
USE OF NEURAL NETWORKS IN PROCESS ENGINEERING

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

USE OF NEURAL NETWORKS IN
PROCESS ENGINEERING

Thermodynamics, diffusion, and
process control and simulation

applications

Ecopetrol - Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia.
e-mail: fotero@ecopetrol.com.co

F. OTERO

his article presents the current status of the use of Artificial Neural Networks (ANNs) in process engineering
applications where common mathematical methods do not completely represent the behavior shown by
experimental observations, results, and plant operating data. Three examples of the use of ANNs in

typical process engineering applications such as prediction of activity in solvent-polymer binary systems, prediction
of a surfactant self-diffusion coefficient of micellar systems, and process control and simulation are shown.
These examples are important for polymerization applications, enhanced-oil recovery, and automatic process
control.

El presente artículo presenta el estado actual de la utilización de las Redes Neuronales Artificiales (ANNs) en
aplicaciones de ingeniería de procesos donde los métodos matemáticos tradicionales no muestran completa-
mente el comportamiento representado por observaciones y resultados experimentales o datos de operación
de plantas. Este artículo muestra tres ejemplos de la utilización de ANNs en aplicaciones típicas de ingeniería
de proceso como son la predicción de coeficientes de actividad en sistemas binarios solvente-polímero, pre-
dicción de coeficientes de difusión de un surfactante en sistemas micelares y control y simulación de procesos.
Estas aplicaciones son importantes en el área de polimerización, recuperación mejorada de crudo y control
automático de procesos.

Keywords: process engineering, neural networks, process control, process modeling, process simulation.

49

T

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

F. OTERO

50

INTRODUTION

Neural network definition and theory
Artificial neural networks (ANNs) is a type of ar-

tificial intelligence, and an information processing
technique, that attempts to imitate the way human brain
works. It is composed of a large number of highly inter-
connected processing elements, called neurons, working
in unison to solve specific problems. The organization
and weights of the connections determine the output.
The neural network is configured for a specific appli-
cation, such as data classification or pattern recognition,
through a learning process called training. Learning
involves adjustments to the connections between the
neurons. Neural networks can differ on: the way their
neurons are connected; the specific kinds of compu-
tations their neurons do; the way they transmit patterns
of activity throughout the network; and the way they
learn including their learning rate (Haykin, 1994).

ANNs have been applied to an increasing number
of real-world problems of considerable complexity.
Their most important advantage is in solving problems
that are too complex for conventional technologies;
problems that do not have an algorithmic solution or for
which and algorithmic solution is too complex to be
found. The ANNs are able to learn and to generalize
from a few specific examples and are capable of recog-
nizing patterns and signal characteristics in the pres-
ence of noise. ANNs are inherently nonlinear and, the-
refore, capable of modeling nonlinear systems (Bhat,
and McAvoy, 1990; Savkovic-Stevanovic, 1994; Basheer,
1996).

Topology of a neural network
The topology of a neural network is the logic struc-

ture in which multiple neurons, or nodes, are inter-
communicated with each other through synapses that
interconnect them. The synapses (biological term) are
the interconnections between nerve cells in biological
networks and have been sometimes extended to
ANNs.

Figure 1 presents a schematic diagram of a typical
neural network. The circles represent the processing
neurons and the interconnection lines are the infor-
mation flow channels between neurons. The boxes are
neurons that simply store inputs to the net. Each
processing neuron has a small amount of memory and
executes a computation which converts inputs to the
neuron into outputs. The computation is called the
transfer function of the neuron. The transfer function
can be linear and nonlinear and consists of algebraic or
differential equations. The network shown in the fig-
ure has three layers of neurons: input, hidden, and output.

Figure 2 shows the structure of a single neuron within
an arbitrary network. The inputs to this neuron consist
of an N-dimensional vector P and a bias, Bj, whose
value is 1 multiplied by a weight. Each of the inputs has
a weight Wij associated with it. Biases give the network
more degrees of freedom which are used to learn a
desired funtion.

ABBREVIATIONS
ANNs Artificial Neural Networks
LM Levenberg-Marquardt
RAWN Random Activation Weight Net
SSE Sum of Squared Errors
SDS Sodium Dodecyl Sulfate
MBPC Model Based Predictive Control
NNMPC Neural Network Model Based

Predictive Control
PID Proportional-Integral-Derivative
IAE Integral of Absolute Error
IAM Integral of Absolute Move

USE OF NEURAL NETWORKS IN PROCESS ENGINEERING

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998 51

network, and the actual value. Three training methods
were used in this paper: backpropagation, Levenberg-
Marquardt (LM) minimization, and Random Activation
Weight Net (RAWN). A brief description of each
method follows but for greater detail the reader is
referred to references (Rumelhart, 1986; Hagan and
Menhaj, 1994; Te Braake, 1997).

A backpropagation network learns by making
changes in its weights and biases so as to minimize the
sum of squared error of the network. The error is
defined as the subtraction of the actual and predicted
value. This is done by continuously changing the values
of the weights and biases in the direction of the steepest
descent with respect to error. This is called the gradient
descent procedure. Changes in each weight and bias
are proportional to that element�s effect on the sum-
squared error of the network.

The LM minimization method is a modification of
the classic Gauss-Newton method for nonlinear least
squares. A detailed description of the methods can be
found in Fletcher (1987) and in Hagan and Menhaj
(1994). Both methods use an estimate of the Hessian,
H=Ñ2V(x) (matrix of the second derivatives of the
function to optimize with respect to the parameter vector
x), and the gradient ÑV(x), where V(x)is the function
to optimize, the sum of squared errors. x is the matrix
of the weights of the corresponding network to train,
and e(x)is the error matrix. An algebraic procedure
makes it possible to express both the Hessian and the
gradient in terms of the Jacobian matrix (Hagan and
Menhaj, 1994). It can be shown that:

ÑV(x) = JT(x)e(x)
Ñ2V(x) = JT(x)J(x)+S(x)

where the Jacobian matrix, J(x), is

The first calculation within the neuron consists in
calculating the weighted sum of the inputs plus the bias:

The output of the neuron is afterwards calculated
as the transfer function of Sj. This transfer function
can be a step-change, a linear, or a sigmoid transfer
function. The linear transfer function calculates the neur-
on�s output by simply returning the value transferred to
it. The sigmoid transfer function generates outputs
between 0 and 1 as the neuron�s net input goes from
negative to positive infinity. The sigma function is de-
scribed as:

Once the outputs of the hidden layer are calculated,
they are transferred to the output layer.

Neural Network Training
Once a network architecture has been selected, the

network has to be taught how to assimilate the behavior
of a given data set. Learning corresponds to an ad-
justment of the values of the weights and biases of
every single neuron interconnection so a satisfactory
match is found for input-output data. There are several
learning rules, such as nonlinear optimization and back-
propagation, but the common aim is to minimize the
error between the predicted value, obtained by the

WijPij+BjSj =å
N

i=1

1Aj = 1+e -Sj

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

F. OTERO

52

and

Gauss-Newton method assumes that S(x) » 0. The
update for the weights becomes:

Dx = [JT(x)J(x)]-1JT(x)e(x)

This equation is the one used in any Gauss-Newton
optimization method. Levenberg-Marquardt (LM)
modification is done by including the LM parameter m,
such that:

Dx = [JT(x)J(x)+mI]-1JT(x)e(x)

I is the identity matrix. The LM parameter is
multiplied by some b factor whenever a step would
result in an increased V(x). When a step reduces V(x),
m is divided by b. Notice that when m is small, the algo-
rithm becomes the Gauss-Newton. Also notice that
when m is large, the algorithm becomes steepest descent
with a step of 1/m. Let�s remember that the approximate
steepest (gradient) descent algorithm is described by:

Dx= -aÑV(x)
where a is the learning constant. If Dx is the matrix of
changes in weights and biases, DW, the LM equation
will become:

DW = (JTJ+mI)-1JTe

The software used in this work was MATLAB from
Mathworks, along with its toolboxes of neural networks,
optimization, and simulink. MATLAB performs a nu-
merical calculation of the Jacobian.The LM algorithm
is a simple modification to the backpropagation method.
The implementations of this LM algorithm (or the
Newton types) require intermediate storage of n·n
matrices, compared to only a n element vector for the
other backpropagation methods. When n is very large
(such as for neural networks), this can become an issue
and the latter algorithm may be preferred. LM training
method is faster than backpropagation when the number
of hidden layers is not high (i.e., higher than 15).

The RAWN method uses the fact that a three layer

feedforward network, with neurons using the sigmoid
function in one hidden layer, is theoretically capable of
approximating any continuous function. If the weights
between input and hidden-layer neurons are known, an
estimation problem, that is linear in parameters, remains
can be easily solved by standard least-squares methods.
This learning method is very fast and the results are
good. However, neither the number of neurons required
in the hidden layer is known, nor whether a single layer
is best for learning speed.

A well trained network tends to give reasonable
values when presented to inputs that it has never seen.
Typically, a new input will present an output similar to
the correct output for input vectors used in training that
are similar to the new input being presented. This pro-
perty enables to train a network on a representative
set of input/output-target pairs and obtain good results
for new inputs without training the network for all the
possible input/output pairs.

ACTIVITY PREDICTION WITH NEURAL
NETWORKS (Polymer/Solvent binaries)

Artificial neural networks were used to predict
activity of solvents in polymer solutions. The polymer-
solvent systems considered were polar, nonpolar, and
polar/nonpolar binaries. The data specifically used were
the same ones used by Ramesh and his coworkers,
who used another type of artificial neural network with
a different learning rule, nonlinear optimization training
routine (Ramesh, 1995).

Tables 1, 2 and 3 show the experimental data used
for the systems to be tested. They include four nonpolar
binaries, eight nonpolar/polar binaries, and nine polar
binaries. The experimental data used were obtained
from Alessandro (1987) and include the binary type,
the volume fraction of the polymer, f, and the solvent�s
activity, a.

The neural network used for activity prediction
Figure 3 shows the network used for the solvent

activity function approximation of our binaries. P is the
matrix (RxQ) that represents the inputs for each binary
system. The waffle of Q input vectors at the left of
Figure 3 is used to represent the simultaneous presen-
tation of Q vectors to a two layer sigmoid/linear network.
Q represents the number of input vectors. That is, the

ei(x)Ñ2ei(x)S(x) = åN
i=1

USE OF NEURAL NETWORKS IN PROCESS ENGINEERING

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998 53

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

F. OTERO

54

USE OF NEURAL NETWORKS IN PROCESS ENGINEERING

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

number of data sets for each binary system. S1 is the
number of neurons in the hidden layer. S1=10 was used
for the three cases. S2 is the number of neurons in the
linear output layer.

W1 and W2 are the matrices that correspond to the
values of weights in the hidden layer (Layer 1) and the
output layer (Layer 2), respectively. As well as with
the matrices B1 and B2, which correspond to the bias
matrices. These vectors could be serially presented to
the network in order to train it. However, Q input vectors
can be presented by simultaneously specifying the
matrix P.

The architecture shown in Figure 3 is capable of
approximating a function with a finite number of discon-
tinuities with arbitrary accuracy. The layer architecture
used for the function approximation of the solvent ac-
tivity prediction in this project has a hidden layer of sig-
moidal neurons (in this case tangent-sigmoid neurons).
These neurons receive inputs directly and then broad-
cast their outputs to a layer of linear neurons which
computes the network output. The software package
used to program this neural network was the Neural
Networks Toolbox of MATLAB.

Results
Several networks were created and tested. The pre-

vious section described the parameters of the networks
that showed the best results. The learning method used
in all training sessions was the Levenberg-Marquardt
method which was the one that gave the fastest training
sessions, and adaptive backpropagation with momentum.
A network for each polymer-solvent system was
created. All the three created networks have a hidden
sigmoidal layer and a linear output layer. Several num-
bers of neurons in the hidden layer were tried. The
sum of squared error criteria for each binary type was
5·10-4. The results of the predicted against the experi-
mental values are very satisfactory for both training
and testing sessions, according to the figures shown
below. Figures 4, 5, and 6 correspond to the solvent
activities obtained by the neural network model.

Figure 4 shows the predicted and experimental val-
ues for the nonpolar binaries. The training process took
4 epochs (iterations) to meet the error criteria using
LM training method. The training session for the same
system but using adaptive backpropagation took 1,600
epochs. There is a significant difference in the training

time. All the points in Figure 4 fall on the 45 degree line
indicating a very good agreement.

In the case of nonpolar/polar binaries, shown in Fig-
ure 5, the agreement is also very good. The training
session with LM method took 8 epochs (iterations).
The training with adaptive backpropagation did not
reach the error criteria of 5·10-4. After 15,000 a sum
of squared errors of 4.5·10-3 was reached with the
backpropagation method.

Figure 6 below shows the results of the third type
of binaries, the polar binaries, with a LM training
session. The sum of squared error goal was the usual
5·10-4. The results are quite acceptable. The same
training session with backpropagation training reached
a SSE of 1.5·10-3 after 15,000 epochs. A large differ-
ence in the training times was also present.

These results are very similar to those obtained by
Ramesh (1995) in his work on the same binaries. The
proposed neural networks used in this work are also
similar to those used by Ramesh. The difference lies in
the application of the Levenberg-Marquardt training
method that provides shorter training times.

DIFFUSION COEFFICIENT PREDICTION
System: Micelles of sodium dodecyl sulfate

This section will initially explain the sodium dodecyl
sulfate (SDS) micellar system. A description of the
neural network designed to predict the self diffusion
coefficient of SDS over a wide range of operating para-
meters such as temperature, concentration of SDS, and
concentration of Sodium Chloride (NaCl), will be pre-
sented afterwards.

55

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

F. OTERO

56

Over a narrow range of concentrations there is a
sudden transition in the physical properties of aqueous
surfactants. This transition corresponds to the formation
of aggregates and is used to define the critical micelle
concentration or CMC. This is an example of aggre-
gating solutes in which solutes aggregate much more
than the simple weak electrolytes. In the case of the
detergent SDS, its molecules remain separate at low
concentrations, but then suddenly aggregate. The resul-
ting aggregates, called micelles, are most commonly
visualized as an ionic hydrophilic skin surrounding an
oily hydrophobic core (Figure 7). This is the way de-
tergents clean; they capture oil-bearing particles in their
cores.

SDS was chosen for this work due to several rea-
sons. Among a variety of micellar systems, the one
consisting of sodium dodecyl sulfate is the most exten-
sively and systematically studied. The experimental
properties of SDS micelles, such as diffusion coefficient,
micellar radii, and aggregation behavior, have been well
documented at various NaCl concentrations and over
a wide range of temperatures.

The classical micelle is pictured as a roughly spherical
aggregate containing 50 - 200 monomers. The radius
of the sphere approximately corresponds to the exten-
ded length of the hydrocarbon chain of the surfactant.
The micelle has a hydrocarbon core and a polar surface;
it resembles an oil drop with a polar coat. The head-
groups and associated counterions are found in the com-
pact layer (Stern layer), as described by Fendler. Some
of the counterions are bound within the shear surface,
but the mayority are located in the Gouy-Chapman elec-

Micelles
Micelles are microheterogeneous assemblies. Exam-

ples of micelles are microemulsions that have been used
extensively as media to carry out chemical reactions,
to enhance solubilization of insoluble materials, to trans-
port molecules through cell membranes, and also to
treat waste water. These applications take advantage
of the surfactant property of forming association com-
plexes. The self-assembled surfactant micelles are dy-
namic fluctuating entities constantly forming and disso-
ciating on a time scale ranging from microseconds to
milliseconds (Fendler, 1982).

Surfactants, commonly called detergents, are am-
phiphatic molecules having distinct hydrophobic and
hydrophilic regions. Depending on the chemical struc-
ture of their polar headgroups, surfactants can be neu-
tral, cationic, anionic, or zwitterionic. The surfactant
subject of this work is sodium dodecyl sulfate (SDS),
an anionic surfactant.

USE OF NEURAL NETWORKS IN PROCESS ENGINEERING

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998 57

trical double layer where they are dissociated from the
micelle and are free to exchange with ions distributed
in the bulk aqueous phase. The amount of free coun-
terions in bulk water, expressed as a fractional charge,
typically varies between 0.1 - 0.4.

Micelle diffusion coefficient estimation with
neural networks

The diffusion coefficient (D) of micelles at various
SDS and NaCl concentrations and over a wide range
of temperatures (T) were taken from the literature and
collected by Brajesh. 76 sets of data were used to train
a feedforward neural network with a backpropagation
learning algorithm 25 sets of data were used to test the
net. The training set of data is shown in Table 4. Since
sigmoidal forms of activation functions were used in
the network, the network inputs and outputs were
normalized so as to lie between zero and one. SDS
concentrations (in molar units, M) and temperature
(in °C) were normalized by dividing by 0.16 and 100,
respectively. D, in m2s-1, was normalized by dividing
by 50·10-11. NaCl concentrations (in molar units, M)
were not normalized since they are all well distributed
between 0 and 1 (Brajesh, 1995).

Figure 8 shows the network built to predict the self

diffusion coefficient. The inputs for the network training
were SDS and NaCl concentrations and temperature
(both normalized). The output was the diffusion coef-
ficient. The network architecture consists of three
distributing neurons in the input layer, 10 sigmoid neurons
in the hidden layer, and one linear neuron in the output
layer.

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

F. OTERO

58

USE OF NEURAL NETWORKS IN PROCESS ENGINEERING

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998 59

Results
Figure 9 shows the real experimental data and the

network-trained data. There is a good agreement. The
model shows a good performance after training with
both LM and backpropagation methods. However, LM
training method needed 285 epochs (iterations) to reach
the goal set for the sum of squared errors, SSE =
5.0·10-4. Backpropagation with adaptive learning rate
and momentum took 200,000 epochs to get an error of
1.0·10-2.

The trained network was given a new set of input
data for testing. Table 5 shows the data presented to
the network for testing. Figure 10 shows a plot of the
predicted and experimental data for the diffusion
coefficient of a micellar system of Sodium Dodecyl
Sulfate. The network captures the behavior of the self
diffusion with respect to SDS concentration, NaCl
concentration, and temperature.

SIMULATION AND CONTROL OF A
MIXING TANK

A final example of the applications of ANNs is the
process control field. A mixing process, shown in Fig-
ure 11, will be simulated and controlled as an example
by using a neural network based controller.

The training data were taken from the first principle
model and simulation used by Camacho (1996) keeping
assumptions and steady state values. The approach to
control this process is the model based process control
(MBPC) using neural networks. In this approach, a
neural network process model is developed and used
in a predictive basis. The neural network process model
can be built by training a network with input-output data.
Usually, a random signal with a zero order hold pro-
portional to the process time constant is used to excite
the manipulated variable. Another alternative way to

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

F. OTERO

excite the manipulated variable is with sinusoidal wave
functions with frequency and amplitude chosen based
on knowledge of process dynamics. The data produced
in the manipulated and controlled variable are used to
train the network.

Figure 12 shows the structure of the Neural Network
Model Based Predictive Control (NNMPC). The
NNMPC algorithm consists of minimizing an objective
function which can be written in the general form:

60

q(i)[yr(i) - y(i)] + å l (i)[u(i) - u(i-1)]2J = ån+N2
i=N1

n+Nu

i=n
^

USE OF NEURAL NETWORKS IN PROCESS ENGINEERING

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

where u(i), the control signal to be sent out, is the
unknown variable that will optimize J. yr is the refer-
ence signal, or set point, y is the model predicted output,
q is the set of prediction weighting factors that weight
each prediction. N1 and N2 define the prediction
horizon or the block of time in the future over which
the error will be considered. N1- N2 is the length of
this prediction horizon. l is the set of control weighting
factors, and its purpose is to prevent the controller from
making large jumps. Nu is the control horizon, which
normally is set to one time step due to extensive com-
putation time when multiple u values are used in opti-
mization. N1 is usually n, the current time interval,
although there have been some suggestions to take N1
as the process dead time (Cherré, 1998).

fed back to the optimizer. This prediction error is
calculated at each time step and assumed constant over
the entire prediction horizon. To account for model
inaccuracies the error is added to all future predictions
of y made in that time step. This would be represented
as:

where yc (n+i) is the neural network prediction at time
n+i corrected for the prediction error at time n.

Notice from Figure 12 that the error signal sent to
the optimizer is first filtered in order to reduce the inter-
ference of noise and help with disturbance rejection.
This introduces robustness and stability to the system.
The filter suggested is a linear, first order one with a
unity gain. yr(t+1) is the reference signal or set point
at time t+1 (García et al., 1988).

Neural network process model training
The training of the networks was performed using

a random signal adequately covering operating region,
shown in Figure 13. A zero order hold of five times the
process time constant was placed on the signal. The
zero order hold simply holds the random signal at its
previous value for a prescribed amount of time.
According to literature, and since the process time
constant is based on a first order plus dead time, it can
be said that the actual process will approximately reach

^

The neural predictor is the process model based on
a neural network structure. The neural network model
predicts the current value of the controlled variable when
a set of inputs is given. The set of inputs often corres-
ponds to the current and past values of the manipulated
variable and past values of the controlled variable.
When feedforward control scheme is desired, current
and past values of disturbances may also be fed as
inputs. The number of past values to feed as inputs to
the neural network process model depends on the
characteristics of the process, i.e., its steady state and
dynamic behavior. Process parameters such as time
constant and dead time define the number of inputs.

To alleviate steady state offsets due to small mo-
deling errors, the difference between the actual plant
output at time n and the ANNs prediction at time n is

e(n) = y(n)- y(n)
yc (n+i) = y(n+i)+e(n), i = N1,...,N2

^
^ ^

61

^

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

F. OTERO

Neural Network Predictive Control
The NNMPC strategy shown in Figure 12 was im-

plemented using MATLAB computer software along
with its Neural Network Toolbox, Optimization Toolbox,
and Simulink simulation package. A step change in dis-
turbance W1, the hot stream flow rate, from 1.89 kg·s-1
to 1.51 kg·s-1 lb/min, was performed at time t = 100 times
units, while the set point was constant at a value of 50%
transmitter output. Then a step change in set point, from
50 to 60% transmitter output, was performed at time
t = 200 times units. For comparison purposes, the same
step changes in disturbance and set point were perfor-
med with a Proportional-Integral-Derivative (PID) con-
troller tuned for this process. Results are shown in Fig-
ure 15.

steady state after five time constants have elapsed.
(Smith and Corripio, 1997). The training method used
was the regulated activation weight neural network
(RAWN) which provides outstanding, short periods of
training. It does not need iterations and requires a
random activation and linear squares technique to train.
The speed of computation is incomparably much faster
than with backpropagation (Te Braake et al., 1997).

Testing the Neural Network Process Model
After training, the neural network process model is

tested using more process data. Usually, two thirds of
the data are used for training and one third is used for
testing. The best source for training and testing data is
past historical records of process behavior. The testing
is also evaluated by checking the sum of squares of the
model prediction errors on the training data set. Other
criteria used are the sum of squares of the errors of
the one step ahead predictions on the testing data, the
sum of squares of the errors of the free run predictions
on the testing data, and the sum of squares of the errors
or the corrected free run predictions on the testing data.
Figure 14 shows the testing results produced with a
neural network of 15 neurons in the hidden layer. This
network architecture produced the best criteria for the
network evaluation. The figure shows a very good match
from a free run test.

Results
For this specific example, the performance of the

neural network model predictive controller is better than
that of the traditional PID. This is true for both disturb-
ance and set point changes; at least in the range worked
in this application. Further studies should explore the
response of each controller to several disturbance(s)
and set point changes. An evaluation of the integral of
the absolute error of the controlled variable from the
set point (IAE) and the integral of the absolute move in
the manipulated variable (IAM) will provide another
criteria for performance evaluation. Robustness and
adaptability are also to be evaluated (Cherré, 1998).

62

USE OF NEURAL NETWORKS IN PROCESS ENGINEERING

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

GENERAL CONCLUSIONS

· ANNs are capable of handling complex and non-
linear problems, can process information very rapid-
ly, and are capable of reducing the computational
efforts required in developing highly computation
intensive models for finding functional forms for
empirical models.
· In ANNs, only input and output data are needed for

the network to recognize the pattern involved in
mapping the input variables to the output response.
It is true that a neural network has been described
as a �black box� solution for a problem. But the
ability of ANNs to give rapid and accurate values
in the case of process engineers makes ANNs a
very useful tool. Their ability to easily perform the
inverse problem, that is interchanging the input and
the output vectors of the net, also makes ANNs
appealing. This kind of analysis is very helpful in
diagnostic analysis of an existing system.
· Whenever experimental data or historical plant data

are available for validation, neural networks can be
put to effective use. The application of neural net-
works as a predictive and diagnostic tool for the
process engineering is therefore very promising and
more investigation is being done.
· ANNs can be efficiently used to simulate and con-

trol processes. In the specific example shown here,
the performance was better than that of the
traditional PID controller. There are also examples
of ANNs use in multivariable process control. As
well as examples of automatic control systems
installed in refineries and petrochemical industries.
ANNs constitute another resource for developing
process control strategies in highly nonlinear proc-
esses that can show some trouble when controlled
by more traditional methods. (Martin, 1997; Thomp-
son, 1996).
· The following are other conclusions more relative

to the specific neural networks created in this work:
- Correlations for evaluating activities in polymer-
solvent systems and diffusion coefficients of an SDS
micellar system have been obtained by using artifi-
cial neural networks.

- The networks evaluated polymer-activity and
diffusion coefficients in good agreement with the
experimental observations.
- Process simulation and control is another field in
which ANNs can be used. In complex, nonlinear
processes, they can offer an efficient performance
when other traditional control techniques do not meet
stability and performance requirements.

REFERENCES
Alessandro, V., 1987. �A simple modification of the Flory-

Huggins theory for polymers in non-polar or slightly po-
lar solvents�, Fluid Phase Equilib, 34: 21 - 35.

Basheer, A. I. and Najjar, Y. M., 1996. �Predicting Dynamic
Response of Adsorption Columns with Neural Nets�,
Journal of Computing in Civil Engineering, 10 (1): 31-
39.

Bhat, N. and McAvoy, T. J., 1990. �Use of Neural Nets for
Dynamic Modeling and Control of Chemical Process
Systems�, Computers Chem. Engng., 14 (4/5): 573 - 583.

Brajesh, K. J., Tambe, S. S. and Kulkarni, B. D., 1995.
�Estimating Diffusion Coefficients of a Micellar System
Using an Artificial Neural Network�, J. Colloid & Inter-
face Science, 170: 392 - 398.

Camacho, O., 1996. �A New Approach to Design and Tune
Sliding Mode Controllers for Chemical Processes�, Ph.D.
Dissertation, University of South Florida, Tampa.

Cherré, D., 1998. �Use of Artificial Neural Networks in Process
Control�, Master of Science Thesis, University of South
Florida, Tampa.

Fendler, J. H. and Fendler, E. J., 1982. Membrane and Mi-
metic Chemistry, Wiley- Interscience, New York.

Fletcher, R., 1987. Practical Methods of Optimization, J.
Wiley,

García, C. E., Pretti, D. M. and Morari, M., 1988. �Model
Predictive Control: Theory and Practice a Survey�, IFAC
Workshop on Model Based Control, June.

Hagan, M.T. and Menhaj, M., 1994. �Training Feedforward
Networks with the Marquadt Algorithm�, IEEE Tran-
sactions on Neural Networks, 5 (6): 989 - 993.

Haykin, S., 1994. Neural Networks. A Comprehensive Foun-
dation, Macmillan College Publishing Company, N.Y.

Martin, G., 1997. �Nonlinear Model Predictive Control with

63

CT&F - Ciencia, Tecnología y Futuro - Vol. 1 Núm. 4 Dic. 1998

F. OTERO

Integrated Steady State Model-Based Optimization�,
AICHE 1997 Spring National Meeting.

Ramesh, K., Tock, R. W. and Narayan, R. S., 1995. �Predic-
tion of solvent Activity in Polymer Systems with Neural
Networks�, Ind. Eng. Chem. Res., 34: 3974 - 3980.

Rumelhart, D. E. and McClelland, J. L., 1986. �Parallel Distrib-
uted Processing: Explorations in the Microestructure of
Cognition�, MIT Press, Cambridge, MA, and London,
England.

Savkovic-Stevanovic, J., 1994. �Neural Networks for Process
Analysis and Optimization: Modeling and Applications�,

Computers Chem. Engng., 18 (11/12): 1149 - 1155.
Smith, C. A., and Corripio, A., 1997. Principles and Practice

of Automatic Process Control, John Wiley & Sons, Inc.,
N. Y.

Te Braake, H. A. B., Van Can, H. J. L., Van Straten, G. and Ver-
bruggen, H. B., 1997. �Two-step Approach in Training of
Regulated Activation Weight Networks (RAWN)�,
Engng. Applic. Artif. Intell., 10 (2): 157-170.

Thompson, W., 1996. �How Neural Network Modeling
Methods Complement Those of Physical Modeling�,
NPRA Computer Conference.

64

