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Abstract —We present an SMT-based bounded model checking 
(BMC) method for Simply-Timed Systems (STSs) and for the 
existential fragment of the Real-time Computation Tree Logic. We 
implemented the SMT-based BMC algorithm and compared it with 
the SAT-based BMC method for the same systems and the same 
property language on several benchmarks for STSs. For the SAT-
based BMC we used the PicoSAT solver and for the SMT-based 
BMC we used the Z3 solver. The experimental results show that 
the SMT-based BMC performs quite well and is, in fact, sometimes 
significantly faster than the tested SAT-based BMC.

Keywords — RTECTL, SMT-based bounded model checking, 
STS

I.	 Introduction

Verification of soft real-time systems is an actively developing field 
of research [2,9,10]. Popular models of such systems include, among 
others, timed automata [1], and simply-timed systems (STSs) [5], i.e., 
Kripke models where each transition holds a duration, which can be 
any integer value (including zero). 

The fundamental thought behind bounded model checking (BMC) 
is, given a system, a property, and an integer bound , to define 
a formula such that the formula is satisfiable if and only if the system 
has a counterexample (of the length at most ) violating the property. 
The bound is incremented until a satisfiable formula is discovered or a 
completeness threshold is reached without discovering any satisfiable 
formulae. The SMT problem [3] is a generalisation of the SAT problem, 
where Boolean variables are replaced by predicates from various 
background theories, such as linear, real, and integer arithmetic. SMT 
generalises SAT by adding equality reasoning, arithmetic, fixed-size 
bit-vectors, arrays, quantifiers, and other useful first-order theories. 

There are three main reasons why it is interesting to consider STSs 
instead of standard Kripke models. First, STSs allow for transitions 
that take a long time, e.g. 100 time units. Such transitions could be 
simulated in standard Kripke models by inserting 99 intermediate 
states. But this increases the size of the model, and so it makes the 
model checking process more difficult. Second, STSs allow transitions 
to have zero duration. This is very convenient in models where some 
steps are described indirectly, as a short succession of micro-steps. 
Third, the transitions with the zero duration allow for counting specific 
events only and thus omitting the irrelevant ones from the model 
checking point of view.

The original contribution of this paper consists in defining a SMT-
based BMC method for the existential fragment of RTCTL (RTECTL) 
interpreted over simply-timed systems (STSs) generated by simply-
timed automata with discrete data (STADDs). We implemented our 
SMT-based BMC algorithm and we compared it with the SAT-based 
BMC method for RTCTL and STSs. For a constructive evaluation of 

our SMT-based BMC method we have used two scalable benchmarks: a 
modified bridge-crossing problem [8] and a modified generic pipeline 
paradigm [7]. 

The rest of the paper is organised as follows. We begin in Section II 
by introducing simply-timed automata with discrete data, simply-timed 
systems, and we present the syntax and semantics of RTECTL over 
simply-timed systems. In Section III we present our SMT-based BMC 
method for RTECTL and simply-timed systems. In Section IV we discuss 
our experimental results. In the last section we conclude the paper.

II.	  Preliminaries

In this section we first define simply-timed automata with discrete 
data and simply-timed systems, and next we introduce syntax and 
semantics of RTECTL. The formalism of STADD was introduced in 
[12] and formalism of STS in [10].

A.	 Simply-timed automata with discrete data and simply-timed 
systems

Let  be the set of integer numbers,  a finite set of integer 

variables , , , and . The 
set  of all the arithmetic expressions over  is defined by 
the following grammar: . Next, for 

 and , the set  of all 
the Boolean expressions over  is defined by the following grammar:

 . 

For , ,  denoting the empty sequence, the 
set of all the simultanoues assignments over  is defined 

as , where and 
any  appears on the left-hand side of  at most once. 

A variables valuation is a total mapping . We extend this 
mapping to expressions of  in the usual way. Moreover, 
we assume that a domain of values for each variable is finite. 
Satisfiability of a Boolean expression  by a valuation , 
 denoted , is defined inductively as follows: , 
  iff ,  iff  and 

,  iff  or ,  iff , 
  iff . Given a variables valuation  and an 
instruction , we denote by  a valuation  such 
that: if , then ; if , then for all  
it holds  if , and  otherwise; 

if , then . 
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Definition 1.  Let  be a set of atomic propositions and 
. A simply-timed automaton with discrete data 

(STADD) is a tuple , where  is a finite set 
of actions,  is a finite set of locations,  is an initial location,  is a finite 
set of integer variables,  
is a  transition relation,  is a duration function, and 

 is a valuation function that assigns to each location a set 
of propositional variables that are assumed to be true at that location. 

The semantics of the STADD is defined by associating to it a simply-
timed system as defined below.

Definition 2.  Let  be a set of atomic propositions,  
an initial variables valuation, and  a 
simply-timed automaton with discrete data. A simply-timed system 
(or a model) for  is a tuple , where  is a 

finite set of actions of ,  is a set of states,  
is the duration function of ,  is a valuation function 

defined as , and   is the initial 
state,  is the smallest simply-timed transition relation 

defined in the following way:  for , iff there 
exists a transition  such that ,
. We assume that the relation  is total, i.e., for any 

 there exists  and an action  such that 
(or ).

A path in  is an infinite sequence  of 
transitions. For such a path, and for , by  we denote the 

-th state . For ,  denotes the finite sequence 

 with  transitions and  states. 
The (cumulative) duration  of such a finite sequence is 

 (hence  when ).  By  we 
denote the set of all paths starting at . 

B.	 RTECTL: an existential fragment of a soft real-time 
temporal logic. 

In the syntax of RTECTL we assume the following: is 
an atomic proposition, and  is an interval in of 
the form:  or , for and . The RTECTL 
formulae are defined by the following grammar: 

Intuitively, we have an existential path quantifier , and the 
symbols , , and  that are the temporal operators for “neXt time”, 
“bounded until”, and “bounded release”, respectively. The formula 

 means that it is possible to reach a state satisfying  via a 
finite path whose cumulative duration is in , and always earlier  
holds. The formula  means that either it is possible to reach a 
state satisfying  and  via a finite path whose cumulative duration 
is in , and always earlier  holds, or there is a path along which  
holds at all states with cumulative duration being in . The formulae 
for the “bounded eventually”, and “bounded always” are defined as 

standard: ,  .

An RTECTL formula is true in the model (in symbols ) 
 iff (i.e.,  is true at the initial state of the model ). For 
every the relation is defined inductively as follows:

- iff and 

- iff or 

- iff 

- iff  	

 

 

- iff  	

 

 .

III.	SMT-based bounded model checking

In this section we define the SMT-based BMC method for the 
existential fragment of RTCTL (RTECTL) [9]. Similarly to SAT-based 
BMC, the SMT-based BMC is based on the notion of the bounded 
semantics for RTECTL ([10]) in which one inductively defines for 
every  the relation  . Let  be a model,  a bound,  
an RTECTL formula, and let  denotes that is -true 
at the state s of  . The formula  is -true in  (in symbols 

) iff  (i.e.,  is -true at the initial state of the 
model  ). 

A.	 Bounded Semantics for RTECTL

Let be a model, a bound,  an RTECTL formula, and 
 denote that  is -true at the state  of .

The formula  is -true in  (in symbols ) iff 
(i.e.,  is -true at the initial state of the model $M$).

For every , the relation  (the bounded semantics)  is defined 
inductively as follows: 

•	  iff 

•	   	

 

 

•	  	
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Theorem 1 ([10]). Let  be a model and an RTECTL formula. 
Then, the following equivalence holds:  iff there exists  
such that .

The bounded model checking problem asks whether there exists 
 such that . The following theorem states that for a 

given model and an RTECTL formula there exists a bound  such 
that the model checking problem ( ) can be reduced to the 
BMC problem  ( ). The theorem can be proven by induction 
on the length of the formula .

B.	 Translation to SMT

The translation to SMT is based on the bounded semantics. Let 
be a simply-timed model, an RTECTL formula, and  a bound. 

The presented SMT encoding of the BMC problem for RTECTL and 
for STS is based on the SAT encoding of the same problem [10,11], and 
it relies on defining the quantifier-free first-order formula 

that is satisfiable if and only if  holds. 

The definition of the formula assumes that states of the 
model are encoded in a symbolic way. Such a symbolic encoding 
is possible, since the set of states of is finite. In particular, each 
state can be represented by a vector  (called a symbolic state) of 
different individual variables ranging over the natural numbers (called 
individual state variables). 

The formula  encodes a rooted tree of -paths of the 
model . The number of branches of the tree depends on the value of 
the auxiliary function  defined in [10]. 

Given the above, the -th symbolic -path is defined as the 

following sequence , where  are 

symbolic states and  are symbolic durations, for  and 

. The symbolic duration is a individual variable 
ranging over natural numbers. 

Let  and  (resp.,  and ) be two different symbolic states 
(resp., durations). We assume definitions of the following auxiliary 
quantifier-free first-order formulae: 

•	 - encodes the initial state of the model , 

•	 - encodes the transition relation of , 

•	 - encodes the set of states of  in which 
holds, 

•	 encodes that the duration time represented by the 
sequence of symbolic durations is less than 

, 

•	 - encodes that the duration time represented by the 

sequence  of symbolic durations belongs to the 
interval ,

•	  for  - encodes that the duration 
time represented by the sequences  and 

of symbolic durations belongs to the 
interval . 

The formula encoding the unfolding of the transition 
relation of the model  -times to the depth is defined as 
follows: 

For every RTECTL formula  the function determines how 
many symbolic -paths are needed for translating the formula . 
Given a formula  and a set  of -paths such that , 
we divide the set  into subsets needed for translating the subformulae 
of . To accomplish this goal we need the auxiliary functions , 

 and that were defined in [11]. 

Let  be an RTECTL formula,  a model, and a bound. 

The quantifier-free first-order formula , 
where , encodes the bounded semantics 
for RTECTL, and It is defined inductively as shown below. Namely, 

let , , , , 

, then:

•	

•	

,

•	

.
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IV.	Experimental results

Our SAT-based and SMT-based BMC algorithms were implemented 
as standalone programs written in the programming language C++. 
For the SAT-based BMC module we used the state of the art SAT-
solver PicoSAT [4], and for our SMT-based BMC module we used the 
state of the art SMT-solver Z3 [6]. 

In this section we experimentally evaluate the performance of our 
SMT-based BMC encoding for RTECTL over the STS se- mantics. We 
compare our experimental results with the SAT-based BMC [10], the 
only existing method that is suitable with respect to the input formalism 
and checked properties. 

We have conducted the experiments using two benchmarks: the 
generic simply-time pipeline paradigm (GSPP) STS model [10] and 
the bridge crossing problem (BCP) STS model [10]. We would like to 
point out that both benchmarks are very useful and scalable examples. 
Further, we specify each property for the considered benchmarks in the 
existential form, and for every specification given, there exists a witness. 

We have computed our experimental results on a computer equipped 
with I7-3770 processor, 32 GB of RAM, and the operating system 
Arch Linux with the kernel 3.15.3. We set the CPU time limit to 3600 
seconds. Moreover, in order to compare our SMT-based BMC with the 
SAT-based BMC, we have asked the authors of [10] to provide us the 
binary version of their implementation of the SAT-based BMC method. 
We have obtained the requested binaries. Furthermore, our SMT-based 
BMC algorithm is implemented as standalone program written in the 
programming language C++. 

For the SAT-based BMC module we used the state of the art SAT-
solver PicoSAT (http://fmv.jku.at/picosat/) [4], and for our SMT-based 

BMC module we used the state of the art SMT- solver Z3 [6] (http://
z3.codeplex.com/).

A.	 The bridge-crossing problem 
The bridge-crossing problem (BCP) [8] is a famous mathematical 

puzzle. To generate experimental results we have tested BCP system 
defined in [10]. We have five automata that run in parallel and 

synchronised on actions , , and  for  and . 
 The action  (respectively, ) means that the -th person 
goes from the left side of the bridge to its right side (respectively, 
from the right side of the bridge to its left side) bringing back the 

lamp. The action with  (respectively,  with ) 
 means that the persons and  cross the bridge together from its 
left side to its right side (respectively, from its right side to its left 
side). Four automata (those with states named as  and , 
 for ) represent persons, and one represents a lamp that 
keeps track of the position of the lamp, and ensures that at most two 
persons cross in one move. Let  denote the minimum time 

required to cross the bridge,  be the number of persons, and 

. We have tested BCP for 
persons, with  and , on the 
following RTECTL formulae: 

•	 ,

•	 ; 
the formulae are true in the model for BCP. 

Figure 1: A network of STADD automata that models BCP for 4 persons. The variableD indicates the crossing direction: D = 1 (D = 0) means that all the persons 
crossthe bridge from its left side to its right side, (from its right side to its left side). Thevariable W denotes the number of persons waiting on the left (right) side 
of the bridge,if D = 1 (D = 0).

http://fmv.jku.at/picosat/
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B.	 Generic Simply-timed Pipeline Paradigm
We adapted the benchmark scenario of a generic pipeline 

paradigm  [7], and we called it the generic simply-timed pipeline 
paradigm (GSPP). The model of GSPP involves Producer producing 
data, Consumer receiving data, and a chain of  intermediate Nodes 
that transmit data produced by Producer to Consumer. Producer, 
Nodes, and Consumer have different producing, sending, processing, 
and consuming times. A STADD automata model of GSPP is shown in 
Fig 2. We have automata (  automata representing Nodes, one 
automaton for Producer, and one automaton for Consumer) that run 
in parallel and synchronise on actions  ( ). Action 

means that -th Node has received data produced by 
Producer. Action means that Consumer has received 
data produced by Producer. 

Action  means that -th Node processes data. Action 
means that Producer generates data. Action 

means that Consumer consumes data produced by Producer. 

Let . We have tested the GSPP problem with the following 
basic durations: , , ,

 and their multiplications by 50, 100, 150, etc., on 
the following RTECTL formulae: 

•	 ,

•	

,

•	

, 
where  denotes the minimum time required to receive by 
Consumer the data produced by Producer. 

Note that the  and  are properties, respectively, of 
the type the existential bounded-response and existential bounded-
invariance. All the above formulae are true in the model for GSPP. 

C.	 Performance evaluation
The evaluation of both the BMC algorithms is given by means of 

the running time and the memory used. In most cases, the experimental 

results show that the SMT-based BMC method is significantly faster 
than the SAT-based BMC method. 

1)	 GSPP
From Fig.  3-8 and Tables 1-3 we can notice that for the GSPP 

system and all considered formulae the SMT-based BMC is faster 
than the SAT-based BMC, however, the SAT-based BMC consumes 
less memory. Moreover, the SMT-based method is able to verify more 
nodes for all the tested formulae. In particular, in the time limit set for 
the benchmarks, the SMT-based BMC is able to verify the formula 

 for 54 nodes while the SAT-based BMC can handle 40 nodes, 
for the formula  respectively 25 nodes and 21 nodes. For 

the SMT-based BMC is still more efficient - it is able to verify 
20 nodes, whereas the SAT-based BMC verifies only 17 nodes for 

 and 19 nodes for .

Table 1: SMT-BMC: Experimental results for GSPP and 
scaling up  the number of nodes and basic duration

n Sec. MB Whitness length

1 0.1 12.5 5

5 0.1 13.5 13

10 0.7 16.6 23

15 3.0 21.8 33

20 8.4 29.7 43

25 21.4 40.3 53

30 56.3 50.7 63

35 139.0 70.6 73

40 323.0 86.3 83

45 577.9 109.8 93

50 1615.1 145.0 103

53 3220.1 153.5 109

54 3957.4 180.8 111

Figure 2: A network of STADD automata that models GSPP.
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Table 2:  SMT-BMC: Experimental results for GSPP and 
scaling up  the number of nodes and basic duration

n Sec. MB Whitness length

1 0.6 4.4 6

2 1.9 7.2 8

3 3.4 11.2 10

4 6.1 15.9 12

5 10.9 22.2 14

6 24.6 29.9 16

7 31.8 38.9 18

8 50.0 50.4 20

9 79.1 63.4 22

10 98.7 78.7 24

12 170.1 120.3 28

15 615.5 198.2 34

20 2304.1 423.5 44

22 2462.1 537.3 48

25 7203.7 777.5 54

Figure 3: SAT/SMT-BMC: GSPP scaling up both 
the number of nodes and durations

4: SAT/SMT-BMC: GSPP scaling up both the 
number of nodes and durations

Figure 6: SAT/SMT-BMC: GSPP scaling up both 
the number of nodes and durations

Figure 7: SAT/SMT-BMC: GSPP scaling up both 
the number of nodes and durations

Figure 8:  SAT/SMT-BMC: GSPP scaling up 
both the number of nodes and durations

Figure 5:SAT/SMT-BMC: GSPP scaling up both the 
number of nodes and durations
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Table 3:  SMT-BMC: Experimental results for GSPP and 
scaling up  the number of nodes and basic duration

n Sec. MB Whitness length

1 0.2 14.4 5

2 0.7 17.7 7

3 1.4 23.6 9

4 2.7 31.8 11

5 4.8 43.6 13

6 8.4 62.6 15

7 16.9 81.6 17

8 25.8 103.3 19

9 37.7 138.1 21

10 78.0 200.0 23

11 90.8 232.3 25

12 143.0 301.1 27

13 203.3 393.9 29

14 407.9 503.8 31

15 402.0 670.1 33

16 675.1 1014.5 35

17 762.1 1136.4 37

18 1663.9 1901.3 39

19 2235.8 2397.2 41

20 3641.5 2252.4 43

2)	 BCP
As one can see from the line charts for the BCP system (Figures 9-12, 

Tables 4-5), in the case of this benchmark the SMT-based BMC and 
SAT-based BMC are complementary. In the case of the formula SMT-
based BMC is able to verify system with 10 persons while the SAT-
based BMC can handle 11 persons. For the SMT-based BMC is more 
efficient - it is able to verify 31 persons, whereas the SAT-based BMC 
verifies only 27 nodes for and 29 nodes for , but the SAT-based BMC 
consumes less memory. 

Table 4: SMT-BMC: Experimental results for BCP and 
scaling up  the number of nodes and basic duration

n Sec. MB Whitness length

4 0.0	 13.6 6

5 0.1	 14.4 8

6 0.8 16.4 10

7 4.8 21.3 12

8 67.5 44.3 14

9 1094.3 158.8 16

10 6298.2 163.6 18

Figure 9: SAT/SMT BMC: BCP scaling up both 
the number of persons and durations

Figure 10: SAT/SMT BMC: BCP scaling up both 
the number of persons and durations

Figure 11: SAT/SMT BMC: BCP scaling up both 
the number of persons and durations

Figure 12: SAT/SMT BMC: BCP scaling up both 
the number of persons and durations
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Table 5: SMT-BMC: Experimental results for BCP and 
scaling up  the number of nodes and basic duration

n Sec. MB Whitness length

4 0.1 13.7 6

5 0.2 14.6 8

6 0.5 16.4 10

7 1.2 19.3 12

8 2.1 22.4 14

9 3.7 27.3 16

10 5.9 33.1 18

11 9.9 39.7 20

12 14.9 49.0 22

13 25.9 61.7 24

14 34.1 73.8 26

15 54.4 96.5 28

16 71.7 114.3 30

17 105.3 138.4 32

18 141.7 172.2 34

19 182.1 216.8 36

20 265.5 251.8 38

21 340.1 305.9 40

22 436.0 367.3 42

23 630.3 428.9 44

24 816.6 521.3 46

25 1037.9 614.6 48

26 1309.7 734.7 50

27 1804.1 857.4 52

28 2385.1 986.7 54

29 2666.8 1139.2 56

30 3527.2 1326.0 58

31 3946.9 1528.0 60

V.	 Conclusion

We have proposed an SMT-based BMC verification method for 
model checking RTECTL properties interpreted over the simply-time 
systems that are generated for simply-timed automata with discrete 
data. We have provided a preliminary experimental results showing 
that our method is worth interest. 
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