
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-41-

Abstract — The flexible Job-shop Scheduling Problem (fJSP)

considers the execution of jobs by a set of candidate resources

while satisfying time and technological constraints. This work,

that follows the hierarchical architecture, is based on an

algorithm where each objective (resource allocation, start-time

assignment) is solved by a genetic algorithm (GA) that optimizes a

particular fitness function, and enhances the results by the

execution of a set of heuristics that evaluate and repair each

scheduling constraint on each operation. The aim of this work is

to analyze the impact of some algorithmic features of the overlap

constraint heuristics, in order to achieve the objectives at a

highest degree. To demonstrate the efficiency of this approach,

experimentation has been performed and compared with similar

cases, tuning the GA parameters correctly.

Keywords— Algorithm, Flexible Job-Shop Scheduling, GA

parameters, Local improvement, Overlap heuristics.

I. INTRODUCTION

 Job-shop Scheduling Problem (JSP) is based on the

concept of jobs, which are composed of operations that

must be processed by the resources of different type in a

sequential order. Each operation has a completion time. One

machine can only process one job at a time and an operation

cannot be pre-empted. The objective is to minimize the total

makespan (the time to complete all jobs). The simplification of

this problem is enunciated like this: there are n jobs to be

scheduled on m machines in a general job-shop problem, G,

minimizing the total completion operation time, Cmax,

n/m/G/Cmax.

Flexible Job-shop Scheduling Problem is a generalization of

the JSP, where the resource is selected among a set of suitable

ones, giving place to two subproblems: routing and allocation

of operations. The first one produces the start-time of the

operations, and the second one the assignment of operations on

resources.

Both JSP and fJSP have been solved by the use of

metaheuristic algorithms, like GAs.The application of a GA on

the simple basis as in [1] has poor performance because no

domain knowledge is inserted, leading to non-feasible results.

One way to insert knowledge into the algorithm is by

hybridizing the GA with heuristics that provide local search.

This paper follows the last approach, and goes beyond a deep

analysis of GAs. It fact, it is an extension of [2], that explains

how to achieve optimal results in the hybridization of GA with

local search techniques to solve fJSP. This work provides a

further analysis of the overlap constraint operators. In this

way, the previous work provides a macroperspective view of

the whole solution, and the present work is a microperspective

view. It is structured in this way: section 2 covers the problem

background; section 3 introduces the complete algorithm and

the codification of information regarding the resources and

fitness functions; section 4 shows the algorithms of a heuristic

operator variants; section 5 shows the results of the

experimentation phase; section 6 contains the comparison

with similar approaches; and section 7 has the conclusions and

future work.

II. PROBLEM BACKGROUND

Hybrid approaches that mix GA and heuristics are a well-

known solution that has proven to be efficient, as heuristics

provide domain knowledge that the simple GA cannot [3].

This focus can be applied in two ways: embedding the

heuristics into the GA loop (integrated approach), or outside it

(hierarchical approach), [3].

Literature shows examples of hybrid GA with intelligent

genetic operators than produce optimal schedules. This is the

case of [4], that describe an effective hybridation of both

techniques, applying improved crossover and mutation

operators when there are non-feasible schedules.[5] describes a

hybrid GA solution by the use of two vector chromosome and

bottleneck shifting procedure. The representation is made by

two vectors: one for the machine assignment and the another

one for the operation sequence. [6] solve the same problem by

the use of an artificial immune algorithm. It uses several

strategies for generating an initial population and selecting the

best individuals. It also has operators that reorganize the

operations (by a mutation). [7] adopt the hybrid GA by the use

of the approach by localization to initialize the GA, and

improving it by reordering jobs and machines, and by

searching for a global minimum [4] have improved operators

constraint and mutator operators that consider constraint

violations.

The second way to include the heuristics has also been

widely implemented, though the existing algorithms vary in the

order of application, heuristic methods, goal of the application,

Overlap Algorithms in Flexible Job-shop

Scheduling

Celia Gutiérrez

Universidad Complutense de Madrid, Spain

A

DOI: 10.9781/ijimai.2014.265

-42-

and even domain. [8] follows this paradigm by means of a

local search by the definition of the neighborhood.

This work follows the second approach. Having proven the

efficiency of the mentioned algorithms, the objective of this

research is to provide the designer with relevant issues that

improve the algorithm performance when using local

improvements within a hybrid GA under a hierarchical

architecture. This is also considered a multi-objective fJSP,

because the solution achieves three goals:

 To minimize the makespan of the operations.

 To minimize the maximal machine overload, i.e., the

maximum working time spent at any machine.

 To satisfy the maximum number of constraints.

There are also recent approaches to solve the problem of

JSP, like [9], where they solve the problem of scheduling

independent tasks in a grid computing system. They use a new

evaluation (distributed) algorithm inspired by the effect of

leaders in social groups, the group leaders' optimization

algorithm (GLOA). In contrast, the present work analyzes

some design features of the hybrid algorithm, preferably the

overlap constraint repairer.

III. HIERARCHICAL DESIGN FEATURES

This work constitutes the extended version of the previous

work, providing deeper details of the heuristics design and

argumentation for the parameters tuning. So, whereas [2] and

[10] provide a solution to a general fJSP, the current work

provides design and execution details in order to achieve the

goals of the algorithm.

This research has been analysed following a hierarchical

approach that decomposes the resource and the start-time

assignment in two different problems solved by different and

independent GA, like in [5]. Previous to both GA running,

there is a module that calculates the limits for the start-time for

each operation, and after both GA running the module of the

heuristics solve the unfulfilled constraints. The adaptation of

the algorithm to JSP claims a simpler architecture, where the

resource GA module does not appear. Other variations

concerning the heuristics are also discussed in the section 4.

A. Codification of the Resource GA Chromosome

The chromosome and fitness function for both GA are

described in the previously cited works. There are subtle

differences in the morphology of both chromosomes: while the

solution for time GA is directly codified into the chromosome,

the chromosome for resource GA stores as many genes as

operations, which must be decoded to get the resource number.

For example, for the set of 4 orders, 3 products per order

(maximum), 1 product instance per product (maximum), 5

operations per instance (maximum), and 4available resources

in the job-shop, the gene value must cover 4 x 3 x 1 x 5 x 4

values, so the range is [0-239]. To decode a gene value,

successive divisions must be applied using this algorithm that

involves equation (1) to equation (8):

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

= 𝑔𝑒𝑛𝑒 𝑀𝑂𝐷 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (1)
𝑐𝑎𝑛𝑡

= 𝑔𝑒𝑛𝑒 / 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (2)
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

= 𝑔𝑒𝑛𝑒 𝑀𝑂𝐷 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (3)
𝑐𝑎𝑛𝑡

= 𝑐𝑎𝑛𝑡 / 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (4)
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

= 𝑐𝑎𝑛𝑡 𝑀𝑂𝐷 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (5)
𝑐𝑎𝑛𝑡

= 𝑐𝑎𝑛𝑡 / 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (6)
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

= 𝑐𝑎𝑛𝑡 𝑀𝑂𝐷 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (7)
𝑜𝑟𝑑𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟

= 𝑐𝑎𝑛𝑡 / 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (8)

For a gene value of 69, the decoding process gives the

following values for the parameters:

 resource number = 1

 product instance identification = 0

 operation number = 2

 product identification= 0

 order number = 1

B. GA fitness functions

There is one fitness function for each GA. Both functions

incorporate penalizations that depend on the domain they are

evaluating. For both GAs, the objective is to minimize the

values obtained by the fitness functions.The following

subsections contain their codification:

1) Fitness function for Resource GA

This function evaluates the sums of deviations between the

assignment of operations to certain resource and the ideal

assignment. In other words, this fitness function penalizes non-

balanced assignments of operations among the resources of the

same type. The ideal assignment is the number of operations

assigned to the resources of the same type, divided into the

number of resources of that type, as equation (9) shows:

Fitness= f × i =0 |Oi,t – (Ot / Rt)| (9)

where:

f is a the penalty factor (For simplicity, f=1),

i represents each resource in the job-shop,

Oi,t is the number of operations assigned to the i resource, that

belongs to the t type of resource,

Ot is the number of operations assigned to the resources of t

type,

Rt is the number of resources of t type.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-43-

2) Fitness function for Time GA

This function sums up the starting times of all operations,

with a penalization when an operation violates a constraint, as

in equation (10):

Fitness= i =0 ti, + pi (10)

where:

i represents each operation in the job-shop,

ti is the starting time of the i operation,

pi is the sum of quantities derived from penalizations for order

and overlap violated constraints, in the way equations (11) and

(12) show:

-if an order constraint is violated, the fitness must be severely

penalized, so that this chromosome does not to pass to the next

generation:

pi = pi + 100000000 (11)

-if overlap constraint is violated, the fitness is penalized

proportionally to the amount of the overlap. :

pi = pi + |tf,j - ti| (12)

where tf,j is the finishing time of the j overlapped operation.

Notice that range constraint is not contemplated in the

penalization equation because the time GA assigns the start-

times within the range limits. Therefore the solutions provided

by the time GA are always valid according to this constraint.

C. Heuristic algorithm

A relevant design issue is the organization of constraints in

the heuristic stage. In a Constraint Satisfaction Problem (CSP)

like this, a dilemma appears on the order of repairment of the

constraints, claiming a further analysis. As the repairment of a

constraint can modify the degree of satisfaction of the

remaining constraints, the evaluation of the constraint of each

operation must be followed by each repairment, so its start-

time is updated. The algorithm below shows the workflow of

the heuristic stage. It ends when it reaches a maximum number

of iterations (MAX_IT). This parameter is tuned depending on

the size of the orders, as explained in subsection 5.2.

Step 1: Point to 1st operation

Step 2: Get operation data

Step 3: Point to 1st constraint

Step 4: Heuristic evaluator

Step 5: Heuristic repairer

Step 6: If no more constraints

 then go to step 8

 otherwise go to step 7

Step 7: Point to next constraint

Step 8: If more operations

 then go to step 9

 otherwise go to step 10

Step 9: Point next operation

Step 10: Termination condition.

 If iterations = MAX_IT

 then exit

 otherwise go to step 1

IV. VARIANTS FOR THE OVERLAP CONSTRAINT

As mentioned before, each constraint has one module to

evaluate, and another one to repair. Whereas Range and Order

heuristics are simple and described in [2], Overlap heuristics

requires a deeper design: the evaluator is more complex than

the other ones, and the repairer presents different variants.

Previously to running this repairer, a conflict appears about

which of the overlapped operations has the priority to get

repaired, which is not necessarily the operation appointed by

the main algorithm. This is solved by the designation of the

critical operation. The overlap repairer goal is to find an

interval where the operation can be shifted while respecting

the range constraint, so the critical operation must have the

narrowest margin for start-time assignment (i.e. it is the most

restrictive), as equation (13) says:

i is critical over j if:

|tmaxi – tmini| < |tmaxj – tminj | (13)

i, j are the overlapped operations

tmaxi is the start-time upper limit for i operation

tmini is the start-time lower limit for i operation

Each overlap repairer solves one overlap of a pair of

operations, so if an overlap has more than two operations like

equation (14) says, it will be solved in k+1 iterations of the

repairer. At each iteration, there will be a different designation

for the critical operation.

k + 2, k > 0 | (24)

Apart from these variables, there are others that participate

in subsequent algorithms:

 O is the current operation of the algorithm defined in

section 3. It is the operation that is being evaluated/repaired

at each iteration of the main program.

 J is the operation that is being compared to the O at each

evaluator/repairer iteration.

 C is the critical operation in an overlap.

 ti is the start time of i operation.

 I is the current interval of the R. An interval is considered

when there is a period of time when R is not assigned to any

operation, so it remains not active.

 Ri is the resource assigned to i operation.

 TR is the type of R resource.

 S is the resource currently appointed to.

 L is the list of operations that overlap with O.

 LI is the list of I.

 LR is the list of resources of the same type as Ro

The structure for the evaluator and the repairer variants are

described in the following subsections.

-44-

A. Overlap Evaluator

The following algorithm includes the steps to evaluate if the

current operation overlaps other one(s) on the same resource:

Step 1: Store (O, L)

Step 2: Point J at the 1st operation

assigned to Ro

Step 3: Stop condition:

 if no more operations for Ro

 then stop

 oterwise go to step 4.

Step 4: If J not = O, and J overlaps O

 then store (J, L)

Step 5: Point J at the next operation in

Ro

Step 6: Go to step 3.

Operations are overlapped if an operation begins before the

other one has finished. The information that results from this

stage is a list of operations that overlaps the current one. This

list is the input of the overlap repairer stage.

B. Overlap Repairer

The overlap repairer includes several stages (i.e. Interval

Search, OperationExchange, Resource Mutation), which are

successively executed if the previous one has not been

successful, as [2] show.

Other design issues come out when handling constraints that

interfere with others. In this case, there are two possibilities:

1. To consider a blind repairment, so that the constraint is

repaired without considering the other ones. Such is the

case of the order and range repairers.

2. To consider an intelligent repairment, so that the constraint

is repaired taking the other ones into consideration. Overlap

repairer follows this approach. There are several ways to

incorporate these considerations, producing two variants for

overlap repairer: the first one (pure variant) considers the

range constraint for its amendments; the second one (hybrid

variant) considers both the range and the order constraints.

The mentioned stages can be designed in both ways:

1) Algorithms for Pure Variants.

a) Algorithm for Interval Search

Step 1: Find LI for Ro

Step 2: Find C among two overlapped in L

Step 3: Position I at the beginning of

LI

Step 4: Stop condition:

 if no more intervals in LI

 then go to step 8.

Step 5: If I suitable for C

 Then tc = max (tminC, tminI)

 Exit

Step 6: Position I at next interval of

LI

Step 7: Go to step 4.

Step 8: Exit.

An interval is suitable if it matches the assignment

conditions for the critical operation, in terms of operation

duration and start-time range limits.

b) Algorithm for OperationExchange.

Step 1: Find C among two overlapped in L

Step 2: Position J in previous operation

in Rc

Step 3: Stop condition:

if no more previous operations,

then exit.

Step 4: If J suitable for C

 then exchange (tj, tC)

 exit.

Step 5: Position J in the next previous

operation in Rc

Step 6: Go to Step 3.

A current operation is suitable if its start-time fulfills the

range constraint of the critical one.

2) Algorithms for Hybrid Variants.

a) Algorithm for Interval Search.

It remains the same as the PureVariant, except the suitability

condition is step 5. In this case, an interval is suitable if it

matches the assignment conditions for the critical operation, in

terms of operation duration and start time range bounds, and

not belonging to the same job (to assure it fulfills the order

constraint).

b) Algorithm for OperationExchange .

It remains the same as the PureVariant, except the

suitability condition is step 4. In this case, an operation is

suitable if it does not belong to the same job (to assure it

fulfills the order constraint), and its start-times fulfills the

range constraint of the critical.

c) Algorithm for Mutation Operator.

This operator assigns the operation to another resource of

the same type, while preserving the start-time. This

amendment does not interfere with the other type of

constraints, but it can produce overlaps in the new resource.

Step 1: Find C among two overlapped in L

Step 2: Position S in 1st resource in

the job-shop

Step 3: Stop condition:

 if no more resources

 then go to step 7.

Step 4: If S not = RC and Ts = TRC

 then store (S, LR)

Step 5: Position S in next resource in

the job-shop

Step 6: Go to step 3.

Step 7: Random assignment of RC among

the candidates in LR.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-45-

V. EXPERIMENTATION RESULTS

Tests have been performed for the complete algorithm,

putting special emphasis on the variants of the overlap

repairers. The machine has been a Sun Sparc workstation

running Solaris operating system. There has been a

preliminary stage, to configure the GA, and a main stage, to

validate the complete algorithm.

A. Tuning the GA Parameters

Beside the algorithmic issues, the success of the algorithm

lies on several factors, like the correct tuning of the GA

parameters. Several works have inserted in the code the way to

tune them dynamically like the fuzzy logic controller (FLC),

which methods are described in [11]. The key of success of

applying FLC to GA is a well-formed fuzzy sets and rules

[12]. In this work there has been previous experimentation to

analyse the best values for the GA, by testing the different GA

isolatedly. The most successful configuration for the parameter

set population size/number of generations/mutation

rate/selection type is 50/60/0.01/tournament for the resource

GA and 8/10/0.01/elite for the time GA.

B. Configuration of the Hybrid GA

Testbeds have been configured varying the number of

orders from 1 to 4, number of jobs from 1 to 3, number of

products from1 to 4, number of product instances from 1 to 2,

number of operations from 1 to 4, and operation processing

times from 24 to 100, 5 resources belonging to 4 types, with

the total number of executions per testbed of 25. The number

of iterations for the heuristics stage has varied with the number

of orders: for one order only 100 have been needed, while for

four orders more than 200. Results collect the average of the

executions.

Heuristic optimization algorithms can be evaluated in two

ways [13]: by measuring the solution quality and measuring

the solution time. In this case we have measured the solution

quality by two criteria:

Considering this problem as a CSP, the solution quality

must measure the constraint satisfaction rate. In this work, we

consider the mean error (ME) parameter, as the percentage of

constraints not satisfied. Figure 1 shows the results for the pure

and hybrid variants of interval and exchange operators,

distributed horizontally by the number of orders and vertically

by the ME. This figure reflects that for few operations the pure

repairer is better, but when the number of operations increases,

the hybrid one is better. In this case, the ME is higher than 0,

due to the technological limitations, i.e. more operations for

the same number of resources produces more operations with

unfulfilled constraints, and therefore reduces the number of

fulfilled constraints. The reason for this improvement using the

hybrid repairer is that the design of that heuristics has been

made in such a way that the improvement in the overlap does

not worsen any other constraint, in contrast with the pure

repairer. The disadvantage of that is that fewer amendments

can be applied with this variant, because it is more restrictive.

Fig. 1. ME of the two variants of overlap repairers

Considering it as a fJSP, the quality measurement is the time

GA fitness. Table I shows the results for the time GA, as it is

related to the constraints. PRf and HRf columns contain the

Pure Repairer fitness and the Hybrid Repairer fitness

respectively. Def(HRf, PRf) provides information about the

percentage difference of both fitness values as equation 15

shows:

TABLE I

FITNESS VALUES FOR THE OVERLAP VARIANT

Number of orders PRf HRf Def(HRf, PRf)

1 300 316 5.33%

2 352 379 7.67%

3 380 397 4.47%

4 411 419 1.95%

There is a relationship between the values for ME in Figure

1 and the fitness values shown in Table I. The fitness function

is penalized when the range and overlap constraints are not

fulfilled. The fewer the number of orders, the lower (and

better) fitness results. Results are also better for the pure

variant than the hybrid one. The reason is that the former

reorder the overlapped operations trying to fulfill the range

constraint, and the latter must also makes sure that the

reorganization also fulfills the order constraint. This

complexity means that the search interval does not always find

the earliest interval suitable, and even does not find and

interval, delaying more operations of the jobs than in the pure

variant.

Besides that, the evolution of Def(HRf, PRf) is to decrease

when the number of orders increases. This also shows that the

fitness values in both repairers tend to be very similar for high

number of orders. Therefore, it is recommendable to use the

Hybrid Repairer in these cases, because they will provide

similar fitness values than the Pure Repairer but with lower

ME values.

-46-

VI. COMPARISON WITH ALTERNATIVE SOLUTIONS

To test the efficiency of our algorithm, Table II collects the

comparison with respect the makespan using [8] benchmark. It

contains the best results of a set of executions. It consists of

ten problems mk1-mk10, with the number of jobs are in the

range 10-20, the number of machines are in the range 6-15,

number of operations are in the range 5-15. Other

configuration information is: n x m, that refers to the number

of jobs per number of machines; (LB, UB) with the optimum

makespan if known [14]; otherwise, it reports the best lower

and upper bound known; Flex. with the average number of

equivalent machines per operation. This work compares the

mentioned fJSP experiments of hGA from [5], AIA [6] and

GA [7], and TWS for the best results achieved among the

different rules in [8]. The information presented in Table 2 has

been partially obtained from [2].

The proposed algorithm of GAH has achieved lower results

of makespan for some fJSP instances and similar results of

makespan for the remaining fJSP instances. These results

combined with the ME results in section 5, demonstrate that

the algorithm shows excellent quality solution as a fJSP and a

CSP.

TABLE II

COMPARISON WITH BEST KNOWN MAKESPAN FOR TEN FJSP INSTANCES

Problem n x m Flex. (LB, UB) hGA AIA GA TWS GAH

Mk01 10 x 6 2.09 (36, 42) 40 40 40 42 40

Mk02 10 × 6 4.10 (24, 32) 26 26 26 32 26

Mk03 15 × 8 3.01 (204, 211) 204 204 204 211 204

Mk04 15 x 8 1.91 (48, 81) 60 60 60 81 60

Mk05 15 × 4 1.71 (168, 186) 172 173 173 186 172

Mk06 10 x 15 3.27 (33, 86) 58 63 63 86 57

Mk07 20 × 5 2.83 (133, 157) 139 140 139 157 139

Mk08 20 x 10 1.43 523 523 523 523 523 523

Mk09 20 × 10 2.53 (299, 369) 307 312 311 369 308

Mk10 20 × 15 2.98 (165, 296) 197 214 212 296 196

VII. CONCLUSIONS AND FUTURE WORK

This work has described the algorithms of a complex

heuristic, like the overlap evaluator and repairers, in a hybrid

GA applied to fJSP, a multi-objective problem. The most

relevant issue concerns the use of two variants for the repairer:

one that does not take into consideration the other constraints

(pure), and the other one that incorporates them (hybrid).

When adopting this approach, designers may consider what the

experimentation has revealed: pure variant is better for fJSP

with few operations, producing better ME results; in contrast,

it is recommendable the use of the hybrid variant when the

number of operations increases. It also shows that it maintains

the level of quality of other algorithms, in terms of makespan.

Finally, it is also recommendable an appropiate tuning of GA

parameters.

The future work opens a high number of possibilities.

Concerning the inclusion of intelligent operators, we are

working in the design of hybrid variants for the range and

precedence repairers. In the same way, we are making another

variant of the ResourceMutation substage, which assures that

the new resource assignment does not cause the overlap of

other operations. Finally, new constraints adapted to concrete

JSP and fJSP are to be incorporated and experimented. Re-

design of the model is done using the FactoryMethod design

patron, where a family of constraints can be chosen depending

on the application that is used. The collection of classes in [2],

will be transformed in the collection shown in Figure 2. The

fJSP class is the superclass which the concrete application

inherits from: in the described work, this application is GAH,

which uses the order, range, and overlap concrete constraints.

When using OtherApplication, it will use OtherConstraints

(containing the measurer or evaluator), which has the

corresponding OtherConstraint_unfulfilled subclass

(containing the repairers for that constraint). The construction

of the repairer will also contemplate the inclusion of pure and

hybrid variants. The choice on which one to use will depend

on the number of operations handled by the fJSP. The results

of the mentioned modifications will be compared with the

current version, to see how they affect to the ME and the

makespan.

VIII. ACKNOWLEDGMENT

C. Gutiérrez thanks Jose Maria Lazaro for his continuous

help on the applications of fJSP. She also wants to thank Juan

Jose Merelo for his guidance in the customization of his

GAGS. This research work has been funded by the Spanish

Ministry for Economy and Competitiveness through the

project “SOCIAL AMBIENT ASSISTING LIVING -

METHODS (SociAAL)” (TIN2011-28335-C02-01).

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-47-

Fig. 2. Re-design of the classes for adaptation to other problems.

REFERENCES

[1] J.-J. Lin, “A GA-based Multi-Objective Decision Making for Optimal

Vehicle Transportation,” Journal of Information Science and

Engineering, vol. 24, pp. 237-260, 2008.

[2] C. Gutierrez and I. García-Magariño, “Modular design of a hybrid

genetic algorithm for a flexible job–shop,” Knowledge-Based Systems,

vol. 24, pp. 102–112, 2011.

[3] Y. Yun, M. Gen, M., and S. Seo, “Various hybrid methods based on

genetic algorithm with fuzzy logic controller,” Journal of Intelligent

Manufacturing, vol. 14, pp. 401-419, 2003.

[4] J. Dorn and M. Girsch, “Genetic operators based on constraint repair,”

in ECAI’94 Workshop on Applied Genetic and other Evolutionary

Algorithms.

[5] J. Gao, M. Gen, and L. Sun, “A hybrid of genetic algorithm and

bottleneck shifting for flexible job shop scheduling problem,” in 8th

Annual Conference on Genetic and Evolutionary Computation, 2006,

pp. 1157-1164.

[6] A. Bagheri, M. Zandieh, I. Mahdavi, and M. Yazdani, “An artificial

immune algorithm for the flexible job-shop scheduling problem,” Future

Generation Computer Systems, vol. 26, pp. 533-541, 2010.

[7] F. Pezella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for the

Flexible Job-shop Scheduling Problem,” Computers & Operations

Research, vol. 35, pp. 3202-3212, 2008.

[8] P. Brandimarte, “Routing and scheduling in a flexible job shop by tabu

search,” Annals of Operations Research, vol. 41, pp. 157-183, 1993.

[9] Z. Pooranian, M. Shojafar, J. H. Abawajy, and M. Singhal, "GLOA: A

New Job Scheduling Algorithm for Grid Computing," International

Jorunal of Interactive Multimedia and Artificial Intelligence, vol. 2, no.

1, pp. 59-64, 2013.

[10] C. Gutierrez, “Heuristics in a General Scheduling Problem,” in Proc.

Conference on Evolutionary Computation, vol. 1, 2004, pp. 660-666.

[11] M. Gen and R. Cheng, Genetic Algorithms and Engineering

Optimization. New Jersey: John Wiley and Sons, 2000.

[12] F. Cheong and R. Lai, “Constraining the optimization of a fuzzy logic

controller using an enhanced genetic algorithm,” IEEE Transactions on

Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 30, pp. 31-46,

2000.

[13] R. Rardin and R. Uzsoy, “Experimental Evaluation on Heuristic

Optimization Algorithms: A Tutorial,” Journal of Heuristics, vol. 7, pp.

261-304, 2001.

[14] M. Mastrolilli and L.-M. Gambardella, “Effective neighbourhood

functions for the flexible job shop problem,” Journal of Scheduling, vol.

3, pp. 3-20, 2000.

C. Gutierrez was born in Bilbao, Spain, in 1969. She

received the B.Eng. and Ph.D. degrees in Computer

Science from the University of Deusto (Spain) in 1992,

and from the University of the Basque Country (Spain)

in 2000, respectively. She has worked for Labein

technological research center, in Bilbao (Spain). She

has also worked for the Basque Government and Indra,

as a software Engineer. After doing teaching and

research at some private universities, such as Instituto

Tecnológico de Estudios Superiores de Monterrey (México D.F.), she joined

Universidad Complutense de Madrid (Spain) where her current position is

Assistant Professor . She is a member of the Grasia research group, on agent

technologies. She has published in relevant journals, like Knowledge-based

Systems. She has also directs financially supported projects. Her current

interests focus on Data Mining, Software Quality, Multiagent Systems and

Accessibility.

