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José-Mat́ıas Cutillas-Lozano and Domingo Giménez*
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Abstract

This paper studies the auto-tuning of parallel metaheuristics and hyperheuristics. The mod-
elling of the shared-memory scheme is considered for both types of algorithms, and a first study
of message-passing metaheuristic schemes is introduced. A theoretical model of the execution
time of a parametrized metaheuristic scheme is empirically adapted for a particular metaheuristic
through experimentation. The parallelization of the shared-memory scheme is achieved through
the independent parallelization of the basic functions in the metaheuristic scheme. The model
is used to decide at running time the number of threads to obtain a reduced execution time.
The number of threads is different for the different basic functions in the scheme, and de-
pends on the problem to be solved, the metaheuristic or hyperheuristic scheme, the implemen-
tation of the basic functions and the computational system where the problem is solved. The
auto-tuning methodology for shared-memory parametrized metaheuristic schemes can in turn
be applied to shared-memory hyperheuristics developed on top of them. In the case of the
message-passing scheme, an island model implemented with the master-slave scheme is used,
and new metaheuristic-parallelism parameters representing the migration frequency, the size of
the migration and the number of processes are introduced. The applicability of the proposal is
shown with a minimization of electricity consumption in exploitation of wells problem and with
the problem of obtaining satisfactory metaheuristics for that problem. Experimental results with
these two problems show that satisfactory execution times can be achieved in metaheuristics
with auto-tuning techniques based on theoretical-empirical models of the execution time.

Keywords: parametrized metaheuristic schemes; parallel metaheuristics; parallel
hyperheuristics; shared-memory; message-passing; auto-tuning

Introduction

A unified parametrized scheme for metaheuristics facilitates the development of metaheuristics and

their application [1]. The scheme has been applied successfully in different fields, to obtain satisfac-

tory Simultaneous Equation Models from a set of values of the variables, for a tasks-to-processes

assignation problem with independent tasks and memory constraints, for the p-hub problem [2], and

for the optimization of power consumption in the operation of wells [3].

Although the metaheuristic scheme has proved efficient, its use for solving large problem instances

causes significant increases in the execution time. Based on the increased possibilities offered by

modern hardware architectures, the application of high performance computing strategies to meta-

heuristics is an interesting option for reducing the execution time. There is a large number of parallel

strategies that can be applied to different metaheuristics in parallel environments of different charac-

teristics [4, 5, 6, 7].

In our work, the parallelization of different metaheuristics is tackled through a unified parametrized

metaheuristic scheme, and so the different metaheuristics that fit the scheme are parallelized in a

unified way. Since NUMA systems are considered, we develop a parallelization based on the shared-

memory paradigm. As our long-term goal is to model the metaheuristic scheme in heterogeneous
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clusters, a first study of a message-passing parametrized metaheuristic scheme is presented. In this

case, the parametrized scheme is expanded with new metaheuristic-parallelism parameters, which

control the intensity and frequency of information exchange between processes. The island model

is used for the message-passing scheme [8, 9, 10], with an implementation with the master-slave

paradigm [11, 12].

Parallelizing the scheme for shared-memory reduces the execution time, but having a parallel routine

does not ensure it will be used correctly, and the execution time of the parallel routine may be far

from the optimum (or even larger than the sequential time) if the number of threads used in the

application of the routine is not appropriate. The same ideas are taken into account for message-

passing metaheuristics, considering for them the number of processes as the main parallel parameter

to be optimized.

The auto-tuning problem of sequential and parallel routines has been studied in different fields

[13, 14, 15, 16], and this paper considers the application of auto-tuning methodologies to parallel

parametrized metaheuristics so that the auto-tuning techniques are valid for the different metaheuris-

tics fitting the scheme. These include some basic metaheuristics and hybridations. In [3] we studied

the modelling of the basic functions of the parametrized shared-memory scheme. To our knowledge

there were no previous papers in the application of auto-tuning techniques to parallel metaheuristics.

The techniques used there are now applied to the whole parametrized shared-memory metaheuristic

scheme, and they are extended for the application to hyperheuristics which use the same metaheuristic

scheme for satisfactory selection of metaheuristics or combinations/hybridations by obtaining appro-

priate values of the metaheuristic parameters in the unified scheme. To tune a metaheuristic (or

a hyperheuristic) for a particular problem it is necessary to conduct a large number of experiments,

which means a large execution time, and a scheme with auto-tuning would be very useful for reducing

the experimentation time with a good selection of the number of threads (or processes) to use in the

parallel scheme.

The rest of the paper is organized as follows. The next section summarizes the ideas of the common

parallel parametrized scheme for metaheuristics, which can in turn be used for the development of

hyperheuristics. After describing the metaheuristic scheme, the modelling of the execution time of

the different basic and combined/hybridised metaheuriscs in the scheme is analysed theoretically and

experimentally. The following section describes the problem of minimization of electricity consumption

in exploitation of wells, which is used as a test case to validate the auto-tuning methodology. The

penultimate section shows the experimental results obtained with the optimization problem and with

a hyperheuristic for obtaining satisfactory metaheuristics. The last section concludes the paper and

offers some future research lines.

Parallel parametrized schemes for metaheuristics and hyperheuristics

The ideas of a unified, parametrized metaheuristic scheme are presented in [2], and those of the

shared-memory version are described in [1]. The general aspects are summarized here.

The concept of representing different metaheuristics under a common scheme is not new. Vaessens

et al. [17] and Raidl [18] already use this approach and present algorithmic schemes such as that shown

in Algorithm 1. The scheme considers a set of basic functions (Initialize, EndCondition, Select,

Combine, Improve, and Include) whose instantiation determines the particular metaheuristic that is

being implemented. The arguments S, SS, SS1, and SS2 correspond to the sets of solutions that the

method generates and manipulates in successive iterations. The functions can be used in one method

or another, and different metaheuristics can be instantiated with the same pattern. The scheme is also

valid as a generic mechanism in metaheuristic hybridization when, for example, the basic functions

are composed of other metaheuristics or the same element of a different metaheuristic.
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Algorithm 1 General scheme for metaheuristics

Initialize(S)

while (not EndCondition(S)) do

SS=Select(S)

SS1=Combine(SS)

SS2=Improve(SS1)

S=Include(SS2)

end while

Algorithm 2 parametrized metaheuristic scheme

Initialize(S,ParamIni)

while ( not EndCondition(S,ParamEnd)) do

SS=Select(S,ParamSel)

SS1=Combine(SS,ParamCom)

SS2=Improve(SS1,ParamImp)

S=Include(SS2,ParamInc)

end while

A parametrized metaheuristic scheme

The first observation to be made is that the basic functions presented in Algorithm 1 could receive

additional parameters, so becoming a unified parametrized scheme for metaheuristics (Algorithm 2)

that facilitates the development of metaheuristics and their application [2]. However, selecting the

appropriate values of the metaheuristic parameters (ParamX in the algorithm) to apply a satisfactory

metaheuristic to a particular problem can be difficult and is computationally demanding. The selection

of these values can be made through a hyperheuristic method also developed with the parametrized

metaheuristic scheme. For clarity, hereinafter we refer to the metaheuristic scheme directly applied to

an optimization problem as MS, and HMS refers to a hyperheuristic based on a metaheuristic scheme

for selecting the appropriate values of metaheuristic parameters.

We comment on each of the functions of the parametrized scheme, their variants and the common

parameters for the basic metaheuristics considered: Greedy Randomized Adaptive Search Procedure

(GRASP), Scatter Search (SS), Tabu Search (TS) and Genetic Algorithms (GA). We also consider

the possibility of reusing basic functions:

• Initialize: Valid random elements are generated to form an initial set with INEIni ele-

ments. A smaller subset with FNEIni elements is selected for the iterations in Algorithm 2. In

some metaheuristics (for example, SS and GRASP) some of the initial elements are improved

by using, for example, a local search or a greedy approach. A parameter PEIIni indicates the

percentage of elements to be improved, and the improvement may be more or less intense,

which is represented by an intensification parameter, IIEIni. The parameter STMIni is used

for the extension of Tabu short-term memory in the initialization improvement.

• EndCondition: The end condition is common to the different metaheuristics; it consists of

a maximum number of iterations (MNIEnd) or a maximum number of iterations without

improving the best solution (NIREnd).

• Select: The elements can be grouped into two sets, the best and worst according to the

objective function. The number of best elements will be NBESel and that of worst elements

NWESel, and normally NBESel + NWESel = FNEIni.
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• Combine: The total number of elements to obtain by combination is

2(NBBCom+NBWCom+NWWCom), where the three parameters represent the number

of combinations of the best with the best elements, the number of the best with the worst and

the number of the worst with the worst.

• Improve: As in the improvement in the initialization, PEIImp, IIEImp and SMIImp

represent the percentage of elements to be improved, the intensification of the improvement

and the short-term memory in the improvement of the elements generated in the combination,

and PEDImp, IDEImp and SMDImp represent the corresponding values in a diversification,

which is equivalent to the mutation in the GA.

• Include: The NBEInc best elements are maintained in the reference set, and the other

FNEIni − NBEInc to be included are selected from the remaining elements. LTMInc is

a Tabu parameter (long-term memory) that allows the tracking of individuals most frequently

explored.

Thus, we have a set of 20 parameters (their meaning is summarized in table 1) with which it is

possible to experiment to hybridize, mix and adapt the metaheuristics to the target problem. If other

basic metaheuristics are considered, the number of metaheuristic parameters and their meaning would

change. We are not interested in enumerating the possible parameters, but in the methodology for

auto-tuning the shared-memory metaheuristic scheme.

Table 1 Metaheuristic parameters in the parametrized unified scheme of metaheuristics.

Initialize INEIni Initial Number of Elements
FNEIni Final Number of Elements after initialization
PEIIni Percentage of Elements to Improve in the initialization
IIEIni Intensification in the Improvement of initial Elements
STMIni Short-Term tabu Memory in the improvement of initial elements

EndCondition MNIEnd Maximum Number of Iterations
NIREnd maximun Number of Iterations with Repetition of the best solution

Select NBESel Number of Best Elements selected for combination
NWESel Number of Worst Elements selected for combination

Combine NBBCom Number of Best-Best elements combinations
NBWCom Number of Best-Worst elements combinations
NWWCom Number of Worst-Worst elements combinations

Improve PEIImp Percentage of Elements to Improve after combination
IIEImp Intensification in the Improvement of Elements after combination
SMIImp Short-term tabu Memory in the Improvement after combination
PEDImp Percentage of Elements to Diversify
IDEImp Intensification in the Diversification of Elements
SMDImp Short-term tabu Memory in the Diversification

Include NBEInc Number of Best Elements to include in the reference set
LTMInc Long-Term tabu Memory between iterations

Classification of metaheuristic combinations

Given the functional structure of the parametrized scheme and the pure metaheuristics that will

be combined, the classification of combinations of metaheuristics considered using the taxonomy

and nomenclature established in [6] is shown in table 2. The meaning of the design structures is

HRH(A1 + A2), which implies a high-level hybridization between the metaheuristics A1 and A2
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which are executed in sequence without altering their internal structure, and LRH(A1(A2)) means

A2 metaheuristic embedded within A1 with a low-level hybridization between them. In our approach

we consider a different type of hybridation, LRH(A1, A2), which represents a low-level inner join of

metaheuristics A1 and A2. The difference between the two types of low-level hybridization is that in

the second type, the metaheuristics mix their structures at the same level, while in the first, the first

metaheuristic is supplemented with the structure of the second one when executed.

Table 2 Classification of the different combinations/hybridizations of metaheuristics.

Metaheuristic Design

GR+TS LRH(GR(TS))
GR+GA HRH(GR+GA)
GR+SS HRH(GR+SS)
GA+SS LRH(GA,SS)
GA+TS HRH(LRH(GA(TS))+TS)
SS+TS HRH(LRH(SS(TS))+TS)

GR+GA+SS HRH(GR+LRH(GA,SS))
GR+GA+TS HRH(LRH(GR(TS))+LRH(GA(TS))+TS)
GA+SS+TS HRH(LRH(LRH(GA,SS)(TS))+TS)
GR+SS+TS HRH(LRH(GR(TS))+LRH(SS(TS))+TS)

GR+GA+SS+TS HRH(LRH(GR(TS))+LRH(LRH(GA,SS)(TS))+TS)

To clarify how the nomenclature is applied for the basic metaheuristics and the unified scheme

considered, we comment on the meaning of the last row in table 2, HRH(LRH(GR(TS)) +

LRH(LRH(GA,SS)(TS)) + TS). GRASP is initially applied with TS with short-term memory.

After that, a combination of GA and SS is applied, with improvement of each element obtained by di-

versification and with the use of the short-term memory of TS. Finally, long-term memory constraints

for frequent elements are considered by TS. All combinations of metaheuristics considered include

various pure metaheuristics (heterogeneity), they search the entire space of solutions (are global) and

all solve the same optimization problem (are general). In the previous example, the complete rep-

resentation of the metaheuristic would be HRH(LRH(GR(TS)) + LRH(LRH(GA,SS)(TS)) +

TS)(het, glo, gen). For simplicity these terms are omitted in all the combinations.

Hyperheuristics

Hyperheuristics aim to automatically select, combine, generate or adapt several heuristics to effi-

ciently solve computational search problems. The fundamental difference between metaheuristics and

hyperheuristics is that most implementations of metaheuristics search within a search space of prob-

lem solutions, whereas hyperheuristics always search within a search space of heuristics. Thus, when

using hyperheuristics, our objective is to find a method with the capacity to take good decisions in

the path to finding a good metaheuristic to solve an optimization problem.

Hyperheuristics allow rapid portability to other application domains. The move to a new domain

implies the implementation of low-level heuristics. If these low-level heuristics keep standard inter-

faces, it is not necessary to modify the hyperheuristic [19]. Therefore, our proposal can be used for

hyperheuristics development, which can work by selecting appropriate values of the parameters in the

parametrized metaheuristic scheme.

In the hyperheuristic, using the notation for evolutionary algorithms, an individual or element is rep-

resented by an integer vector MetaheurParam that encodes the set of parameters that characterizes

a metaheuristic using the scheme in Algorithm 2. The set of individuals constitutes the reference set,

which means a set of metaheuristics, with each metaheuristic the combination/hybridation of basic

metaheuristics given by the values in MetaheurParam.
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Algorithm 3 parametrized shared-memory metaheuristic scheme

Initialize(S,ParamIni,ThreadsIni)

while ( not EndCondition(S,ParamEnd)) do

SS=Select(S,ParamSel)

SS1=Combine(SS,ParamCom,ThreadsCom)

SS2=Improve(SS1,ParamImp,ThreadsImp)

S=Include(SS2,ParamInc,ThreadsInc)

end while

The fitness value in the hyperheuristic for an element MetaheurParam is that obtained when

the metaheuristic with the parameters in MetaheurParam is applied. The objective is to minimize

the fitness function and so obtain the combination of the metaheuristic parameters (the prefered

hibridation of basic metaheuristics) which gives the best fitness function for the problem in question.

When executing the hyperheuristic, a lot of metaheuristics are applied to different inputs, leading

to a very large execution time, and parallelism is necessary. Parallel metaheuristics can be used to

reduce the execution time, but it is also possible, and preferable, to use parallelism at a higher level,

for which the parameterised shared-memory metaheuristic scheme is used for the hyperheuristic, and

the same auto-tuning techniques are valid for the metaheuristics and the hyperheuristic.

The shared-memory scheme

In our approach, the parametrized scheme in Algorithm 2 becomes a parametrized shared-memory

scheme just by independently parallelizing each basic function in the scheme (Algorithm 3) with new

parallelism parameters (ThreadsX in Algorithm 3) indicating the number of threads to use in each

part of the algorithm.

A parallel parametrized scheme is used here to apply a common auto-tuning technique to select the

optimum number of threads obtaining low execution times. When developing hyperheuristics with

the same scheme used for metaheuristics, the same parallelization techniques for metaheuristics [4]

are applicable for hyperheuristics. Two basic parallel schemes are identified in [1]:

• In the first scheme the elements of a set are treated independently, and the number of threads to

work with in a loop is selected. This scheme appears, for example, when combining elements in

a Genetic Algorithm or when randomly generating an initial set of elements. Thus, ThreadsIni

and ThreadsCom contain a parallelism parameter indicating the number of threads to use in

the generation of the initial set and for the combination of the selected elements. These values

can be different, so giving different values of the parallelism parameters in each function.

• The second scheme has two parallelism levels and can be used to obtain fine or grained paral-

lelism. The number of threads at each parallelism level is established. This type of parallelism

appears in improvement and diversification functions, where some elements are selected (first

level) and each element is improved by analysing its neighbourhood (second level).

The number of threads (one value or several values) is established for each function in the

parametrized shared-memory scheme. The number of parallelism parameters for each function de-

pends on the particular implementation of the functions in the unified scheme, but the methodology

is common to various metaheuristics and parallel implementations. For example, some metaheuristics

include an improvement part in the initialization, and the number of threads in the two levels of this

improvement are added to the number of threads for the initialization of the reference set. In the

improvement function there are two subsets of parallel parameters with the same structure, one for
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the intensification and another for the diversification of elements. So, we have different parallelism

parameters for the different functions in the scheme:

• Initialize: A for loop is used to generate the initial set of elements. One-level scheme

is used with a number of threads TGEIni. A two-level improvement is included as part of

the initialization, so there are two parameters for the number of threads in the two levels,

TI1Ini and TI2Ini. These three parameters constitute the set of parallelism parameters for

the initialization: ThreadsIni = {TGEIni, T I1Ini, T I2Ini}.
• Combine: Pairs of elements are combined in a loop, so we have TCPCom threads to work

with in the combination loop.

• Improve: As in the improvement in the initialization, two-level parallelism functions are used

for the improvement of the elements. Three improvement functions are considered: for the

improvement of elements in the reference set, for those obtained in the combination, and

for those obtained though diversification; so there are six parallelism parameters, TR1Imp,

TR2Imp, TC1Imp, TC2Imp, TD1Imp and TD2Imp.

• Include: An one-level parallelization with TIEInc threads is considered for the inclusion of

elements.

Thus, we have eleven parallelism parameters (table 3) that can be selected to tune the shared-

memory scheme to obtain reduced execution times. Of course, as with the metaheuristic parameters,

different parallelizations would produce a different number of parallelism parameters, and we are not

interested in an exhaustive enumeration of the possible parallelization strategies and parallelism pa-

rameters, but in the application of a methodology valid for different configurations. Furthermore, the

auto-tuning methodology with which the values of the parameters are selected will be valid for the

different metaheuristics and combinations obtained with different values of the metaheuristic param-

eters, and the optimum values of the parallelism parameters will depend on those of the metaheuristic

parameters.

Table 3 Parallelism parameters in the parametrized shared-memory scheme of metaheuristics.

Initialize TGEIni number of Threads for the initial Generation of Elements
TI1Ini number of Threads in the Improvement after initialization, first level
TI2Ini number of Threads in the Improvement after initialization, second level

Combine TCPCom number of Threads for the Combination of Pairs of elements

Improve TR1Imp number of Threads in the improvement of the Reference set, first level
TR2Imp number of Threads in the improvement of the Reference set, second level
TC1Imp number of Threads in the improvement of elements obtained by Combination, first level
TC2Imp number of Threads in the improvement of elements obtained by Combination, second level
TD1Imp number of Threads in the improvement of elements obtained by Diversification, first level
TD2Imp number of Threads in the improvement of elements obtained by Diversification, second level

Include TIEInc number of Threads for the Inclusion of Elements in the reference set

The metaheuristic scheme is used at two levels: for the hyperheuristic (HMS) and for the applica-

tion of the metaheuristics determined from the metaheuristic parameters (MetaheurParam) in each

element of the reference set in the metaheuristic (MS) with which the hyperheuristic is implemented.

Thus, parallelism can be applied in the hyperheuristic and the metaheuristics, with a total of four

parallelism levels, but it will be preferable to parallelize at a high level, and usually parallelism is only

applied in the hyperheuristic.
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The parametrized message-passing metaheuristic scheme

The use of message-passing schemes allows us to have versions which can be executed in both

multicore systems and clusters with multicore nodes, enabling larger problems to be solved in shorter

execution times. So, we analyse the development of message-passing parametrized schemes with MPI

implementations. An island model is used, with division of the population into subsets assigned to p

processes, with identifiers from 0 to p−1, where the process P0 acts as master in the communications,

and the remaining processes are the slaves.

The parametrized scheme in Algorithm 2 is extended to obtain a parametrized message-passing

scheme (Algorithm 4) with the introduction of a new function (migration) and new metaheuristic-

parallelism parameters, which comprise the number of processes (p), the number of generations be-

tween migrations (NGMPar) and the volume of data transferred (NEMPar). A homogeneous data

partition is considered, with assignation of the same number of elements to each process. So, subsets

Si are processed in parallel by processes Pi, with |Si| = |S|
p
, and S = S0∪...∪Sp−1. Each process is ini-

tialized with INEIni
p

elements. Then, the metaheuristic scheme of Algorithm 5 is applied sequentially

to each subset over a number of iterations. The sizes of the other sets in each process are also di-

vided by the number of processes: FNEIni
p

, NBESel
p

, NWESel
p

, NBBCom
p

, NBWCom
p

, NWWCom
p

and
NBEInc

p
. The end condition is established now with the number of evolution-migrations, MNIEnd

NGMPar
.

The master informs the slaves when the end condition is accomplished.

Algorithm 4 parametrized message-passing metaheuristic scheme. Island Model

(S,ParamMet,ParamPar).

1: IN PARALLEL in each process Pi (i = 0, ..., p− 1) DO
2: Initialize(Si,ParamIni)

3: while (not EndCondition(ParamEnd,NGMPar)) do

4: Sequential Metaheuristic Scheme(Si,NGMPar)
5: Immigrate(Si,S0,NEMPar)

6: In P0 Integrate Subpopulations(Si)
7: Emigrate(S0,Si,NEMPar)

8: end while

9: END PARALLEL
10: Solution: best sk ∈ S0

Algorithm 5 Sequential Metaheuristic Scheme(Si,ParamMet,NGMPar).

while (not EndCondition(NGMPar)) do

SSi=Select(Si,ParamSel)

SS1i=Combine(SSi,ParamCom)

SS2i=Improve(SS1i,ParamImp)

Si=Include(SS2i,ParamInc)

end while

The set of metaheuristic parameters is completed with the three new metaheuristic-parallelism

parameters, ParamPar = {p,NGMPar,NEMPar}. There are many possibilities for the imple-

mentation of the new function (migration), but our initial goal is to analyse the advantages of using

a parametrized message-passing metaheuristic scheme and to model it so that the model can be

used for auto-tuning. So, we use a simple migration scheme, with immigrations from the slaves to

the master (line 5 of Algorithm 4) and emigrations from the master to the slaves (line 7), and with

the same number of elements in the immigration and the emigration (NEMPar). No exchange

of elements among slaves is considered, allowing only the combination of the best elements from

each subset (and subsequent improvements and diversifications) in the master process (line 6). The
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percentage of migrating elements of each subset should not be very high in order to enhance only

the migration of the best elements of each subset and reduce the execution time while maintaining

a certain amount of native elements in each subset. Besides, high values could produce an increment

in the cost of the communications. The number of generations between migrations (NGMPar)

also affects the goodness of the solution and the execution time. High values mean less information

exchange between processes, and possibly worse final solutions or more iterations to converge, but at

the same time they reduce the number of communications and the execution time per iteration.

Modelling and auto-tuning methodology

To reduce the execution time it is necessary to select the values of the parallelism parameters ap-

propriately. These parameters are the number of threads (ThreadsIni, ThreadsCom, ThreadsImp

and ThreadsInc) for each basic function in the case of shared-memory, and the number of processes

and parameters controlling the amount and frequency of information exchanged between islands (p,

NEMPar, NGMPar) for the message-passing paradigm.

A theoretical model of the execution time is obtained for each function and the number of threads

of a loop or the number of threads in the first and the second parallelism levels is established in the

case of the shared-memory scheme. Considering message-passing metaheuristics, the time model is

global and includes the whole parallel scheme behaviour establishing the number of islands and the

volume and frequency of the migration of elements between them.

The auto-tuning process used in [13] for linear algebra routines is adapted to the metaheuristic

scheme. A problem of minimization of electricity consumption in exploitation of wells [3] is used

to show the modelling and auto-tuning methodology. The metaheuristics used to show how the

methodology works are Genetic Algorithm, Scatter Search, GRASP and Tabu Search, but the same

methodology could be applied with other set of basic metaheuristics and implementations of the basic

functions in the metaheuristic scheme. The process is divided into three phases:

• Design: The first phase of design is to obtain the theoretical model of the execution time for

the functions in the scheme or for the whole scheme. There are various possibilities, depending

on the parallel programming paradigm, so the shared-memory and message-passing approaches

are explained separately.

– In the shared-memory scheme, the routine is developed together with its theoretical execu-

tion time. A model of the execution time is obtained for each basic routine in Algorithm 3.

Because two types of parallelism have been identified, two basic models can be used, one

for one-level routines and another for nested parallelism. As an example for the one-level

routines, the generation of the initial population in function Initialize with an initial

number of elements in the reference set INEIni can be modelled:

tone−level =
kg · INEIni

p
+ kp · p (1)

where kg represents the cost of generating one individual; kp the cost of generating one

thread; and p is the number of threads.

As an example of two-level routines, we consider the initial improvement. The improve-

ment of a percentage PEIIni of the initial elements with an intensification (extension of

improvement for each neighbour) IIEIni can be modelled:

ttwo−levels =
ki · INEIni · PEIIni · IIEIni

100 · p1 · p2
+ kp,1 · p1 + kp,2 · p2 (2)
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where ki represents the cost of improving one element; kp,1 and kp,2 the cost of generating

threads at the first and second level; and p1 and p2 the number of threads at each level.

For each of the other basic functions, the corresponding metaheuristic parameters are

determined and the model of the execution time is obtained similarly, as a function of

those parameters and the parallelism parameters (the number of threads to be used in

each routine and subroutine).

– For message-passing schemes, as in the case of shared-memory, the first step is to obtain

a theoretical model of the execution time, which is essentially divided into one part of

computing tcmp, another of communications between processes tcmc, and another of in-

tegration of elements in the master tint. We can, in turn, divide the communication time

in two parts: one for immigrations from the slaves to the master, timm, and another for

emigrations from the master to the slaves, temi. Some of these times have been found

experimentally to be negligible, so the equations of the model are:

ttotal = tcmp + tcmc + tint, with tint ≈ 0 (3)

tcmp =
2
∑

i=1

ki ·
Parami

p
+

(

6
∑

j=1

kj ·
Paramj

p

)

·NGMPar (4)

tcmc = timm + temi, with temi ≈ 0 (5)

timm = A · p3 +B · p2 + C · p+D (6)

where the parameters and constants in equation 4 have the meaning explained for table

4, and the immigration time has been modelled as a third grade polynomial (equation 6)

because of its simplicity and goodness in experimental data fit. It has been found that the

execution time does not vary significantly with NEMPar, so we can consider timm only

as a function of p.

The models so obtained are very simple and do not consider some architectural aspects, like

memory or threads allocation, but their simplicity facilitates their use, and satisfactory results

are obtained. Furthermore, in some execution environments those system-architecture aspects

can not be considered when the code runs; for example, when sending the job to a queue, the

system decides the cores where the threads or processes are mapped and the data allocation.

• Installation: The values of the system parameters are estimated for the system where the

scheme is being installed.

– When the shared-memory parametrized scheme is installed in a particular system, the

value of the parameters influenced by the system are estimated. Parameters kg, ki, kp,

kp,1 and kp,2 presented in the previous step are some of these parameters, as are the cor-

responding parameters for the other basic routines. The estimation can be made through

experimentation with each basic function in the metaheuristic, for some values of the
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metaheuristic parameters and parallelism parameters (INEIni and p in equation 1; and

INEIni, PEIIni and IIEIni, and p1 and p2 in equation 2) and least square adjustment.

– As in shared-memory, the value of the parameters influenced by the system are estimated

when the message-passing-parametrized scheme is installed in a particular system. The

system and metaheuristic parameters in the model for each function in the scheme are

presented in table 4.

Table 4 System and metaheuristic parameters considered in equation 4 for the message-passing scheme. Functions:
Gen-Ini, generation of elements in the initialization; Imp-Ini, Imp-Ref and Imp-Com, improvement of elements after
initialization, improvement of elements of the reference set and those obtained by combination, respectively; Com,
combination; Div-Ref and Div-Com, diversification of reference and combination sets; Inc, inclusion of elements.

func ki Parami

Gen-Ini kg INEIni

Imp-Ini kii
INEIni·PEIIni·IIEIni

100

func kj Paramj

Com kc 2 · (NMMCom+NMPCom+NPPCom)

Imp-Ref kir
NFEIni·PEIImp·IIEImp

100

Imp-Com kic
(NBBCom+NBWCom+NWWCom)·PEIImp·IIEImp

100

Div-Ref kdr
NFEIni·PEDImp·IDEImp

100

Div-Com kdc
(NBBCom+NBWCom+NWWCom)·PEDImp·IDEImp

100

Inc ki NFEIni+ 2 · (NBBCom+NBWCom+NWWCom)−NBEInc

The estimation can be made through experimentation with the metaheuristic scheme, for

some values of the metaheuristic parameters and parallelism parameters and least square

adjustment.

• Execution: The solution of a problem with a particular metaheuristic or hyperheuristic is ob-

tained with the values of the algorithmic parameters (number of threads at each function or

number of processes, frequency and width of migration) which provide the lowest theoretical

execution time for that problem size and the combination of metaheuristic parameters, using the

theoretical models developed in the design phase and with the values of the system parameters

estimated in the installation phase.

– At execution time, in shared-memory, the number of threads in each basic function is

selected from the theoretical execution time (equations 1 and 2) with the values of the

metaheuristic parameters being those of the metaheuristic (or hyperheuristic) we are ex-

perimenting with and the values of the system parameters estimated in the installation

phase. The number of threads which gives the theoretical minimum execution time is

obtained by minimizing the corresponding equation after substituting in it the values of

the metaheuristic and system parameters.

After substituting in the theoretical model the values of the constants estimated by ex-

perimentation and least-squares, the values of the parallelism parameters which give the

lowest theoretical time are obtained as a function of the metaheuristic parameters, so

the equations are valid for the different metaheuristics or hyperheuristics in the particular

computational system where the scheme is installed.
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For example, for the initial generation of the reference set of HMS and experiments carried

out in a system called Ben with 128 cores and described below, the number of threads

which provides the lowest theoretical execution time is:

popt =

√

kg

kp
· INEIni = 3.43 ·

√
INEIni (7)

and for the improvement of the generated elements the optimum number of threads in

the two-level function is:

p1,opt = 0.479 · 3
√
INEIni · PEIIni · IIEIni (8)

p2,opt = 0.505 · 3
√
INEIni · PEIIni · IIEIni (9)

and those are the values selected for the parallelism parameters in the initialization:

TGEIni = popt, TI1Ini = p1,opt and TI2Ini = p2,opt.

– In the case of the message-passing scheme, the parallelism parameters are also selected

from the theoretical execution time, as a function of the metaheuristic parameters and the

values of the system parameters estimated in the installation phase. As in shared-memory,

the optimum parallelism parameters (number of processes in this case) are obtained by

minimizing the corresponding equation after substituting the values of the metaheuristic

and system parameters.

For example, in one node of the cluster described below (Saturno, with 24 cores), we have:

−Kcmp

p2opt
+ 3 · − 4 · 10−6 · p2opt + 2 · 0.0003 · popt − 0.006 = 0 (10)

where Kcmp is the sum of all constants and metaheuristic parameters in the computing

term specified in equation 4:

Kcmp =
2
∑

i=1

ki · Parami +

(

6
∑

j=1

kj · Paramj

)

·NGMPar (11)

and where the constants for each basic routine of the node Saturno, ki and kj , are

presented in table 19 in the results section.

A problem of electricity consumption in exploitation of wells

The cost-minimization problem [3] used as a test case is briefly explained. We consider a water system

consisting of a series of pumps (B) of known power, located in wells, that draw water flow along a

daily time range R. The total flow is the sum of the flows contributed by each well. The pumps may
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be running or idle at a given time. The pumps operate electrically and the electricity has a daily cost

which should be minimal:

Ce =

R
∑

i=1

B
∑

j=1

TiPjNixij (12)

subject to

H ·
R
∑

i=1

B
∑

j=1

Qjxij = Vtd (13)

∀i,
B
∑

j=1

Qjxij ≥ Qmin. (14)

∀j, 24

R
Qj

R
∑

i=1

xij ≤ Vg,j (15)

∀i,
∑B

j=1
Qjσjxij

∑B

j=1
Qjxij

≤ σlim. (16)

∃j | DDj ≤ MDj =⇒ ∀i, xij = 0 (17)

where Ce represents the cost of the electricity consumed by the combination of pumps selected in a

day; Ti is the cost of the electricity in the range i; Ni is the number of hours of pump operation in

the time slot i; Pj is the electric power consumed by the pump j; and xij represents a binary element

of a matrix with values 1 or 0 for pump on or off in equation 12. In equation 13, H represents the

number of hours of each time slot (the same for all the slots); Qj is the flow extracted from the well

j, constant in all the time intervals in which the well is operating; and Vtd is the total daily volume

demanded. In equation 14, Qmin. is the total minimum flow in the pipeline for each time slot. Vg,j

is the operating volume daily granted to the well j in equation 15. In equation 16, σj represents the

conductivity of each well and σlim. is the conductivity limit of the water mix. And, finally, in equation

17, DDj is the depth (m) of the dynamic level of well j and MDj is the maximum depth (m) of the

dynamic level of well j.

An individual is represented by a binary vector of size B ·R that encodes the set of pumps distributed

in different time slots. The set of individuals constitutes a population. Not all possible combinations

result in feasible individuals, and each time an individual is generated or modified five constraints are

evaluated:

• Demand satisfaction (equation 13). This restriction arises from the condition that the sum of

volumes provided in the range of hours established correspond to the programmed demand at

the beginning of each day.

• Minimum flow maintenance (equation 14). We sought to establish a minimum flow in the

pipeline in all time slots of operation.

• Compliance with maximum exploitation volumes for each well (equation 15). In practice, the

accumulated volume granted for each well is updated daily and is inserted as a parameter of

the problem.
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• The conductivity of the total flow is calculated as a weighted mean of the conductivity con-

tributed by each well, and the mean conductivity is maintained below the limit established

(equation 16).

• Compliance with maximum depths of dynamic levels (equation 17). Each well must have a

minimum water level to exploit to be considered operative. Below this, the well will be classified

as temporarily unavailable.

This problem formulation means in some cases that obtaining a new individual is very time-

consuming. Furthermore, for large exploitation systems the number of wells and of time ranges may

be large, resulting in large computation times.

Experimental results

The results of applying the auto-tuning technique to the parallel parametrized schemes of metaheuris-

tics are presented below. Both metaheuristics and hyperheuristics are considered in shared-memory,

but only metaheuristics are applied through message-passing schemes. Experiments are carried out in

two computational systems whose characteristics are presented below.

Firstly, we have a HP Integrity Superdome SX2000 with 128 cores of Intel Itanium-2 dual-core

Montvale with shared-memory called Ben.

Secondly, Heterosolar, a cluster with five nodes connected through a Gigabit Ethernet working at

1 Gbit/s and comprising the following multicore systems:

• Saturno is a NUMA system with 4 Intel hexa-core NEHALEM-EX EC E7530 nodes, with a total

of 24 cores, 1.87 GHz, 32 GB of shared-memory.

• Marte and Mercurio are AMD Phenom II X6 1075T (hexa-core), 3 GHz, 15 GB (Marte) and

8 GB (Mercurio), each with private L1 and L2 caches of 64 KB and 512 KB, and L3 of 6 MB

shared by all the cores.

• Jupiter comprises two hexa-cores (12 cores) Intel Xeon E5-2620, 2.00GHz, and 32 GB of RAM.

• Luna is a quad-core processor Intel Core 2 Quad Q6600, 2.4 GHz, with 4 GB of shared memory.

Shared-memory results

To validate the auto-tuning methodology, the optimum number of threads and the maximum speed-

up achieved are calculated from the models for different metaheuristic parameters using the system

parameters obtained in the installation. These system parameters are calculated using small values of

the metaheuristic parameters to reduce the installation time.

Experiments in shared-memory are carried out in Ben and Saturno. The main differences between

them are their size and the structure of the memory hierarchy, which produces differences in the

shared-memory access latencies.

Firstly, as an example, we summarize the values of the system parameters obtained in the installation

phase for two basic functions of the HMS in Ben. The optimum number of threads varies with the

number of elements, and we are interested in selecting a number of threads close to the optimum

from a small number of elements (for low installation time). As an example for one-level routines, in

the initialization in a hyperheuristic the model in equation 1 is used, and parameters kg and kp in

the model are obtained by least-squares with INEIni = 5. The values obtained are kg = 0.577 and

kp = 0.0491 (both in seconds). For a two-level routine, like the routine to improve elements after the

initial generation or after combination or diversification, the values of the parallelism parameters are

obtained by least-squares with experiments with parameters for the hyperheuristic INEIni = 10,

PEIIni = 100 and IIEIni = 1. The results are ki = 1.21, kp,1 = 0.104 and kp,2 = 0.0989 (all in

seconds). By substituting these values in the theoretical model of the execution time (equation 2),
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Figure 1 Theoretical and experimental speed-ups when varying the number of threads of the first and second level
of parallelism in a two-level parallel routine when applying the HMS in shared-memory in Ben.

the behaviour of the routine in the system is well predicted, as can be seen in Figure 1, where the

theoretical and experimental speed-ups in the improvement of the initial population are represented

for the hyperheuristic parameter combination INEIni = 50, PEIIni = 50 and IIEIni = 1.

For the application of the MS, the values used in the installation were INEIni = 20 for the initial-

ization and INEIni = 20, PEIIni = 50, IIEIni = 20 for the improvement in the initialization.

For the HMS those values were INEIni = 5, INEIni = 10, PEIIni = 100 and IIEIni = 1. The

differences between the values of the parameters of MS and HMS are explained by the higher execu-

tion time of the hyperheuristic, which makes it necessary to have lower values for a low installation

time.

Once the scheme is installed, the next step is to determine the optimum parallel parameters and the

corresponding speed-up for the metaheuristics and hyperheuristics considered. Firstly, the results of

auto-tuning two basic routines in Ben are presented, and then the auto-tuning of the whole scheme

is analysed in Saturno.

Metaheuristics and hyperheuristics for the minimization of power consumption in wells exploitation

are considered, so experiments consider implementations of the basic functions with the metaheuristic

parameters with different computational costs.

Tables 5 and 6 compare the results for the initial generation of the reference set and for the

improvement of elements for two parameter combinations using the MS in Ben. The number of threads

selected with the auto-tuning methodology is not far from the best values obtained experimentally

and, as a consequence, the speed-up achieved with auto-tuning is not far from the experimental

maximum and the auto-tuning methodology is useful for the reduction of the execution time of

metaheuristics.

We can compare the results obtained when directly applying individual metaheuristics to a problem

of optimization of electrical costs with those for the hyperheuristic using the auto-tuning methodology.

Since the metaheuristic scheme is the same, similar results would be expected in both cases, although

there may be differences due to different implementations. For example, in the improvement function

of the MS, the second level was used to start more threads to work on the improvement of the fitness
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Table 5 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained in
the experiments when using the auto-tuning methodology (exp-auto), for INEIni = 100 and 500 in the one-level
parallel routine of Initialize, when applying the MS in Ben.

threads speed-up
INEIni exp mod exp mod exp-auto

100 48 55 27 27 25
500 121 122 77 61 75

Table 6 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained in
the experiments when using the auto-tuning methodology (exp-auto), for other parameter combinations in the
two-level parallel routine of Initialize, when applying the MS in Ben.

threads speed-up
INEIni PEIIni IIEIni exp mod exp mod exp-auto

100 50 10 89 67 35 17 21
500 100 5 128 150 78 51 78

function (more neighbours are analysed) but not to reduce the execution time, from which the number

of threads of second level could be taken as constant. So, in this case the model is slightly different.

In the function of the initial generation of elements there are no differences in the implementation.

The behaviour of the one-level routine when applying the MS was well predicted, as can be seen in

Figure 2, where the theoretical and experimental speed-ups are represented.

Tables 7 and 8 compare the results for the initial generation of the reference set and for the

improvement of elements for two parameter combinations using the HMS in Ben. As in the case of

the MS, the number of threads and the speed-up selected with the auto-tuning methodology were

not very different from the best values obtained experimentally, and so the auto-tuning methodology

proves useful for the reduction of the execution time of hyperheuristics, which have a high cost caused

by the application of a large number of metaheuristics. It can be seen that the technique applied for

MS is also valid for HMS.

Table 7 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained in
the experiments when using the auto-tuning methodology (exp-auto), for the parameters INEIni = 20 and 100 in
the one-level parallel routine of Initialize, when applying the HMS in Ben.

threads speed-up
INEIni exp mod exp mod exp-auto

20 22 15 11 8 8
100 24 34 12 17 12

The advantages of using auto-tuning can be seen more clearly when comparing the speed-up ob-

tained by launching the maximum number of threads available in the system and the half of this

maximum (as a first approximation to a threads selection), with the results achieved when selecting

the optimal number of threads at each level with our auto-tuning technique. Results are presented in

tables 9 to 12. Both in the case of directly applying the MS to the optimization problem and for the

HMS, the speed-up achieved with the model is nearly always better than that obtained when running

roughly the maximum number of threads available or its half, and gets close to the experimental

optimum value in most cases.
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Table 8 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained in
the experiments when using the auto-tuning methodology (exp-auto), for two combinations of the parameters
INEIni, PEIIni and IIEIni (param1: 50,50,1; param2: 100,50,1) in the two-level parallel routine of Initialize,
when applying the HMS in Ben.

threads one-level threads two-levels speed-up
parameters exp mod exp mod exp mod exp-auto

param1 9 6 8 7 14 15 11
param2 9 8 4 9 15 24 14
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Figure 2 Theoretical and experimental speed-up when varying the number of threads for three parameters in a
one-level parallel routine when applying the MS in Ben.

Table 9 Comparison of the speed-up obtained with the maximum number of threads available (max), with half of the
maximum number of threads available (max/2), the highest experimental speed-up (exp) and that obtained with our
auto-tuning methodology (auto), for INEIni = 100 and 500 in the one-level parallel routine when applying the MS
in Ben.

threads speed-up
INEIni max max / 2 exp auto max max / 2 exp auto

100 128 64 48 55 20 23 27 25
500 128 64 121 122 73 49 77 75

Table 10 Comparison of the speed-up obtained with the maximum number of threads available (max), with half of
the maximum number of threads available (max/2), the highest experimental speed-up (exp) and that obtained with
our auto-tuning methodology (auto), for two combinations of the parameters INEIni, PEIIni and IIEIni
(param1: 100,50,10; param2: 500,100,5) in the two-level parallel routine when applying the MS in Ben.

threads speed-up
parameters max max / 2 exp auto max max / 2 exp auto

param1 128 64 89 67 27 15 35 21
param2 128 64 128 150 78 52 78 78

So far we have checked the validity of the auto-tuning methodology in a large system as Ben, where

the access to the shared-memory can suppose an additional delay in the execution time. For more

general conclusions, the complete auto-tuning process has been analysed on Saturno. Tables 13 and
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Table 11 Comparison of the speed-up obtained with the maximum number of threads available (max), with half of
the maximum number of threads available (max/2), the highest experimental speed-up (exp) and that obtained with
our auto-tuning methodology (auto), for INEIni = 20 and 100 in the one-level parallel routine when applying the
HMS in Ben.

threads speed-up
INEIni max max / 2 exp auto max max / 2 exp auto

20 128 64 22 15 11 11 11 8
100 128 64 24 34 11 11 12 12

Table 12 Comparison of the speed-up obtained with the maximum number of threads available (max), with half of
the maximum number of threads available (max/2), the highest experimental speed-up (exp) and that obtained with
our auto-tuning methodology (auto), for two combinations of the parameters INEIni, PEIIni and IIEIni
(param1: 50,50,1; param2: 100,50,1) in the two-level parallel routine when applying the HMS in Ben.

threads one-level threads two-levels

parameters
√
max

√

max/2 exp auto
√
max

√

max/2 exp auto

param1 11 8 9 6 11 8 8 7
param2 11 8 9 8 11 8 4 9

speed-up

parameters
√
max

√

max/2 exp auto

param1 9 11 14 11
param2 11 12 15 14

14 give the values of the constants of the model obtained in the installation phase in Saturno for the

whole MS and HMS.

Table 13 Values of the constants of the model (in seconds) for all the functions when applying the MS in Saturno.

One-level parallel routines Two-level parallel routines
Ini Com Inc Imp-Ini Imp-Ref Imp-Com Div

ks · 104 4.43 5.69 1.44 6.05 6.01 1.20 107
kp,1 · 103 3.96 2.61 58.3 3.08 1.91 3.38 63.8
kp,2 · 103 - - - 1.56 8.38 23.2 0.915

Table 14 Values of the constants of the model (in seconds) for all the functions when applying the HMS in Saturno.

One-level parallel routines Two-level parallel routines
Ini Com Inc Imp-Ini Imp-Ref Imp-Com Div

ks · 102 1.45 2.91 0.296 15.7 25.5 52.3 26.2
kp,1 · 102 0.541 0.679 2.44 5.66 2.55 8.86 2.22
kp,2 · 102 - - - 7.09 3.25 34.8 4.84

Taking into account the values of these constants, we can verify the validity of the methodology of

auto-tuning running all the functions of the metaheuristic scheme. Table 15 gives the values of typical

metaheuristic parameters used in the MS and in the HMS. We must consider that there are differences

in the execution time between metaheuristics and hyperheuristics. While the metaheuristic executes
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problem instances directly, the hyperheuristic is more time-consuming, since it executes different

metaheuristics at the same time to optimize the resolution of the problem. So, these parameter

values have been chosen because they produce metaheuristics and hyperheuristics of intermediate

size, so allowing for a comprehensive study in a relatively reduced time.

Table 15 Values of the metaheuristic parameters used for the auto-tuning experiments when applying the MS (m1
and m2) and the HMS (h1 and h2) in Saturno.

INEIni FNEIni PEIIni IIEIni STMIni NBESel NWESel NBBCom NBWCom

m1 20 20 50 20 - 10 10 20 5
m2 100 50 100 10 - 25 25 100 20
h1 10 10 100 1 7 5 5 20 5
h2 20 20 50 3 7 10 10 50 10

NWWCom PEIImp IIEImp SMIImp PEDImp IDEImp SMDImp NBEInc LTMInc

m1 10 100 20 - 50 20 - 10 -
m2 5 50 10 - 100 20 - 25 -
h1 10 100 1 7 100 1 7 10 7
h2 5 20 3 7 20 3 7 10 7

Table 16 shows the optimum number of threads of the first and second level of parallelism obtained

with auto-tuning for all the functions in the scheme for four metaheuristic parameter combinations in

Saturno. Results are presented for the application of the MS and the HMS. The value of the second

level parameter was fixed to 1 in the case of the MS because the second level was used to start more

threads to work on the improvement of the fitness function but not to reduce the execution time.

Our goal is not to optimize the code but, given a parametrized code, to find satisfactory values

for the parallelism parameters so that low execution times can be achieved automatically. Table 17

compares the speed-up achieved with the optimum number of threads given by the model with those

achieved when the values of the parallelism parameters are selected without an auto-tuning method.

Numbers of threads equal to the maximum number of cores available and to half this number are

considered. Results are shown for basic and optimized implementations.

Table 16 Values of the parallelism parameters for four metaheuristic parameter combinations in Saturno. Optimum
number of threads of the first level of parallelism for all the functions when applying the MS (m1 and m2). Optimum
number of threads (levels one and two of parallelism) for all the functions when applying the HMS (h1 and h2).

One-level parallel routines Two-level parallel routines
TGEIni TCPCom TIEInc TI1Ini TR1Imp TC1Imp TD1Imp

m1 2 3 1 6 11 5 6
m2 3 5 1 14 9 5 13

One-level parallel routines Two-level parallel routines
level TGEIni TCPCom TIEInc TI Ini TR Imp TC Imp TD Imp

h1 p1 5 12 3 3 5 9 6
p2 - - - 3 4 2 3

h2 p1 7 17 4 5 5 10 7
p2 - - - 4 4 2 3
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Table 17 Speed-ups for various metaheuristic parameter combinations when applying all the functions in the MS (m1
and m2 in tables 15 and 16) and all the functions in the HMS (h1 and h2 in tables 15 and 16). Experimental values
obtained with a number of threads equal to the number of cores available (max), and half the number of cores (max
/ 2), and values obtained with auto-tuning (auto). In Saturno and for basic and optimized implementations.

speed-up
Basic Optimized

max max / 2 auto max max / 2 auto

m1 1 2 2 10 8 10
m2 5 6 6 14 10 16
h1 3 4 5 6 5 6
h2 4 5 5 6 6 7

In all cases it is observed that the speed-up obtained with the auto-tuning methodology improves

or equals the values obtained with a number of threads selected in a non-optimal manner. This result

is also observed in each function separately, which gives us an idea of the validity of the methodology

studied.

Message-passing results

For the message-passing scheme, experiments were carried out for the different metaheuristic com-

binations shown in table 18. The values of the metaheuristic parameters have been selected to have

metaheuristics with a wide variety of set sizes (between 20 and 500 elements) and with reasonable

values for the parallelism parameters (NGMPar equal to 5, and NEMPar between 5 and 20). The

number of iterations was fixed to 100 to compare the execution times between subsets of different

sizes, and because it is sufficiently high to get good fitness results.

Table 18 Values of the metaheuristic parameters used in the message-passing experiments.

INEIni NFEIni PEIIni IIEIni STMIni NGMPar NEMPar

m1 20 20 100 20 12 5 5
m2 100 100 50 10 4 5 15
m3 500 500 25 5 2 5 20

NBESel NWESel NBBCom NBWCom NWWCom PEIImp IIEImp

m1 10 10 15 20 15 100 5
m2 50 50 90 100 90 50 5
m3 250 250 450 500 450 25 5

SMIImp PEDImp IDEImp SMDImp NBEInc LTMInc

m1 4 10 5 2 10 12
m2 4 10 5 2 50 12
m3 4 10 5 2 250 15

Similarly to shared-memory, to validate the auto-tuning methodology with the message-passing

paradigm, the optimum parallelism parameters (p, NEMPar and NGMPar) and the maximum

speed-up achieved are calculated from the models for different metaheuristics using the system pa-

rameters obtained in the installation for different configurations of the computational system. These

system parameters were calculated using small values of the metaheuristic parameters to reduce the

installation time. It has been determined experimentally, for all the systems studied, that only the

computation and immigration times contribute significantly to the total time modelled.

A first study of the methodology is carried out in Saturno, which is a shared-memory homogeneous

system, in which we use the message-passing scheme, considering it as a distributed homogeneous
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system. In table 19 the specific values of the constants in equation 4 for the computation time are

presented. The values for the constants in equation 6, which models the immigration time, timm, are

A = −4, B = 0.0003, C = −0.006 and D = 0.0549. Table 20 shows the speed-up and corresponding

optimal number of processes when executing metaheuristics m1 and m2. We can see that the number

of processes predicted by the model is quite close to the optimum obtained experimentally, with

the speed-ups achieved with the auto-tuning methodology (exp-auto) close to the best obtained

experimentally (exp).

Table 19 Values of the system and metaheuristic parameters considered in equation 4 in Saturno.

func ki Parami

Gen-Ini 4.70 · 10−3 50

Imp-Ini 3.36 · 10−4 50·75·15
100

func kj Paramj

Com 3.98 · 10−5 2 · (45 + 50 + 45)

Imp-Ref 3.36 · 10−4 50·75·5
100

Imp-Com 6.72 · 10−4 (45+50+45)·75·5
100

Div-Ref 3.53 · 10−4 50·10·5
100

Div-Com 7.06 · 10−4 (45+50+45)·10·5
100

Inc 1.50 · 10−5 50 + 2 · (45 + 50 + 45)− 25

Table 20 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained
experimentally when using the number of processes given by the auto-tuning methodology (exp-auto), for the
metaheuristics m1 and m2 in table 18, when applying the metaheuristic scheme to PECEW in Saturno.

MPI Processes Speed-up
metaheuristic exp mod exp mod exp-auto

m1 16 20 15 11 12
m2 24 24 17 16 17

The same procedure was carried out in the small homogeneous cluster Marte + Mercurio, with

different values for the installation constants of the model. As in the case of Saturno, the number of

processes given by the model are close to the experimental ones for the metaheuristics studied, with

the speed-ups achieved close to the best obtained experimentally (table 21).

Table 21 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained
experimentally when using the number of processes given by the auto-tuning methodology (exp-auto), for the
metaheuristics m1 and m2 in table 18, when applying the metaheuristic scheme to PECEW in Marte + Mercurio.

MPI Processes Speed-up
metaheuristic exp mod exp mod exp-auto

m1 11 12 10 7 9
m2 12 12 8 9 8

Finally, the auto-tuning technique was applied in the whole cluster Jupiter + Luna + Saturno +

Marte + Mercurio. There were not big differences in the speed of the nodes when applying the

sequential scheme, so the methodology for homogeneous systems was considered, with the execution

time limited by the islands assigned to the slowest cores.

We can see the results of speed-up and optimal number of processes for each metaheuristic in

table 22. The experimental and modelled values for the number of processes and speed-up are

close, especially in m1 and m3. Furthermore, for the population sizes considered (up to a value

of NFEIni=500), the results obtained with the process mapping given by the model suggest that

the number of cores available in the cluster is sufficient to minimize the execution time effectively

without the requirement of more processors.
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Table 22 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained
experimentally when using the number of processes given by the auto-tuning methodology (exp-auto), for the
metaheuristics m1, m2 and m3 in table 18, when applying the metaheuristic scheme to PECEW in Jupiter + Luna +
Saturno + Marte + Mercurio.

MPI Processes Speed-up
metaheuristic exp mod exp mod exp-auto

m1 20 18 10 7 9
m2 38 26 18 13 11
m3 40 37 24 23 20

Conclusions and future work

An auto-tuning methodology for parametrized shared-memory metaheuristic schemes that can in turn

be applied to hyperheuristics based on metaheuristic schemes has been shown. The technique has

been also introduced and analysed for the message-passing scheme. A problem of minimization of

electricity consumption in exploitation of wells has been used as a test case, but similar results can

be obtained with other problems. As far as we know, this is the first time that auto-tuning techniques

are applied to parallel metaheuristics. The methodology provides satisfactory values for the number of

threads to use in the application of the parallel metaheuristics and hyperheuristics in NUMA systems.

The parallel parameters are also optimized for the message-passing scheme in a cluster with multicore

nodes.

One possibility to improve the application of the hyperheuristic is to determine search ranges for

each metaheuristic parameter, so reducing the possible values of the elements in the metaheuristic

with which the hyperheuristic is implemented. For this, statistical analysis like those in [2] can be

used.

As future research lines, the parametrized schemes and the auto-tuning methodology could be ap-

plied to other optimization problems. At present we are working with problems in the fields of data

envelopment analysis, determination of chemical components of polymers and drug design. The inclu-

sion of new basic metaheuristics, for example, Ant Colony Optimization or Particle Swarm Optimiza-

tion, would generate new parametrized schemes with a larger number of metaheuristic parameters.

Similar parametrized, parallel metaheuristic schemes, together with the corresponding auto-tuning

methodologies, should be developed for GPU or manycore systems (Xeon Phi) and in heterogeneous

clusters comprising nodes of multicores + multiple GPU or manycores. The use of large, heteroge-

neous clusters would be of especial interest for the application of hyperheuristics with large reference

sets or with a high fitness function cost.
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