbolic state) of
different individual variables ranging over the natural numbers (called
individual state variables).

The formula encodes a rooted tree of -paths of the
model . The number of branches of the tree depends on the value of
the auxiliary function defined in [10].

Given the above, the -th symbolic -path is defined as the

following sequence , where are

symbolic states and are symbolic durations, for and

. The symbolic duration is a individual variable
ranging over natural numbers.

Let and (resp., and) be two different symbolic states
(resp., durations). We assume definitions of the following auxiliary
quantifier-free first-order formulae:

•	 - encodes the initial state of the model ,

•	 - encodes the transition relation of ,

•	 - encodes the set of states of in which
holds,

•	 encodes that the duration time represented by the
sequence of symbolic durations is less than

,

•	 - encodes that the duration time represented by the

sequence of symbolic durations belongs to the
interval ,

•	 for - encodes that the duration
time represented by the sequences and

of symbolic durations belongs to the
interval .

The formula encoding the unfolding of the transition
relation of the model -times to the depth is defined as
follows:

For every RTECTL formula the function determines how
many symbolic -paths are needed for translating the formula .
Given a formula and a set of -paths such that ,
we divide the set into subsets needed for translating the subformulae
of . To accomplish this goal we need the auxiliary functions ,

 and that were defined in [11].

Let be an RTECTL formula, a model, and a bound.

The quantifier-free first-order formula ,
where , encodes the bounded semantics
for RTECTL, and It is defined inductively as shown below. Namely,

let , , , ,

, then:

•	

•	

,

•	

.

Regular Issue

- 31 -

IV.	Experimental results

Our SAT-based and SMT-based BMC algorithms were implemented
as standalone programs written in the programming language C++.
For the SAT-based BMC module we used the state of the art SAT-
solver PicoSAT [4], and for our SMT-based BMC module we used the
state of the art SMT-solver Z3 [6].

In this section we experimentally evaluate the performance of our
SMT-based BMC encoding for RTECTL over the STS se- mantics. We
compare our experimental results with the SAT-based BMC [10], the
only existing method that is suitable with respect to the input formalism
and checked properties.

We have conducted the experiments using two benchmarks: the
generic simply-time pipeline paradigm (GSPP) STS model [10] and
the bridge crossing problem (BCP) STS model [10]. We would like to
point out that both benchmarks are very useful and scalable examples.
Further, we specify each property for the considered benchmarks in the
existential form, and for every specification given, there exists a witness.

We have computed our experimental results on a computer equipped
with I7-3770 processor, 32 GB of RAM, and the operating system
Arch Linux with the kernel 3.15.3. We set the CPU time limit to 3600
seconds. Moreover, in order to compare our SMT-based BMC with the
SAT-based BMC, we have asked the authors of [10] to provide us the
binary version of their implementation of the SAT-based BMC method.
We have obtained the requested binaries. Furthermore, our SMT-based
BMC algorithm is implemented as standalone program written in the
programming language C++.

For the SAT-based BMC module we used the state of the art SAT-
solver PicoSAT (http://fmv.jku.at/picosat/) [4], and for our SMT-based

BMC module we used the state of the art SMT- solver Z3 [6] (http://
z3.codeplex.com/).

A.	 The bridge-crossing problem
The bridge-crossing problem (BCP) [8] is a famous mathematical

puzzle. To generate experimental results we have tested BCP system
defined in [10]. We have five automata that run in parallel and

synchronised on actions , , and for and .
 The action (respectively,) means that the -th person
goes from the left side of the bridge to its right side (respectively,
from the right side of the bridge to its left side) bringing back the

lamp. The action with (respectively, with)
 means that the persons and cross the bridge together from its
left side to its right side (respectively, from its right side to its left
side). Four automata (those with states named as and ,
 for) represent persons, and one represents a lamp that
keeps track of the position of the lamp, and ensures that at most two
persons cross in one move. Let denote the minimum time

required to cross the bridge, be the number of persons, and

. We have tested BCP for
persons, with and , on the
following RTECTL formulae:

•	 ,

•	 ;
the formulae are true in the model for BCP.

Figure 1: A network of STADD automata that models BCP for 4 persons. The variableD indicates the crossing direction: D = 1 (D = 0) means that all the persons
crossthe bridge from its left side to its right side, (from its right side to its left side). Thevariable W denotes the number of persons waiting on the left (right) side
of the bridge,if D = 1 (D = 0).

http://fmv.jku.at/picosat/

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 32 -

B.	 Generic Simply-timed Pipeline Paradigm
We adapted the benchmark scenario of a generic pipeline

paradigm [7], and we called it the generic simply-timed pipeline
paradigm (GSPP). The model of GSPP involves Producer producing
data, Consumer receiving data, and a chain of intermediate Nodes
that transmit data produced by Producer to Consumer. Producer,
Nodes, and Consumer have different producing, sending, processing,
and consuming times. A STADD automata model of GSPP is shown in
Fig 2. We have automata (automata representing Nodes, one
automaton for Producer, and one automaton for Consumer) that run
in parallel and synchronise on actions (). Action

means that -th Node has received data produced by
Producer. Action means that Consumer has received
data produced by Producer.

Action means that -th Node processes data. Action
means that Producer generates data. Action

means that Consumer consumes data produced by Producer.

Let . We have tested the GSPP problem with the following
basic durations: , , ,

 and their multiplications by 50, 100, 150, etc., on
the following RTECTL formulae:

•	 ,

•	

,

•	

,
where denotes the minimum time required to receive by
Consumer the data produced by Producer.

Note that the and are properties, respectively, of
the type the existential bounded-response and existential bounded-
invariance. All the above formulae are true in the model for GSPP.

C.	 Performance evaluation
The evaluation of both the BMC algorithms is given by means of

the running time and the memory used. In most cases, the experimental

results show that the SMT-based BMC method is significantly faster
than the SAT-based BMC method.

1)	 GSPP
From Fig. 3-8 and Tables 1-3 we can notice that for the GSPP

system and all considered formulae the SMT-based BMC is faster
than the SAT-based BMC, however, the SAT-based BMC consumes
less memory. Moreover, the SMT-based method is able to verify more
nodes for all the tested formulae. In particular, in the time limit set for
the benchmarks, the SMT-based BMC is able to verify the formula

 for 54 nodes while the SAT-based BMC can handle 40 nodes,
for the formula respectively 25 nodes and 21 nodes. For

the SMT-based BMC is still more efficient - it is able to verify
20 nodes, whereas the SAT-based BMC verifies only 17 nodes for

 and 19 nodes for .

Table 1: SMT-BMC: Experimental results for GSPP and
scaling up the number of nodes and basic duration

n Sec. MB Whitness length

1 0.1 12.5 5

5 0.1 13.5 13

10 0.7 16.6 23

15 3.0 21.8 33

20 8.4 29.7 43

25 21.4 40.3 53

30 56.3 50.7 63

35 139.0 70.6 73

40 323.0 86.3 83

45 577.9 109.8 93

50 1615.1 145.0 103

53 3220.1 153.5 109

54 3957.4 180.8 111

Figure 2: A network of STADD automata that models GSPP.

Regular Issue

- 33 -

Table 2: SMT-BMC: Experimental results for GSPP and
scaling up the number of nodes and basic duration

n Sec. MB Whitness length

1 0.6 4.4 6

2 1.9 7.2 8

3 3.4 11.2 10

4 6.1 15.9 12

5 10.9 22.2 14

6 24.6 29.9 16

7 31.8 38.9 18

8 50.0 50.4 20

9 79.1 63.4 22

10 98.7 78.7 24

12 170.1 120.3 28

15 615.5 198.2 34

20 2304.1 423.5 44

22 2462.1 537.3 48

25 7203.7 777.5 54

Figure 3: SAT/SMT-BMC: GSPP scaling up both
the number of nodes and durations

4: SAT/SMT-BMC: GSPP scaling up both the
number of nodes and durations

Figure 6: SAT/SMT-BMC: GSPP scaling up both
the number of nodes and durations

Figure 7: SAT/SMT-BMC: GSPP scaling up both
the number of nodes and durations

Figure 8: SAT/SMT-BMC: GSPP scaling up
both the number of nodes and durations

Figure 5:SAT/SMT-BMC: GSPP scaling up both the
number of nodes and durations

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 34 -

Table 3: SMT-BMC: Experimental results for GSPP and
scaling up the number of nodes and basic duration

n Sec. MB Whitness length

1 0.2 14.4 5

2 0.7 17.7 7

3 1.4 23.6 9

4 2.7 31.8 11

5 4.8 43.6 13

6 8.4 62.6 15

7 16.9 81.6 17

8 25.8 103.3 19

9 37.7 138.1 21

10 78.0 200.0 23

11 90.8 232.3 25

12 143.0 301.1 27

13 203.3 393.9 29

14 407.9 503.8 31

15 402.0 670.1 33

16 675.1 1014.5 35

17 762.1 1136.4 37

18 1663.9 1901.3 39

19 2235.8 2397.2 41

20 3641.5 2252.4 43

2)	 BCP
As one can see from the line charts for the BCP system (Figures 9-12,

Tables 4-5), in the case of this benchmark the SMT-based BMC and
SAT-based BMC are complementary. In the case of the formula SMT-
based BMC is able to verify system with 10 persons while the SAT-
based BMC can handle 11 persons. For the SMT-based BMC is more
efficient - it is able to verify 31 persons, whereas the SAT-based BMC
verifies only 27 nodes for and 29 nodes for , but the SAT-based BMC
consumes less memory.

Table 4: SMT-BMC: Experimental results for BCP and
scaling up the number of nodes and basic duration

n Sec. MB Whitness length

4 0.0	 13.6 6

5 0.1	 14.4 8

6 0.8 16.4 10

7 4.8 21.3 12

8 67.5 44.3 14

9 1094.3 158.8 16

10 6298.2 163.6 18

Figure 9: SAT/SMT BMC: BCP scaling up both
the number of persons and durations

Figure 10: SAT/SMT BMC: BCP scaling up both
the number of persons and durations

Figure 11: SAT/SMT BMC: BCP scaling up both
the number of persons and durations

Figure 12: SAT/SMT BMC: BCP scaling up both
the number of persons and durations

Regular Issue

- 35 -

Table 5: SMT-BMC: Experimental results for BCP and
scaling up the number of nodes and basic duration

n Sec. MB Whitness length

4 0.1 13.7 6

5 0.2 14.6 8

6 0.5 16.4 10

7 1.2 19.3 12

8 2.1 22.4 14

9 3.7 27.3 16

10 5.9 33.1 18

11 9.9 39.7 20

12 14.9 49.0 22

13 25.9 61.7 24

14 34.1 73.8 26

15 54.4 96.5 28

16 71.7 114.3 30

17 105.3 138.4 32

18 141.7 172.2 34

19 182.1 216.8 36

20 265.5 251.8 38

21 340.1 305.9 40

22 436.0 367.3 42

23 630.3 428.9 44

24 816.6 521.3 46

25 1037.9 614.6 48

26 1309.7 734.7 50

27 1804.1 857.4 52

28 2385.1 986.7 54

29 2666.8 1139.2 56

30 3527.2 1326.0 58

31 3946.9 1528.0 60

V.	 Conclusion

We have proposed an SMT-based BMC verification method for
model checking RTECTL properties interpreted over the simply-time
systems that are generated for simply-timed automata with discrete
data. We have provided a preliminary experimental results showing
that our method is worth interest.

References

[1]	 R. Alur. Timed Automata. In Proceedings of CAV’99, volume 1633
of LNCS, pages 8-22. Springer-Verlag, 1999.

[2]	 R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real-time.
Information and Computation, 104(1):2-34, 1993.

[3]	 Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn J. H. Heule, Hans
van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and
Applications, chapter 26, pages 825-885. IOS Press, 2009.

[4]	 A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean
Modeling and Computation (JSAT), 4:75-97, 2008.

[5]	 N. Markey and Ph. Schnoebelen. Symbolic model checking of simply-timed
systems. In Proceedings of FORMATS’04 and FTRTFT’04,
volume 3253 of LNCS, pages 102-117. Springer, 2004.

[6]	 L. De Moura and N. Bjørner. Z3: an efficient SMT solver.
In Proceedings of TACAS’2008, volume 4963 of LNCS, pages
337-340. Springer-Verlag, 2008.

[7]	 D. Peled. All from one, one for all: On model checking using representatives.
In Proceedings of CAV’93, volume 697 of LNCS, pages 409-423.
Springer-Verlag, 1993.

[8]	 Elizabeth Early Cook Saul X. Levmore. Super Strategies for Puzzles
and Games. Doubleday, Garden City, N.Y., 1981.

[9]	 B. Woźna-Szcześniak, A. M. Zbrzezny, and A. Zbrzezny.
The BMC method for the existential part of RTCTLK and interleaved
interpreted systems. In Proceedings of EPIA’2011, volume 7026 of
LNAI, pages 551-565. Springer-Verlag, 2011.

[10]	 B. Woźna-Szcześniak, A. M. Zbrzezny, and A. Zbrzezny. SAT-based
bounded model checking for RTECTL and simply-timed systems.
In Proceedings of EPEW 2013, volume 8168 of LNCS, pages
337-349. Springer-Verlag, 2013.

[11]	 A. Zbrzezny. Improving the translation from ECTL to SAT.
Fundamenta Informaticae, 85(1-4):513-531, 2008.

[12]	 A. Zbrzezny and A. Pólrola. SAT-based reachability checking for timed
automata with discrete data. Fundamenta Informaticae, 79(3-
4):579-593, 2007.

Agnieszka M. Zbrzezny received the M.S. in Computer
Science from Jan Długosz University in Częstocjowa, now
she is finishing the doctorate in the Institute of Computer
Science Polish Acadamy of Sciences. Her research interest
include model checking of multi-agent system and real-
time systems.

Andrzej Zbrzezny received M.S. deegree in computer
science from Jagielonian University in Cracow in 1981,
PhD deegre in logic from Wrocław University in 1991,
and habilitation in computer science from Polish Academy
of Sciences in Warsaw in 2014. Now he is an associate
professor at Jan Dlugosz University in Częstochowa. His
research interest include model checking of concurrent
systems, multi-agent system and real-time systems.

