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RESUMEN 

Se ha dado por sentado que el método de codificación de Gödel es un procedi-
miento fiable para definir nociones metamatemáticas en cualquier extensión de la aritmé-
tica de Robinson (Q). Sin embargo, puede mostrarse que algunas fórmulas definidas de 
acuerdo con este método e interpretadas como el predicado de demostrabilidad, el predi-
cado de indemostrabilidad o la oración de consistencia, no logran satisfacer algunos re-
quisitos. Por ejemplo, se sabe que algunas extensiones de la aritmética de Robinson 
demuestran sus propias oraciones canónicas de inconsistencia, mientras que estas son 
efectivamente consistentes. Una respuesta común a este problema es que esas teorías son 
incorrectas y las teorías erróneas podrían demostrar cosas erróneas como, por ejemplo, 
su propia inconsistencia. Este artículo argumentará por qué tales respuestas no son to-
talmente convincentes. Al final, el artículo sugiere una lectura del primer y segundo teo-
remas de incompletud que está libre de esas interpretaciones. 
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ABSTRACT  
It has been taken for granted that Gödel’s coding method is a reliable method for de-

fining meta-mathematical notions in every extension of Robinson Arithmetic (Q). Howev-
er, it could be shown that some formulas defined by the method and interpreted as 
provability predicate, unprovability predicate or consistency sentence, fail to satisfy some 
requirements. For example, it is known that some extensions of Robinson Arithmetic prove 
their own canonical inconsistency sentences, while they are actually consistent. A common 
response to this problem is that those theories are unsound, and wrong theories might 
prove wrong things such as their own inconsistency. However, the paper will argue why 
such responses are not totally convincing. At the end, the paper suggests a reading of the 
first and the second incompleteness theorems which is free from such interpretations.  
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I. INTRODUCTION 
 

Gödelian coding method is a method which enables extensions of 
Robinson Arithmetic1 (Q) to “talk” about their own meta-theoretical 
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properties. However, this doesn’t mean that whatever they “say” about 
themselves is also reliable. Although the way that Gödel codes the meta-
mathematical notions sounds pretty safe and convincing, it is disputable 
whether or not there is enough connection between those formulas and 
their related meta-mathematical concepts. For instance, assume that T is 
an extension of Q and ~CONT is the sentence defined by Gödel’s meth-
od and interpreted as the inconsistency sentence of T. It is known that: 

 

(I)   T⊢~CONT doesn’t imply that T is inconsistent. 
 

To see why (I) holds, consider the theory PA*= PA+{~CONPA}. Con-

sistency of PA implies consistency of PA*.2 In fact, if PA*⊢ ┴, by de-

duction theorem, PA⊢~CONPA→ ┴, which contradicts the second 
incompleteness theorem. Therefore, PA* is consistent. That being said, 
interestingly enough, PA* proves its own inconsistency sentence (for a 
proof, please see [Smith (2007), pp. 225])3. In summary: 
 

(II)   PA*⊢ ~CONPA*, but it is consistent. 
 

A similar problem arises if we consider the canonical provability 
predicate of PA*. One might propose the following condition as a nec-
essary condition for every provability predicate: 

 

(III)   If T⊢ ProvT(‘s’), then T⊢s. 
 

Yet, ProvPA* does not satisfy (III). As was mentioned above, PA* proves 
its own inconsistency sentence ~CONPA* which is actually the sentence: 
ProvPA* (‘┴’). And as was mentioned before, PA* is consistent. Therefore: 
 

(IV)   PA*⊢ ProvPA* (‘┴’), but PA*⊬┴. 
 

which is a counterexample for (III).  
On the face of these problems, logicians usually appeal to the distinc-

tion between provability and truth. For example, that CONPA* is provable 
in PA* does not mean that it is also true. In fact, since PA* is a false theo-
ry (because its axiom ~CONPA is false), it is not surprising that it proves 
false things such as ~CONPA*. Peter Smith explains this view in this way: 
 

What are we to make of this apparent absurdity? Well, giving the language 
of PA* its standard arithmetical interpretation, the theory is just wrong in 
what it says about its inconsistency! But on reflection that shouldn’t be 
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much of a surprise. Believing, as we no doubt do, that PA is consistent, 
we already know that the theory PA* gets things wrong right at the outset, 
since its axioms aren’t all true. So PA* doesn’t actually prove (establish-as-
true) its own inconsistency, since we don’t accept the theory as correct on 
the standard interpretation [Smith (2007), pp. 225]. 

 

In the case of the predicate ProvPA*, a similar response is usually giv-
en. The claim is that (III) is not actually a provability condition. That a 
system proves its own inconsistency, doesn’t mean that it is actually in-
consistent. In fact, this is why (III) is not one of the Hilbert-Bernays- 
Löb conditions for provability. According to this view, ProvPA* is actually 
a provability predicate for PA*. The fact that it does not satisfy (III) is 
caused by PA* being an unsound theory.  
 
 

II. IS THE RESPONSE CONVINCING? 
 

The response, however, does not seem to be convincing. One can 
attack such claims in several ways. But, the main argument against it is 
the fact that such problems are not limited to the unsound extensions of 
Q. For instance, consider PA and imagine a possible world where, after 
arithmetizing the meta-theory of PA and before discovering the second 
incompleteness theorem, Gödel erroneously provides a (wrong) proof 

for PA⊢ CONPA. Would then he claim that he has proved consistency of 
PA? No. A proof for CONPA in PA would not mean that PA is consistent, 
because every inconsistent theory (which can express its own syntax) can 
also prove its own consistency sentence. As Raymond Smullyan mentions, 
not paying attention to this point has lead to some misunderstandings: 

 

We have seen such irresponsible statements as, ‘By Gödel’s second theo-
rem, we can never know whether or not arithmetic is consistent.’ Rubbish! 
To see how silly this is, suppose it had turned out that the sentence 
CONPA were provable in PA—or,... suppose we consider a system that 
can prove its own consistency. Would that be any grounds for trusting the 
consistency of the system? Of course not! If the system were inconsistent, 
then it could prove every sentence—including the statement of its own 
consistency! To trust the consistency of a system on the grounds that it 
can prove its own consistency is as foolish as trusting a person’s veracity 
on the grounds that he claims that he never lies [Smullyan (1992), pp.109]. 
 

The assumptions that Smullyan makes here are not unrealistic at all. 
Indeed, Solomon Feferman has showed that we can define extensionally 
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consistency statements of PA such that they are actually provable in PA. 
However, as he says: “rather than contradicting Gödel’s second underiva-
bility theorem, ... [the theorems] show the importance of a precise method 
of dealing with consistency statements”.[Feferman (1960), p. 69] Any-
ways, the fact that these consistency sentences are provable in PA does 
not mean that PA proves its own consistency, neither it adds any 
strength to our believe that PA is consistent. In fact, even without know-
ing about the second incompleteness theorem, one can see that: 

 

(V)   T⊢ CONT does not imply that T is consistent. 
 
Unlike (I), it cannot be claimed that this “absurdity” is due to the un-
soundness of T, because we haven’t made any assumption about sound-
ness or unsoundness of the system here. In summary, (I) and (V) show 
that, whether a theory T proves CONT or ~CONT (by itself) says nothing 
about consistency or inconsistency of T. Merely the fact that CONT is 
defined by Gödelian coding method is irrelevant and cannot ensure us 
that there is any relation between CONT (~CONT) and consistency (in-
consistency) of T.  

The second incompleteness theorem makes the situation even 
worth. By the second theorem, we know that if T is a presumably sound 
extension of Q such as PA, then:  

 

(VI)   T⊢CONT , implies that T is in fact inconsistent.  
 
That is, if a sound theory like PA proves its own consistency, then such a 
proof not only cannot guarantee consistency of the theory, but also 
(even worth) shows that the theory is in fact inconsistent. But, how then 
CONPA can be a consistency sentence? Since CONPA is equivalent to 
~ProvPA(‘0=1’), we can instead ask: how we know that ~ProvPA is an un-
provability predicate? Well, if ~ProvPA is truly an unprovability predicate 
of PA, then ~ProvPA(‘0=1’) must be true, otherwise our defined predi-
cate, ~ProvPA, is not inclusive! Assuming that PA is sound, if the theory 
could prove ~ProvPA(‘0=1’), we would have a reason to think that 0=1 is 
in the extension set of ~ProvPA. But, since we cannot prove it, the ques-
tion remains unsettled. The usual response to this question is that 0=1 is 
really in the extension set of ~ProvPA, but we simply just cannot prove it. 
My objection to this view is that it presupposes what it is supposed to 
show, that is, it presupposes that ~ProvPA is really the unprovability pred-
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icate of PA. But, ~ProvPA is a predicate defined inside the theory and has 
no meaning outside it. If the theory doesn’t know whether ~Prov-

PA(‘0=1’) is true or false, we don’t know either. In other words, the in-
completeness of PA suggests that the defined predicate ~ProvPA is not 
inclusive. To better see the point, let us use an analogy. Suppose that you 
have a theory about integers which contains a predicate named Prime. At 
some point, you realize that if Prime(‘879,190,747’) is derivable from your 
theory, then 879,190,747 is not actually a prime number. But, on the 
other hand, you know that 879,190,747 is actually a prime number. You 
have two options to settle this absurdity: either reject the soundness of 
your theory, or reject the idea that Prime is the right predicate for prime 
numbers. Saying that 879,190,747 is in the extension set of Prime but we 
just cannot prove it is absurd, because the Prime predicate has its mean-
ing inside the theory. Appealing to the incompleteness of your theory 
does not help, because, this just means that the defined predicate Prime is 
not inclusive!  

 
 

III. WHAT IS THE CAUSE OF THESE ANTINOMIES? 
 

Since Gödel’s incompleteness theorems were published in 1931, we 
have been encountered with many negative formal results regarding sys-
tems of arithmetic.4 Furthermore, if we try to carry out philosophical inter-
pretations of these formal results, we will be even more unsatisfied. George 
Boolos after discussing four controversial results of Löb’s theorem asks:  

 

…it seems wholly bizarre that the statement that if S is provable, then S is 
true is not itself provable, in general. For isn’t it perfectly obvious, for any 
S, that S is true if provable? Why we are bothering with PA if its theorems 
are false? And how could any such (apparently) obvious truth not be 
provable? [Boolos (1993), pp.55]. 

 

These antinomies have recently raised some discussions among mathe-
maticians as well. Some have gone so far as to suggest that PA is incon-
sistent. In 2010, Fields medal laureate, Vladimir Voevodsky, claimed that 
consistency of PA is an open problem and more likely its answer is nega-
tive. In a lecture at Institute of Advanced Studies, he claimed that:  
 

…the correct interpretation of Gödel’s second incompleteness theorem is 
that it provides a step toward the proof of inconsistency of many formal 
theories and in particular of the ‘first order arithmetic [Voevodsky (2010)]. 
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One year later, in September 2011, Edward Nelson claimed that he has 
proved inconsistency of PA [Nelson (2011)], though he later on retract-
ed his claim due to a mistake in his proof found by Terry Tao.  

None of the antinomies about PA provides enough evidence for 
rejecting consistency of PA. Instead of rejecting consistency of PA, I 
suggest that we must reject reliability of Gödelian coding method in de-
fining meta-mathematical notions and reliability of the standard interpre-
tations of those formulas. In my view, most of the above mentioned 
problems root in relying too much on our interpretations. For example, 
the second incompleteness theorem is sometimes called “unprovability 
of consistency” theorem (e.g. in [Boolos et al. (2007), pp. 232-243] and 
[Smith (2007), pp. 239-245]). This naming is certainly misleading, be-

cause it suggests that if it was possible to prove PA⊢CONPA, then con-
sistency of PA was provable. But, as was pointed out by Smullyan, this is 
not the case. The sentence CONPA either is not a consistency sentence or 
it is but in a weak unreliable sense.  

 
 

IV. GÖDEL’S RESULTS 
 

The view that I have proposed here, might cause some worries: if 
Gödel’s method is not actually a reliable method for defining the meta-
theoretical notions inside extensions of Q, how should we understand 
the first and the second incompleteness theorems? This is a worry, be-
cause sentences such as CONPA and G (Gödel’s sentence) which appear 
in these theorems are both defined by Gödel’s method, and it seems like 
interpreting these sentences in this specific way plays an important role 
in achieving Gödel’s results. In response to this worry, I will argue that 
we can hold all of the fascinating and important results of Gödel’s theo-
rems without such interpretations. What we will lose is confusion.  
 

The First Incompleteness Theorem: The most important result of the 
first incompleteness theorem is that, assuming PA is consistent, it is in-
complete. This is proved by introducing the Gödel sentence G. Gödel 
shows that neither G nor ¬G is provable in PA.5 At this point, people 
usually start giving a “meta-theoretical argument”. Interpreting G as a 
sentence which says “I am not provable”, it follows that G is indeed true. 
Since PA cannot prove this true sentence, it is incomplete.  

However, we do not need to appeal to such meta-theoretical argu-
ments to see that PA is incomplete. In order to show that PA is incom-
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plete (if consistent), we just need to know that neither G nor ¬G is 
provable. Since either G or ¬G is true, there is a truth about arithmetic 
that is not provable. Therefore, by the first incompleteness theorem and 
without appealing to any kind of meta-theoretical argument or interpre-
tation, we can get the result that: if PA is consistent, it is incomplete. 

 

The Second Incompleteness Theorem: In my view, while the first incom-
pleteness theorem introduces the independent sentence G, the second 
incompleteness theorem introduces another independent sentence rela-
tive to PA that is CONPA. We know that these two sentences are equiva-

lent and in fact: PA⊢ G↔CONPA. A better and safer reading of the 
second theorem is to say: “if PA proves a specific sentence of itself rep-
resented by CONPA, then PA is inconsistent”.  
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NOTES 
 

1 Although Gödel applied his coding method on Peano’s Arithmetic, the 
method is actually applicable on some significantly weaker systems as well. Rob-
inson Arithmetic or Q is known to be the weakest arithmetic theory that can 
“talk” about its syntax via Gödel’s coding method. For a discussion on Q and its 
axioms please see chapter 10 of [Smith (2007), pp.62-71]. 

2 However, PA* is ω-inconsistent. 
3 It follows from the lemma PA⊢~CONT1→~CONT2 where T1 and T2 

are two p.r. axiomatized theories and T1 is a sub-theory of T2. 
4 Here are some examples: if Peano Arithmetic is consistent then it is in-

complete (Gödel, 1931); this consistency is unprovable inside PA [Gödel 
(1931)]; consistency of no sentence s is provable in PA, even when s is a theo-
rem of PA (i.e. no sentence in the form of ~□~s is a theorem of the provability 
logic); truth predicate is not definable in PA [Tarski (1933)]; if s is not provable 
in PA, then ProvPA(‘s’)→s is not provable in PA [Löb (1955)]; the presumably 
wrong theory PA+ {¬CONPA} is interpretable in PA, while the right theory 
PA+ {CONPA} is not interpretable in PA [Feferman (1960)] etc.  

5 To be historically more accurate, it should be mentioned that Gödel him-
self made the stronger assumption that PA is ω-consistent. It was Barkley Rosser 
who showed that the plain consistency assumption is enough [Rosser (1936)]. 
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