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Abstract— Meditation benefits have been widely supported by 
many research works. It is considered a natural way of reducing 

stress, depression, and other anxiety disorders. However, 
meditation process is a breathe pursuing task that requires long 
time training to avoid the so-called mind wandering. In this 
work, we propose a neural-feedback system that detects when 

mind wanders and generates an audible signal, this way patient’s 
attention is recovered back again. Finally, we support our 
approach by testing the system on novice and advanced 
meditators. 

 

Key Word — Machine Learning, Electroencephalography (EEG), 
Neurofeedback, Functional Magnetic Resonance (fMRI), 
Psychotherapy, Signal Processing. 

 

Resumen—Los beneficios psicoterapéuticos de la meditación han 

sido avalados científicamente en muchos trabajos a nivel 
mundial, considerándola una forma natural de reducir los 
niveles de estrés, depresión, etc. Sin embargo, la meditación 
mediante el seguimiento consciente de la respiración es un 

proceso que requiere largos periodos de entrenamiento para 
aprender a evitar la denominada desviación de la atención. En 
este trabajo se propone un sistema de retroalimentación 
neuronal que detecta la desviación de la atención y genera una 

señal auditiva que recupera la atención del paciente. A 
continuación, se reportan resultados preliminares que avalan el 
enfoque propuesto en este trabajo. 

 

Palabras clave— Máquinas de Aprendizaje, 

Electroencefalografía (EEG), Resonancia Magnética Funcional 
(fMRI), Psicoterapia, Procesamiento de Señales. 

 

 

I. INTRODUCTION 
 

Depression is a mental disorder with a profound negative 
effect on behavior and quality of life. According to the World 
Health Organization, in about 20 years, depression will be the 
disorder with the most significant repercussions, both socially 
and economically [1]. Recently, fundamental and applied 
research has investigated purported benefits of meditation and 

mental training. Foremost, neuroscience has focused on the 
brain mechanisms and neural correlates of meditation. 
Particularly, R. Davidson et al [10] have been leading a series 
of uncommon, yet seminal studies involving Buddhists monks 
[11], [8], [12], [13], [20]. For instance, groundbreaking 
experiments conducted with French Buddhists monk Matthieu 
Ricard yielded recently remarkable results: “during 
meditation, Ricard's brain produces a level of gamma waves - 
those linked to consciousness, attention, learning and memory 
- never reported before in the neuroscience literature” [11]. 
Inherently, of course, computer vision, signal processing, 
machine learning and pattern recognition, they all have 
contributed to achieve these findings in more technical 
aspects. In sight of this, nowadays, few doubt about the 
benefits of mindfulness meditation in treating mental 
disorders [14], [15], [22], [24], and [26]. This particularly 
applies to depression [14], [17], a psychological condition that 
is treated, otherwise, with several different invasive 
approaches such as antidepressant drugs [31], transcranial 
stimulation [32] and more recently, Araujo et al [33] have 
used psychedelic plants such as Ayahuasca.  
 
Despite the scientifically proved benefits of meditation and its 
potential use for healing medical conditions. At the best of our 
knowledge, nobody has tried yet to engineer a system that 
permits automatic learning of mindfulness meditation, as an 
aid for trainees and patients. Therefore, the introduction, 
design and prototype of such a system are the main 
contributions of this paper. To start with, we argue three 
scientific facts that will endorse our approach:  
 

• Depression is increased by Mind-wandering: Mind-
wandering is the experience of constantly changing 
thoughts, without any awareness of doing so. This 
happens particularly when we are not engaged in an 
attention-demanding or goal-directed task (Fig.1, 
left). While mind wandering may be helpful 
sometimes, (e.g. it is linked to creativity), when 
excessive it may bring devastating consequences. 
This is mainly the case because most of the time, we 
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mind-wander to stressful thoughts such as worries, 
ruminations, pre-occupations etc. In fact, scientific 
evidence amply supports that mind wandering is 
positively correlated with the severity of depression. 
More precisely, a major depression disorder follows 
an increase of mind-wandering and task-unrelated 
thoughts. [2], [14], [24], [25], [26], [28], [29]. 

 
• Mind wandering arises from activity in the Default-

Mode Network (DMN): Recently, neuroscientists 
have found the neural basis of mind-wandering (Fig. 
1, middle). There is a network of brain regions 
(DMN) that oscillate synchronously and more active 
when the mind wanders relative to when engaged in 
attention-demanding tasks. Indeed, functional 
neuroimaging (fMRI) studies show that during 
wakeful rest, this network exhibits highest coherent 
neural activation. Likewise, task-induced 
deactivation was found possible when participants 
were asked to concentrate in goal-directed task. 
Overall, the DMN has been hypnotized to produce 
spontaneous thoughts during mind wandering. [3], 
[14], [16], [21], [23], [27], [30]. 

 
• Mindfulness meditation regulates DMN activity: 

Mindfulness is form of meditation meant to develop 
the skill of paying attention by being fully aware of 
inner and outer experiences. Not surprisingly, studies 
suggest that the neural mechanisms underlying 
mindfulness training are associated with differential 
activity of the DMN. Specifically, functional 
neuroimaging reveals that after a 40-day course, 
reduction of DMN activity in naïve meditators 
becomes apparent. Awareness of the breath is 
perhaps the most popular kind of mindfulness. 
Trainees must watch their breath attentively and 
uninterruptedly, as it occurs naturally (for as long as 
possible), see Fig. 1, right. This seemingly simple 
task turns out extremely difficult for those unfamiliar 
with the method, let alone depressed patients. No 
matter how hard they try, their minds constantly 
wander without awareness of doing so, instead of 
following the breath. [4], [15], [16], [17], [19], [22], 
[30]. 

 
Roughly, in our framework (Fig. 2) the patient needs to have 
his brain activity measured while practicing mindfulness (e.g. 
using an fMRI machine). By precisely assessing the activity 
of the DMN, the medical team (i.e. a neuroscientist or/and 
physiotherapist) will know whether the brain of the patient is 
engaged in meditation, or has entered a mind-wandering state. 
If the latter proves true, the patient will be gently reminded 
(by the therapist) to go back to his mediation, so the mind 
wandering will be immediately cut off. The key aspect here is 
the timely reminder, which is impossible in self-training, since 
mind wandering begins unconsciously. With sustained 
practice of this guided methodology (in a daily basis), we 

expect the patient to enhance his attention and lower his DMN 
activity in the end. 
 

 
Figure 1. Left: mind-wandering girl. Middle: Areas of the brain 
involved in mind wandering (default mode network). Right: A group 
of trainees in mindfulness meditation. 
 
 

 
Figure 2. Computer-aided mindfulness meditation: Brain activity of a 
patient is assessed with an fMRI machine. If DMN activity is 
detected, a warning voice (microphone) alerts the patient. Otherwise, 
the cycle of assessment continues without intervention. 

 
Although we think this methodology is bound to succeed, 
some disadvantages are apparent: the technology is 
unaffordable and the human resources are untenable for a 
daily therapy (mornings, afternoons and nights). There are 
also practical issues associated to this model: the position of 
the patient easily elicits sleepiness and the ‘reminding’ voice 
may break his concentration instead of holding it (frights are 
likely). In light of this, we put forward in what follows a smart 
prototype capable of executing the proposed methodology, 
while dramatically decreasing technology costs and removing 
human intervention. 
 

 
II. METHODOLOGY 

 
Overall, Ānāpāna is an assistive device that artificially 
enhances the breath if the mind wanders. The more the mind 
wanders, the more the breath is enhanced. In short, attention 
does not pursue breath, but breath pursues attention. To this 
end, we use three key elements to be described in this section: 
the telemindphone, the offsetting microphone and the super 
interface; see Fig. 3: 
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Figure 3. A graphical representation of our system Ānāpāna. 

 
A. The telemindphone.  

 
A low-cost, yet efficient approach to brain activity monitoring 
is a wireless EEG headset. A good example is the Emotiv 
EPOC, a high resolution, multi-channel, portable 
neuroheadset whose signal interpreter is typically a computer 
[7]. Although in our case, we transmit wirelessly EEG signals 
to an iPhone (not a computer), which natively runs a super 
smart interface that assesses the DMN activity. The coupling 
of these two technologies is what we term a telemindphone. In 
brief, we place the 14 data collecting electrodes and 2 
reference electrodes of the Emotiv EPOC, in roughly 
international convention [5] with labels as shown in Fig. 4 and 
6. The headset transmits encrypted data wirelessly to the 
phone whose wireless chip is proprietary and operates in the 
same frequency range as 802.11 (2.4Ghz). The connection is 
completed, once we are able to extract valuable signals (from 
the neuroheadset) through smart signal processing and 
classification algorithms running on the phone (super 
interface). 
 

 
Figure 4. A telemindphone measuring brain activity (sides) and the 
connectivity protocol for EEG (top-center). 
 

B. The offsetting microphone.  
 
If we try to follow uninterruptedly our breath, at some point, 
we will suddenly realize that we had stopped doing so 
inadvertently, as we find ourselves having any sort of 
unrelated thoughts. It is as though the sound of the breath (in 
our mind) had vanished unnoticeably, when spontaneous 
thoughts arose and became louder. Thus, our idea (Fig. 5) is to 
regulate the loudness of the breath to keep it constant and 
unaffected by spontaneous thoughts (mind wandering). 
Specifically, we use an earphone to convey the sound of the 
breath (captured by a microphone attached to the nostrils) 
with a loudness that is proportional to the activity in the DMN 

(estimated by the telemindphone).  For instance, if the DMN 
remains deactivated, no breath feedback will be transmitted. 
In contrast, when the DMN shows subtle activation so does 
the microphone to compensate the lack of attention. 
Accordingly, the sound of the breath never gets outshined by 
the wandering of the mind. This can be regarded as a gentle-
rise reminder for the patient to fix back his attention to the 
breath. Our hypothesis is that artificially enhanced breath 
prevents mind wandering. We advise against the use of an 
alarm (or a voice, Fig. 2) because this will simply break 
concentration: the therapeutic idea is not to resume 
concentration, but hold it for as long as possible.  
 

 
Figure 5. Meditation state (left). Mind-wandering state (middle), 
which correlates DMN activity (red stain). Meditation state 
recovered by the offsetting microphone progressive activation (right). 

 
C. The superinterface.  

 
Our interface is a multitask tool at the core of our system. It 
regulates the offsetting microphone through brain waves, and 
enriches the user experience with a sophisticated yet, very 
friendly interaction. There are three global features that 
remarkably define our interface in an overall picture: signal 
processing, auto regulation, and remote medical follow-up. 
This paper, although, offers insights just into the signal 
processing. Particularly, the extraction of patterns within brain 
waves using machine learning. This is the case because the 
two latter features (i.e. auto-regulation and remote follow up) 
lie out of the scope of this manuscript. More precisely, they 
belong in research fields rather distant to neurocomputing, 
namely software engineering, mobile interfaces and human 
computer interaction. Notwithstanding, we do describe them 
briefly at the end of this section as to provide a holistic 
portrait of Ānāpāna. 
 
1) Intelligent signal processing: Evaluating brain activity in 
the DMN is known to be difficult, especially if an Emotiv 
EPOC is used instead of an fMRI machine. In fact, at the best 
of our knowledge, it has not been done yet. On the one hand, 
our interface has to deal with incomplete data, for the EEG 
connectivity is not dense at all. On the other hand, the 
Emotive is particularly prone to noise, which calls for an 
increasing of the Signal to Noise Ratio (SNR) using 
Independent Component Analysis (ICA) as described in [39], 
[40], [6]. More importantly though is the need for Machine 
Learning algorithms to classify patterns of DMN activity 
hidden within the EEG signals (Fig. 4). To this end, our 
interface uses Artificial Neural Networks (ANN) trained with 
deep learning algorithms [6], [34], and [37]. Accurate training 
of these ANNs requires also the gathering of fMRI datasets, 
which provide a baseline for learning and comparisons. We 
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trained our ANNs in off-line mode as follow: we collected 
both negative and positive examples of DMN activation by 
asking first six well-trained meditators (teachers) to meditate 
inside an fMRI machine, while wearing the Emotiv EPOC. In 
like manner, we ask six other subjects not meditators, to 
simply rest under same conditions. Thus, we can gather fMRIs 
and corresponding EEGs of both, mindfulness and mind-
wandering states (Fig. 6). Once both groups get into 
performing their tasks, we evaluate them based on the fMRI 
images. Only if the DMN is indeed highly activated (not 
meditators) we proceed to record the EEG. Likewise, only 
when the DMN shows negligible activity (meditators) the 
EEG is also recorded. All subjects are asked to perform their 
respective tasks 10 times during at least one minute. Then, we 
record EEG and fMRI data for 30 seconds. Accordingly, we 
collect a total of 1800 seconds of EEG signals for each case: 
mindfulness and mind wandering. Finally, each second of 
these EEG signals serves as a pattern of DMN activity 
(positive or negative), when treated in the frequency domain. 
This makes a total data set of 3600 patterns for training. 
 

 
Figure 6. Two example of DMN activity described by fMRI images 
(top) and the corresponding EEG signals (bottom). Left: relatively 
high activity, which correlates a mind-wandering state (positive 
activation). Right: relatively low activity, which correlates a 
mindfulness state (negative activation). These one-second EEG 
signals are used as patterns to be learned by our ANN, once 
transformed to frequency domain. Refer to Fig. 4 to see electrode 
labeling and scalp mapping. 
 
As mentioned, we use deep Neural Networks; i.e. networks 
with more than three layers. However, training these neural 
networks is known to be hard. The standard learning strategy 
(consisting of randomly initializing the weights of the network 
and applying gradient descent using backpropagation) is 
known empirically to find poor solutions for networks with 
three or more hidden layers. A clever strategy to train deep 
neural networks (known as deep learning) consists in simply 
initializing the weights (before applying gradient descent) not 
randomly but following a strategy. This strategy is rather 
simple: each layer but the last one, is trained individually as 
an unsupervised autoencoder [35], [38]. Here, an autoencoder 
is a one-layer neural network that applies backpropagation, 
setting the target values to be equal to the inputs. It is called 
unsupervised because the outputs need no labels, as they are 

simply the same inputs, which is not a condition in the general 
case of ANN. Once all the hidden layers have been trained, 
we apply standard supervised gradient-based learning to the 
whole network. This will affect both the pre-trained hidden 
layers (fine-tuning) and the untrained output layer 
(classification task). This pre-training strategy is known to 
improve on the traditional random initialization by providing 
“clues” to each intermediate layer about the kinds of 
representations that should be learnt, and thus initializing the 
supervised fine-tuning optimization in a region of parameter 
space from which a better local minimum of the error function 
can be reached. The overall structure of our network has been 
empirically set to 10 layers of 480, 400, 300, 150, 80, 40, 20, 
10, 5 and 1 neuron respectively.  
 
 

 
Figure 7. Performance of our ANN during training and validation. 
Left: training performance (goal error: 0.001; minimum error: 
0.02424). Right: Precision-recall curve (best precision: 0.855; best 
recall 0.872). For training 70% of the collected data set was used; i.e. 
2520 patterns. The remaining 30% was used for validation; i.e. 1080 
patterns. 
 
On the one hand, the size of the first layer obeys to the size of 
an input pattern. To arrange an input pattern we calculate the 
first 40 frequency components for each of the 14 one-second 
EEG signals (from AF4 to AF3, see Fig. 6). Next, we 
concatenate them all together to achieve a 480-dimensional 
vector. We use only 40 frequency components (1-40 Hz), 
because this is a widely known suitable range to study the 
most important EEG rhythmic activity frequency bands; i.e. 
delta, theta, alpha, beta etc. [16]. On the other hand, the last 
layer of the ANN has only one neuron that ultimately 
estimates how positive (+1, mind wandering), or negative (-1, 
mindfulness) the input vector is. Autonomously, we chose this 
layer not to be binary but real between -1 and +1; i.e. a tan-
sigmoid transfer functions. Therefore, we can observe smooth 
transitions from mindfulness to mind-wandering states, and 
vice versa. In fact, the offsetting microphone is increasingly 
activated when the ANN output ranges from -0.5 up to +1. 
The performance of this ANN is shown in the next figure 
(Fig. 7). 
 
Note that the interface does not carry out the training, but 
simply host the tuned weights of the ANN. Once one-second 
EEG signal from the Emotive is received, preprocessed and 
converted to frequency domain. A multiplication between this 
signal and such weights takes place in order to calculate the 
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ANN output. In what follows we want to outline the deep 
learning method we have used to train our ANN. Roughly, 
each layer (l) of the deep network is to be treated as an 
individual autoencoder [34], [38], by taking the previous layer 
(l-1) as input layer and adding it a temporal layer of the same 
size as output layer. After training, tuned weights of this 
temporal layer are dropped. In contrast, tuned weights 
between layers l-1 and l are transferred, as the initial weights 
(between those layers), to the original network that is yet to be 
trained as a whole (fine-tuning). If we repeat this process layer 
by layer, we will be learning features of the input in the first 
layer, features of features in the second and so on. In other 
words, each layer is to encode a more abstract version of the 
input. The final layer of the original network that is meant to 
respond with the expected outputs of the global problem we 
are training for; will be tuned once the backpropagation ([6], 
[37]) algorithm is applied globally to the network. This 
routine is summarized in the pseudo-code shown in Table 1. 
 

1. Initialize W randomly;  

2. %pre-training 

3. for i ∈∈∈∈ {1…L-1} do 

4.        if i==1 

5.             Itemp=I; 

6.        else 

7.             Itemp= tan-sigmoid(W(i)* Itemp); 

8.        end 

9.        Otemp=Itemp; 

10.      create a ANNi of tree layers (size(Itemp), 

size(W(i)), size(Otemp)); 

11.      train ANNi with Itemp and Otemp using 

standard backpropagation; 

12.       W(i)=WANNi in hidden layer; 

13. end 

14. %fine tuning phase 

15. train the original ANN with I and O using standard 

backpropagation; 

Table 1. Pseudo-code for Deep Learning ANNs. 
 
W represents the weights of the original network to be trained 
as a classifier in this thesis. L is the total number of layers of 
the network. I and O represent the inputs and outputs 
respectively or patterns to be learned in the classification 
problem. W(i) are the weights of the layer i in the global 
network. Itemp and Otemp are the temporary patterns to be 
learned by autoencoders-like hidden layer. Finally, note that a 
log-sigmoid function tan-sigmoid has been chosen as the 
activation function for all the neurons in this network. 
 
2) Self-regulation: Our interface (Fig. 8) is highly 
configurable. Thus, based on the medical diagnosis, we can 
set up a daily routine for meditation (times, periods, 
repetitions, etc.) and take it with us wherever we go. Overall, 
this interface is an enriching new resource dedicated to 

providing patients with the tools and exercises they need in a 
format that is accessible and easy-to-use. Over 20 meditations, 
prayers, mantras and exercises are automatically played if 
stress (or anxiety) is detected. We can detect levels of stress 
using both the microphone activations (the more it is 
activated, less concentration is being kept). As for the 
microphone activation, it is optimal: at the beginning, the 
loudness of the first breaths is measured (in decibels). Thus, 
the interface knows how much the current breath sound needs 
to be amplified to keep loudness high enough, when mind 
wandering appears. 
 

 
Figure 8. Examples of our superinterface. 

 
The interface accounts for statistics, so it can tell whether a 
patient is meeting his medical prescription or not. If not, it 
reconfigures automatically all routines and times, so 
meditative goals are not missed within stipulated times. 
Further, speech-based reminders and advices are often given 
after practical sessions, such as the maximum period of 
uninterrupted concentration was 3.45 minutes, the next 
session won’t be stopped until 5 concentration periods of 3 
minutes have been reached’, or ‘an uninterrupted period of 
10.4 minutes of concentration was registered in this section, 
that’s twice as much as expected. The next section of this 
morning has been canceled, take a rest’. If wished, statistics 
can be automatically shared in social networks such as 
Facebook or Twitter. This is meant to create a collaborative 
network where participants can: challenge each other, evaluate 
their performance, find advises; or just to promote social 
interaction with peers, which is known to be good for 
overcoming depression. 
 
3) Remote medical follow-up: This last feature (Fig. 9) aims 
at reducing costs of the treatment, while enhancing 
conformability and efficiency.  Patients and clinics may save 
time and money related to geographical displacements. Let 
alone that depressed patients are generally reluctant to go 
outside home. Likewise, not treating a patient on time may 
also increase the cost in the end. Through our interface, 
patient and therapist remain linked 24/7 in a point-to-point 
internet-based connection. The therapist can remotely follow 
the progresses, update routines, send private chats and 
monitor the emotional states of the patient as he practices; all 
this in real time. Needless to say, that this is a precious 
diagnostic tool to understand if a patient needs further 
treatment, or definitely the use of specific drugs is advisable. 
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On the other side, the patient can use the private chat to ask 
for feedback, advises, encouragement or counseling, which 
are all helpful in nursing him back to health. Further, if 
needed, therapies may be held using video calling assistance. 
 

 
Figure 9. Remote medical follow-up. 

 
 

III. EXPERIMENTS AND RESULTS 
 
For this test we recruited 10 first-week trainees from a 
meditation course (novice meditators), whose age ranged from 
23 to 44. A first group (5 subjects) was asked to meditate for 5 
minutes wearing the Emotiv, as we recorded their ANN 
outputs. Given that we can get an ANN output every second, 
we collected a total 1500 outputs, i.e. 60 seconds x 5 minutes 
x 5 subjects. For this first group, the offsetting microphone 
was fully deactivated (i.e. meditation without the aid of 
Ānāpāna). Afterwards, a second group (5 subjects) was given 
40 minute training about the experiment. Basically, they all 
were explained both, the central idea of Ānāpāna and how to 
react to the gentle-rise alarm of the microphone. Further, they 
themselves tried the system several times in order to get 
familiar with it. After that, we ran the second recording (1500 
more ANN outputs), this time with the microphone on; i.e. 
meditation with the aid of Ānāpāna. The following boxplot 
(Fig. 10) shows the distributions of the ANN outputs for the 
each group of meditators during the five-minute test. 
Additionally, we also report a third group (as a baseline) of 
five experienced meditators (using Ānāpāna) recorded during 
five minutes of meditation as well (1500 more ANN outputs). 
 

 
Figure 10. Boxplot quartiles distribution of the ANN outputs during 
our experiments. 
 
In Fig. 10, we see that naïve meditators mind wander 
excessively, as expected. In average their ANN response is 
+0.24 during five minutes of meditation. Further, only 25 % 
of their ANN responses fall below +0.02, which means that in 
nearly 75% of the cases they do show positive DMN activity. 
Actually, some of this group’s extreme data reaches +1, the 
highest level of DMN activation. As for the second group, it 

becomes apparent that the inclusion of Ānāpāna dramatically 
improves the performance. The average of ANN responses 
drops off to -0.61 and 75% of the outputs fall below +0.04. In 
other words, this group predominantly shows DMN 
deactivation (negative ANN outputs) during the test. For 
example, in the worst case, they mind wander up to +0.39, 
which is still acceptable compared to their previous meditative 
peers. As expected, the third group shows in turn the best 
performance, with lowest DMN activity and least variability 
in ANN outputs. This means that these subjects were able to 
keep steady concentration during the task. Accordingly, these 
subjects never activated the offsetting microphone, since not 
even in the worst case their mind wandering reached -0.5 
(threshold for activation). This is perhaps more noticeable in 
Fig. 11, where we have plotted the ANN outputs (as a signal) 
of one group member (randomly chosen) per group. 
 

 
Figure 11. ANN outputs for one subject (randomly chosen) of each 
group. 
 
In the figure above (bottom signal), we can clearly see how 
our system effectively prevents attention from dropping off. 
Every time that DMN activity intensifies (signal rises), a 
sudden decrease takes place to shape a pick in the signal. This 
decrease is certainly induced by the offsetting microphone 
which is triggered once the signal reaches a critical threshold; 
i.e. -0.5. At this point, the artificially enhanced breathing 
helps the naïve meditator to fix the attention back on it.  In 
fact, a pattern of picks with high frequency reflects the 
struggling of the novice meditator, whose mind tends to 
wander but is constantly inhibited. Yet, they do not mind 
wander at all. In sharp contrast, experienced mediators exhibit 
an almost flat curve that can be interpreted as calamity. This 
also applies to novice meditators without Ānāpāna; they do 
not register a consistent pattern of picks, for the struggling just 
fades away when the mind begins to wander. Our assumption 
is that with time, such induced increase of attention will 
become natural and the struggling will cease. As it is mostly 
the case when training a particular skill. 
 
 

IV. CONCLUSION 
 
There is absolutely no need to constrain the applicability of 
Ānāpāna to depression, nor is medical consent/supervision a 
requirement for it to be used. Due to its portability and 
easiness, Ānāpāna can be used by anyone seeking to enhance 
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his (her) meditation skills at any moment, anywhere. There 
are scientifically validated benefits of 30-to-40 minutes of 
meditation a day. Particularly, it has been shown that 
mindfulness can reshape our brains in the long run (i.e. 
neuroplasticity). For example, many neuroscientists regard 
this practice as a natural way to alleviate anxiety, insomnia 
and stress, to reverse heart disease, and to enhance attention 
[8]. Both, neuroimaging and encephalography research 
support that mindfulness slows down the natural age-related 
cortical decline, and decreases the amygdala’s gray matter 
(associated with fear and anger) [9], [18]. Consequently, we 
presented here an assistive device to improve the quality of 
life for the benefit of modern busy society.   
 

 
Figure 12. Ānāpāna prototype. Note how this prototype simplifies the 
framework shown in Fig. 2. 
 
Finally, in Fig. 12 we can clearly see how the framework 
presented in Fig. 2 can be simplified by the system proposed 
in this paper (i.e. Ānāpāna). Yet a final prototype is in need of 
validation with patients. This is, therefore, the focus of our 
future research. We want first to verify more robustly our 
hypothesis that artificially enhanced breath prevents mind 
wandering. Moreover, after that, we would like to prove that 
our system speeds up the learning of mindfulness and hence, 
the reduction of depression, anxiety and other mental 
disorders. In doing so, we need to deal with depressed 
patients, clinicians, neuroscientist and ethical committees. 
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