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Abstract

We present in this paper several implementations of the 3D Fast Wavelet Transform (3D-
FWT) on multicore CPUs and manycore GPUs. On the GPU side, we focus on CUDA and
OpenCL programming to develop methods for an efficient mapping on manycores. On multicore
CPUs, OpenMP and Pthreads are used as counterparts to maximize parallelism, and renowned
techniques like tiling and blocking are exploited to optimize the use of memory. We evaluate
these proposals and make a comparison between a new Fermi Tesla C2050 and an Intel Core
2 Quad Q6700. Speedups of the CUDA version are the best results, improving the execution
times on CPU, ranging from 5.3x to 7.4x for different image sizes, and up to 81 times faster
when communications are neglected. Meanwhile, OpenCL obtains solid gains which range from
2x factors on small frame sizes to 3x factors on larger ones.

Keywords: 3D Fast Wavelet Transform; parallel programming; multicore; CUDA; OpenCL

1 Introduction
Nowadays multicore architectures are omnipresent and can be found in all market segments. In

particular, they constitute the CPU of many embedded systems (for example, video game consoles,

network processors or GPUs), personal computers (for example, the latest developments from Intel and

AMD), servers (the IBM Power6 or Sun UltraSPARC T2 among others) and even supercomputers (for

example, the CPU chips used as building blocks in the IBM Blue-Gene/L and Blue-Gene/P systems).

This market trend towards CMP (or chip-multiprocessor) architectures has given rise to platforms

with a great potential for scientific computing such as the GPGPUs [1][2].

Efforts to exploit the Graphics Processing Unit (GPU) for non-graphical applications have been

underway by using high-level shading languages such as DirectX, OpenGL and Cg. These early efforts

that used graphics APIs for General Purpose computing were known as GPGPU programs.

Nvidia was first to launch a solution to exploit the GPU computational power beyond a traditional

graphics processor and simplify the programming. CUDA [3] is Nvidia’s solution as a simple block-

based API for programming. How could it be otherwise, its main competitor AMD introduced its own

product called Stream Computing [4].

Both companies have also developed hardware products aimed specifically at the scientific General

Purpose GPU (GPGPU) computing market: The Tesla products [5] are from NVIDIA, and Firestream

[4] is AMD’s product line. Between Stream Computing and CUDA, we chose the latter to program

the GPU for being more popular and complete. Moreover, it provides more mechanisms to optimize

general-purpose applications.

More recently, Open Computing Language (OpenCL) is a framework [6] that emerges and attempt

to unify those two models. It provides parallel computing using task-based and data-based parallelism.

It is an open standard. Up to now, it has been adopted by Intel, AMD, Nvidia and ARM. It allows

you to program several architectures dependent upon each of the previous manufacturers and hence

not specialized for any particular compute device.
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Novel scientific applications are good candidates to take the opportunity offered by CUDA and

OpenCL for accelerating codes on GPUs, the release of the Tesla GPU based on Fermi architecture

offers a new stage on the development of GPGPU, and the 3D Fast Wavelet Transform (3D-FWT)

represents a solid opportunity in the video processing field. First, this field has traditionally proven to be

a great success for GPUs during its evolution towards high-performance general-purpose computing.

Second, the Fast Wavelet Transform (FWT) constitutes an extraordinary opportunity for a GPU

acceleration for two primary reasons: Its computational cost, and more important, the leading role

it is assuming in many applied areas like biomedical analysis, video compression and data mining in

general.

The FWT is a memory intensive application containing assorted access patterns where memory

optimizations constitute a major challenge. Fortunately, CUDA and OpenCL provide a set of powerful

low-level mechanisms for controlling the use of memory and its hierarchy. This affects performance

at the expense of a programming effort, which is one of the main focus of this paper.

In previous works [7][8], we contributed with a CUDA implementation for the 2D-FWT running

more than 20 times faster than a sequential C version on a CPU, and more than twice faster than

optimized OpenMP and Pthreads versions implemented on multicore CPUs.

In this work, we extend our analysis to the 3D scenario, where speed-up factors have been improved

using a new set of optimization techniques. We present different alternatives and programming tech-

niques for an efficient parallelization of the 3D Fast Wavelet Transform on multicore CPUs and

manycore GPUs. OpenMP and Pthreads will be selected on the CPU to build different implementa-

tions. CUDA and OpenCL will be used for exploiting the potential of the GPU. A comparison between

different platforms will be showed to determine the best version. The work presented in this paper is

a major revision and an extension of two previous papers published by the authors in [9] and [10].

The rest of this paper is organized as follows. Section 2 summarizes the background to wavelets and

the previous work. In Section 3 we describe our implementation effort on multicore CPUs. Sections

4 and 5 focus on the specifics of the GPU programming with CUDA and OpenCL, and Section 6

outlines the different GPU implementations. Experimental results in GPU are analyzed in Section 7.

Moreover, this section includes a comparison of different platforms. Section 8 summarizes the work

and concludes the paper.

2 Background
2.1 The Wavelet Transform Foundations

The basic idea of the wavelet transform is to represent any arbitrary function f as a weighted sum

of functions, referred to as wavelets. Each wavelet is obtained from a mother wavelet function by

conveniently scaling and translating it. The result is equivalent to decomposing f into different scale

levels (or layers), where each level is then further decomposed with a resolution adapted to that level.

In a multiresolution analysis, there are two functions: the mother wavelet and its associated scaling

function. Therefore, the wavelet transform can be implemented by quadrature mirror filters (QMF),

G = g(n) and H = h(n) nǫZ. H corresponds to a low-pass filter, and G is a high-pass filter. For a

more detailed analysis of the relationship between wavelets and QMF see [11].

The filters H and G correspond to one step in the wavelet decomposition. Given a discrete signal,

s, with a length of 2n, at each stage of the wavelet transformation the G and H filters are applied

to the signal, and the filter output downsampled by two, thus generating two bands, G and H. The

process is then repeated on the H band to generate the next level of decomposition, and so on. This

procedure is referred to as the 1D Fast Wavelet Transform (1D-FWT).

It is not difficult to generalize the one-dimensional wavelet transform to the multi-dimensional case

[11]. The wavelet representation of an image, f(x, y), can be obtained with a pyramid algorithm. It
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can be achieved by first applying the 1D-FWT to each row of the image and then to each column,

that is, the G and H filters are applied to the image in both the horizontal and vertical directions.

The process is repeated several times, as in the one-dimensional case. This procedure is referred to

as the 2D Fast Wavelet Transform (2D-FWT).

As in 2D, we can generalize the one-dimensional wavelet transform for the three-dimensional case.

Instead of one image, there is now a sequence of images. Thus, a new dimension has emerged, the

time (t). The 3D-FWT can be computed by successively applying the 1D wavelet transform to the

value of the pixels in each dimension.

Based on previous work [12], we consider Daubechie’s W4 mother wavelet [13] as an appropriate

baseline function. This selection determines the access pattern to memory for the entire 3D-FWT

process. Let us assume an input video sequence consisting of a number of frames (3rd dimension),

each composed of a certain number of rows and columns (1st and 2nd dimension). The 1D-FWT is

performed across all frames for each row and column, that is, we apply the 1D-FWT rows × cols

times in the third dimension. The first 1D-FWT instance requires four elements to calculate the first

output element for the reference video and the detailed video, with these elements being the first pixel

belonging to the first four frames. The second output element for the reference and detailed video

are calculated using the first pixel of the third, fourth, fifth and sixth video frames. We continue this

way until the entire reference and detailed video are calculated, and these data are the input used for

the next stage.

The 2D-FWT is performed frames times, i.e., once per frame. This transform is performed by first

applying the 1D-FWT on each row (horizontal filtering) of the image, followed by the 1D-FWT on

each column (vertical filtering). The fact that vertical filtering computes each column entirely before

advancing to the next column, forces the cache lines belonging to the first rows to be replaced before

the algorithm moves on to the next column. Meerwald et al. [14] propose two techniques to overcome

this problem: row extension and aggregation or tiling.

Row extension adds some dummy elements so that the image width is no longer a power of two,

but co-prime with the number of cache sets. This technique makes sense when we use large images

with a width equal to a power of two, and filter length is greater than four on a four-way associative

cache.

Aggregation filters a number of adjacent columns consecutively before moving on to the next row,

instead of performing vertical filtering on a column by column basis. When the number of columns

filtered consecutively matches the image width, aggregation is called tiling.

Other studies [15][16], have also reported remarkable improvements when applying the tiling tech-

nique over the 2D-FWT algorithm. Our experience implementing on a CPU the sequential 2D-FWT

algorithm revealed a reduction of almost an order of magnitude in the overall execution time with

respect to a baseline version. This process can straightforwardly be applied to the 3D case. Table 1

reports solid gains on execution times as well, which range from 2-3x factors on small frame sizes

to 5-7x factors on larger ones. Selected compilers are ICC (Intel C Compiler) [17], a corporate tool,

and GCC (GNU Compiler Collection) [18], a free compiler developed by the GNU project. Input data

were recovered from files in PGM format, where a single component (grayscale) was used. I/O time

to read grayscale images from file was not considered. From now on, only the tiled 3D-FWT version

is taken for parallelization purposes, either on CPU or GPU.

2.2 Previous work

In the last few years, a very attractive area of research involves the proposal and evaluation of different

transform functions that may overcome the limitations that the DCT used by MPEG-2 presents
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Table 1 Execution times in milliseconds on an Intel Core 2 Quad Q6700 CPU when running a
3D-FWT for an input video containing 64 frames. A baseline 3D-FWT is compared against assorted
versions using different C compilers and command-line flags. (*) Optimal flags are -03, -parallel,
-par-threadshold0 -xT.

Optimizations Frame size
Programming language
and/or tool Tiles Blocks 512 x 512 1K x 1K 2K x 2K
C and g++ compiler No No 990.76 5245.62 34798.70
C and g++ (-O3 flags) Yes No 392.77 (2.5x) 1592.72 (3.3x) 6404.40 (5.4x)
C and icc (-O3 flags) Yes No 309.46 (3.2x) 1272.16 (4.1x) 5023.09 (6.9x)
C using icc optimal (*) Yes No 305.37 (3.2x) 1231.34 (4.2x) 4773.52 (7.3x)

for some particular types of video. Wavelet techniques have recently generated much interest in

applied areas and the wavelet transform has been mainly applied to image compression. Moreover,

the latest image compression standard, JPEG-2000 [19][20], is also based on the 2D discrete wavelet

transform with a dyadic mother wavelet transform. The 3D wavelet transform has been also applied

for compressing video. Since one of the three spatial dimensions can be considered similar to time,

Chen and Pearlman developed a three-dimensional subband coding to code video sequences [21],

posteriorly improved with an embedded wavelet video coder using 3D set partitioning in hierarchical

trees (SPHIT) [22]. Today, the standard MPEG-4 [23][24] supports an ad-hoc tool for encoding

textures and still images, based on a wavelet algorithm. In a previous work [25], we have presented

the implementation of a lossy encoder for medical video based on the 3D fast wavelet transform. This

encoder achieves both high compression ratios and excellent quality, so that medical doctors can not

find longer differences between the original and the reconstructed video. Furthermore, the execution

time achieved by this encoder allows for real-time video compression and transmission.

In the last few years the rapid development of the graphics processor, coupled with recent improve-

ment in its programmability have implied and explosion in interest on general purpose computation

on graphics processors (GPGPU). The wide deployment of GPU in the last several years has resulted

in a widely range of applications implemented on a graphics processor such as physics simulations

[26][27], signal and image processing [28][29], computer vision [30], global illumination [31], geometric

computing [32] or databases and data mining [33].

In the scope of the mathematical transforms several projects have developed GPU implementations

of the Fast Fourier Transform (FFT). The FFT has been implemented in GPUs [34][35][36]. Based

on these works, Sumanaweera and Liu [29] presented an implementation of the 2D-FFT in a GPU

performing image reconstruction in magnetic resonance imaging (MRI) and ultrasonic imaging. On the

same way that the 2D-FWT, the 2D-FFT could be obtained processing 1D-FFT across all columns

of an image and then doing another 1D-FFT across all rows. Their implementation automatically

balances the load between the vertex processor, the rasterizer, and the fragment processor; it also

used other improvements for providing better performance (close to a factor of two) on the Nvidia

Quadro NV4x family of GPUs compared to the CPUs in medical image reconstruction at a cheaper

cost. Recently, the 1D-FFT, 2D-FFT and 3D-FFT have been included in CUDA libraries [37]. For 2D

and 3D transforms, CUFFT (is the CUDA FFT library) performs transforms in row-major (C-order).

In the context of wavelet transform, recently, there has been several implementations of the 2D-

FWT on a GPU. In [38], it presented a SIMD algorithm that performs the 2D-DWT completely on

the GPU NVidia 7800 GTX. Their implementations adopted OpenGL and Cg for shader development.

Evaluations showed speedups between 2.68 and 7.36 in the execution time over a version executed on

an AMD Athlon 64x2 dual core processor 3800+ 2.01 GHz. The afore mentioned speedups are ap-

parent for encoding high-resolution images from 1024x1024 pixels and CPU-GPU time data transfers

were ignored. On the same way, Tenllado et. al. [39] explored the implementation of the 2D-DWT on
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modern GPUs as NVidia FX5950 Ultra and Nvidia 7800 GTX, and focused on analyzed and compared

the actual performance of the Filter Bank Scheme (FBS) [11] and Lifting Scheme (LS) [40], (LS con-

sists in an implementation of the wavelet transform based on integers), which are the most popular

choices for implementing the DWT. The implementation are coded using Cg and OpenGL. Ignoring

CPU-GPU data transfers, the GPU implementations obtained better performance than a highly tuned

CPU implementation on an Intel’s Prescott processor of 3.4 GHz. Results showed speedup factors

between 1.2 and 3.4. In [41], a novel fast wavelet lifting implementation on graphics hardware using

CUDA, which extends to any number of dimensions is proposed. The method tries to maximize coa-

lesced memory access. In [42] a study of the split-and-merge (SM) method in the context of general

purpose computation on GPU is presented. SM has been applied to multilevel algorithms such as the

2D wavelet transform and some tridiagonal system solvers. Implementations are coded using CUDA.

A comparison to the work presented in [39] demonstrated the SM algorithm is slightly more efficient

in the case of the FBS while the efficiency is higher for the LS since, in this case, the SM method

saves a greater number of accesses to the global memory. In a previous work [7], we contributed with

a CUDA implementation for the 2D-FWT obtaining speedups between 21.06 and 26.81 with regard

a sequential C version on a CPU, ignoring the communication time. Our optimized CUDA version

is 1.91 and 2.59 better than optimized OpenMP and Pthreads versions implemented on multicore

CPUs.

3D wavelet reconstruction has also been implemented on a GPU. Garcia and Shen [43] described a

GPU-based algorithm for reconstructing 3D wavelets using fragment programs which uses tileboards

as a primary layout to organize 3D wavelet coefficients. They used Cg and OpenGL to evaluate the

reconstruction formulae. Results obtained speedup of up to 6.76 on an NVidia Quadro FX 3400 over

a 3.0 GHz Intel Xeon processor.

3 Parallelization on a multicore CPU
For an efficient 3D-FWT parallelization on multicore CPUs, three different paths are explored: (1)

Automatic parallelization driven by compilers, (2) semi-automatic parallelization using OpenMP, and

(3) explicit thread-level parallelism with pthreads.

3.1 Automatic parallelization

Our first attempt uses the following flags in the C compiler (besides -03): -parallel generates

multi-threaded code for loops; -par-threadshold0 sets a threshold for automatic parallelization of

loops based on the probability of a profitable parallel execution; finally, -xT generates specialized code

and enables vectorization.

1 -parallel: Detects simply structured loops capable of being executed safely in parallel, and

automatically generates multi-threaded code for those loops.

2 -par-threshold0: Used in conjunction with parallel, this flag sets a threshold for the

automatic parallelization of loops based on the probability of a profitable parallel execution.

The value 0 commands the compiler to parallelize loops regardless of their computational

workload.

3 -xT: Generates specialized code and enables vectorization.

Execution times (see the first and second rows in Table 2) report modest compiler gains, which

encourages us to get involved in the parallelization process.

3.2 OpenMP for a semi-automatic parallelization

OpenMP [44] is an API for multi-platform shared-memory parallel programming in C/C++ and

Fortran. An OpenMP parallel version for the 3D-FWT with tiling requires a moderate programming
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Table 2 Execution times in milliseconds on an Intel Core 2 Quad Q6700 CPU when running a
3D-FWT for an input video containing 64 frames. A optimal baseline 3D-FWT using icc compiler is
compared against parallel versions with command lines flags. (*) Optimal flags are -03, -parallel,
-par-threadshold0 -xT.

Optimizations Frame size
Programming language
and/or tool Parallel Tiles Blocks 512 x 512 1K x 1K 2K x 2K
C and icc (-O3 flags) No Yes No 309.46 1272.16 5023.09
C using icc optimal (*) No Yes No 305.37 1231.34 4773.52
OpenMP (4 threads) Yes Yes No 186.47 762.59 3142.29

” + Pthreads Yes Yes No 176.91 715.85 2889.97
OpenMP (4 threads) Yes Yes Yes 166.79 687.17 2831.32

” + Pthreads Yes Yes Yes 156.09 655.33 2843.43

effort, and can fully exploit as many cores as the CPU may have. In our case, we limit the study to

a quad-core platform, focusing on scalability and raw performance. Minimal changes were required

with respect to the sequential code for the 3D-FWT due to the high-level expression of OpenMP. In

particular, a single directive #pragma omp parallel for was applied to define a parallel region on

the main for loop sweeping over frames. Execution times for this 3D-FWT version are shown in the

lower side of Table 2 (the third row). Performance was studied depending on the number of running

threads, with four threads to provide the best results versus counterparts based on one, two and eight

threads. This parallel version reduces the execution time around 40% with respect to the previous

optimization effort using the sequential C language.

3.3 Pthreads for a more explicit effort

Our last effort uses Pthreads to extract parallelism in an explicit way.

This requires a more demanding effort, namely:

• Extract the code for the slave thread to release a separated function, as Pthreads require the

entry point of each new thread to be a function. In our particular case, we have extracted the

same the loop that it was parallelized with OpenMP in the previous section.

• Create an auxiliary data structure for passing parameters. Functions to be used as the entry

point of a thread can only receive a single parameter, which must be a void pointer. This forces

us to create an auxiliary structure with one field for each parameter, and pass a pointer to this

structure.

• Specify an explicit distribution for the frames of the main loop to each CPU core, which in our

case is performed depending on the thread and job IDs.

This OpenMP version combined with Pthreads improves execution times between 5% for the small

image and 9% for the larger one, and a good scalability is preserved on the multicore CPU (see Table

2, the fourth row).

3.4 Blocking for further optimizations

We decompose frames processing with the aim of improving data locality in our 3D-FWT code:

Instead of calculating two entire frames, one for the detailed video and another one for the reference

video, we split them into smaller blocks, on which the 2D-FWT with tiling is applied.

This is translated into the pseudo-code shown in Figure 1 for the main loop, where we also illustrate

the OpenMP directive required to derive the semi-automatic version.

The last two rows in Table 2 report marginal gains when blocking is enabled, suggesting that the

3D-FWT is not a memory bandwidth bound kernel when running on a multicore CPU.
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#pragma omp parallel for default(none)
private(i,j,k) shared(partition, frames, ...)

for (i=0; i<frames; i+=2) {
j=i/2;
for (k=0; k<partition; k++) {

fwt_frames(rows/partition, cols, in_image, tmp1);
// 2D-FWT with tiling for the Low frame
fwt2DTiling(rows/partition, ...);
// 2D-FWT with tiling for the High frame
fwt2DTiling(rows/partition, ...);

}
...

}

Figure 1 The OpenMP version for the 3D-FWT on a multicore CPU when blocking is applied.

4 Compute Unified Device Architecture
The Compute Unified Device Architecture (CUDA) [3] is a programming interface and set of supported

hardware to enable general purpose computation on Nvidia GPUs. The programming interface is

ANSI C extended by several keywords and constructs which derive into a set of C language library

functions as a specific compiler generates the executable code for the GPU. Since CUDA is particularly

designed for generic computing, it can leverage special hardware features not visible to more traditional

graphics-based GPU programming, such as small cache memories, explicit massive parallelism and

lightweight context switch between threads.

All the latest Nvidia developments on graphics hardware are compliant with CUDA: For low-end

users and gamers, we have the GeForce series; for high-end users and professionals, the Quadro series;

for general-purpose computing, the Tesla boards.

Focusing on Tesla, the C870, D870 and S870 models are respectively endowed with one, two and

four computing nodes using a 1U rack-mount chassis. They are all based on the G80 GPU, upgraded

with the GT200 GPU to release the Tesla C1060 and S1070 models.

The Fermi architecture is the most significant leap forward in GPU architecture since the original

G80. Fermi implements IEEE 754-2008 and significantly increased double-precision performance. It

added error-correcting code (ECC) memory protection for large-scale GPU computing, 64-bit unified

addressing, cached memory hierarchy, and instructions for C, C++, Fortran, OpenCL, DirectCompute

and other languages.

The Tesla C2050 contains 448 cores and 3 GB of video memory to deliver a peak performance

of 1.03 TFLOPS (simple precision) and 515 GFLOPS (double precision), a peak on-board memory

bandwidth of 144 GB/s and a peak main memory bandwidth of 8 GB/s under its PCIe x16 interface

of second generation.

The Fermi parallel architecture is a SIMD (Single Instruction Multiple Data) processor. In C2050

cores are organized into 14 multiprocessors. The first generation of Tesla GPU has a 16 KB shared

memory very close to registers in speed (both 32 bits wide), and constant and texture caches of a

few kilobytes. On the Fermi Tesla, the shared memory can be configured from 16KB to 48 KB. Each

multiprocessor can run a variable number of threads, and the local resources are divided among them.

In any given cycle, each core in a multiprocessor executes the same instruction on different data based

on its threadId, and communication between multiprocessors is performed through global memory.

At the highest level, a program is decomposed into kernels mapped to the hardware by a grid

composed of blocks of threads scheduled in warps. No inter-block communication or specific schedule-

ordering mechanism for blocks or threads is provided, which guarantees each thread block to run on

any multiprocessor, even from different devices, at any time. Threads belonging to the same block

must all share the registers and the shared memory on a given multiprocessor. This tradeoff between
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Table 3 Major hardware and software limitations with CUDA. Constraints are listed for the Fermi Tesla
C2050 GPU.

Hardware feature Value Software limitation Value

Multiprocessors (MP) 14 Threads / Warp 32
Processors / MP 32 Thread Blocks / MP 8
32-bit registers / MP 32768 Threads / Block 1024
Shared Memory / MP 16 KB/48KB Threads / MP 1536
L1 Cache / MP 48 KB/16 KB
L2 Cache 768 KB

Table 4 Differences in terminology between CUDA and OpenCL

CUDA Terminology OpenCL Terminology
GPU Device
Multiprocessor Compute Unit
Scalar core Processing element
Global memory Global memory
Shared (per-block) memory Local memory
Local memory (automatic, or local) Private memory
kernel program
block work-group
thread work item

parallelism and thread resources must be wisely solved by the programmer to maximize execution

efficiency on a certain architecture given its limitations. These limitations are listed in Table 3 for the

Tesla C2050.

5 Open Computing Language
Open Computing Language (OpenCL) is an open royalty-free standard for general purpose parallel

programming across CPUs, GPUs and other processors, giving software developers portable and

efficient access to the power of these heterogeneous processing platforms.

OpenCL includes a host C API for controlling and interacting with GPU devices, a C language for

writing device kernels and an abstract device model that maps very well to NVidia and ATI hardware.

There are some differences between CUDA and OpenCL in terminology, as we can observe in table

4, although both, CUDA and OpenCL, do mostly the same.

Setting up the GPU for kernel execution differs substantially between CUDA and OpenCL. Their

APIs for context creation and data copying are different, and different conventions are followed for

mapping the kernel onto the GPUs processing elements. These differences could affect the length of

time needed to code and debug a GPU application, but here we mainly focus on runtime performance

differences.

In the OpenCL execution model, kernels are executed by one or more work-items. Work-items are

collected into work-groups and each work-group executes on a compute unit. In the OpenCL memory

model, kernel data must be specifically placed in one of four address spaces: global memory, constant

memory, local memory or private memory. The location of the data determines how quickly it can be

processed.

6 Parallelization on a manycore GPU
This section describes our parallelization strategies on a GPU using CUDA and OpenCL, along with

some optimizations performed investing a similar effort to that outlined for the CPU case in section

3.

6.1 CUDA implementation of 3D-FWT

Our 3D-FWT implementation in CUDA consists of the following three major steps:
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Figure 2 The CUDA kernel for computing the FWT on each video frame when an optimal block size of
128 threads is used. The diagram is tailored to a frame size of 128x128 pixels, which forces a topology of
128x1 blocks for the grid. The i-th block loads 4x128 pixels into shared memory and computes 128 pixels
for H and G, storing them in its i-th row.

1 The host (CPU) allocates in memory the first four video frames coming from a .pgm file.

2 The wavelet transform is applied one level in each dimension to obtain a better trade off between

compression ratio and quality.

3 The first four images are transferred from main memory into video memory. The 1D-FWT is

then applied to the first four frames over the third dimension to obtain a couple of frames for

the detailed and reference videos. Figure 2 illustrates this procedure for an optimal block size

of 128 threads. Each thread loads four pixels into shared memory and computes an output H

and G pair. The grid is composed of rows × cols/128 blocks.

4 The 2D-FWT is applied to the frame belonging to the detailed video, and subsequently, to the

reference video (see Figure 3). Results are then transferred back to main memory.

The whole procedure is repeated for all remaining input frames, taking two additional frames on

each new iteration. Figure 4 summarizes the way the entire process is implemented in CUDA. On

each new iteration, two frames are copied, either at the beginning or at the second half depending on

the iteration number. In particular, the first iteration copies frames number 0, 1, 2 and 3 to obtain

the first detailed and reference video frames, the second iteration involves frames 2, 3, 4 and 5 to

obtain the second detailed and reference video frames, and so on. Note that frames 4 and 5 occupy

the memory formerly assigned to frames 0 and 1, which requires an interleaved access to frames in

the second iteration. Conflicts on shared memory banks and coalescing on global memory accesses

has been solved.
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Figure 3 The CUDA kernel for computing the 2D-FWT on a 128× 128 image.

Figure 4 The way 3D-FWT is implemented in CUDA using interleaved accesses to video frames.

6.2 OpenCL implementation

Our 3D-FWT implementation in OpenCL is based on the same CUDA algorithm with the three major

steps described in the previous section. We use simple source to source translation to convert the

kernels of the implementation of 3D-FWT on CUDA to OpenCL. Our effort have been lesser to that

outlined for the CUDA version, although there are some differences between CUDA and OpenCL in

terminology, the model is similar and is simple to transform the kernels.
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Table 5 Summary of execution times (msecs.) for the 3D-FWT (GPU factor gains between parenthesis).

Frame size
Platform and code version 512 x 512 1K x 1K 2K x 2K
CPU optimal numbers of threads 156.09 655.33 2843.43
CUDA implementation 29.21 (5.3x) 100.61 (6.5x) 381.58 (7.4x)
OpenCL implementation 87.12 (1.8x) 276.39 (2.4x) 1011.47 (2.8x)

Table 6 OpenCL and CUDA execution times (in msecs.) for our optimal tiled 3D-FWT implementation on an input video containing
64 frames of increasing sizes. Breakdown into major stages, where steps 3 and 4 complete the 2D-FWT and steps 1 and 5 represent
The communication cost, which is removed in the last row.

Frame size
3D-FWT stage – OpenCL 512x512 1Kx1K 2Kx2K
1. CPU to GPU transfer 25.19 86.38 325.52
2. 1D-FWT on frames 3.53 6.64 11.73
3. 1D-FWT on rows 3.85 5.89 6.97
4. 1D-FWT on cols 3.80 9.82 29.29
5. GPU to CPU transfer 50.75 167.66 637.96
Computational time (2-4) 11.18 22.35 47.99
GPU/CPU speed-up 14.0x 29.3x 59.3x

Frame size
3D-FWT stage – CUDA 512x512 1Kx1K 2Kx2K
1. CPU to GPU transfer 11.62 45.6 181.63
2. 1D-FWT on frames 2.11 4.18 7.73
3. 1D-FWT on rows 2.37 2.39 2.39
4. 1D-FWT on cols 2.29 6.86 25.15
5. GPU to CPU transfer 10.82 41.58 164.68
Computational time (2-4) 6.77 13.43 35.27
GPU/CPU speed-up 23.1x 48.8x 80.6x

7 Performance analysis
7.1 Comparison between platforms

Table 5 summarizes the optimal execution times we have obtained on each hardware platform (mul-

ticore CPU and GPU versions with CUDA and OpenCL) at the end of our parallelization effort when

the 3D-FWT is applied to a video of 64 frames of different sizes. A similar programming effort and

hardware cost was invested on each platform.

We have included our optimal tiled 3D-FWT implementation designed with OpenMP and Pthreads.

This version is executed on an Intel Core 2 Quad Q6700 CPU (see Table 2, last row).

The GPU version with CUDA exhibits better performance and scalability, with solid gains in all

cases. As the size of images increase, the difference between the CUDA implementation and the CPU

optimal is bigger. The CUDA version speed-up factor extends into 7.4x factor in the most favorable

case. In general, the GPU acceleration keeps in the expected range for a class of algorithms like the

3D-FWT with low arithmetic intensity, pseudo-regular access patterns and intricate loop traversing.

The OpenCL implementation obtains better results than the optimal CPU. Speedups are consider-

able and present a good scalability. The GPU speed-up factor extends into 2.8x factor in the most

favorable case. However, these outcomes are very far from those collected through GPUs Tesla with

CUDA. This is due to the semantic gap between OpenCL and compute devices because it is vendor

independent and hence not specialized for any particular compute device.

7.2 GPU profiling

For both GPU versions with OpenCL and CUDA, we may split its execution time into constituent

steps for completing a quick profiling process. Table 6 reveals this breakdown, where we can see

that each 1D-FWT phase is lower in CUDA option than in the OpenCL implementation. This is

because of the additional layer introduced by OpenCL. The major difference extends into 1.7x factor

for the computational time revealing an important and substantial discrepancy in favor of CUDA. If

we eliminate the communication time in each configuration, accelerations obtained with CUDA are

very considerable and important. Likewise, speedups obtained by OpenCL are highly competitive.
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With regard to the communication time, this one predominates clearly over calculations in both

implementations. This is a consequence of the nature of a 3D-FWT algorithm, which lacks of arith-

metic intensity but handles big data volumes. Now, the gap between CUDA and OpenCL is very

important and speedups go up 4.7x favorable to CUDA. Thus, it is still unclear that OpenCL can

achieve the same performance as other programming frameworks that are designed for particular

compute devices.

We believe this communication cost can be removed as long as the 3D-FWT represents a small frac-

tion of a video processing application where the input video has to be transferred into GPU memory

anyway, which represents a frequent case in real practice. Moreover, newer CUDA programming tools

and underlying hardware allow to overlap data transfers via PCI-express with internal GPU compu-

tations, which may alleviate this overhead. In our experiments, the communication time represents

an average of 85% and 91% for the different configurations of the CUDA and OpenCL versions,

respectively. Therefore, we can obtain an improvement of 15% for CUDA and 9% for OpenCL in the

execution time, if we use streaming to overlap the CPU-GPU transfers with the kernels computing in

the GPU.

7.3 Combined tuning

The CPU and the GPU execution time may be confronted from a performance analysis viewpoint, but

with a more realistic and profitable perspective we may travel to a tantalizing scenario: A bi-processor

platform, where each hardware contributes to speed-up the application, either enabling few CPU cores

or an army of streaming processors.

A straightforward high-level process may partition the 3D-FWT loops to assign 1D-FWT compu-

tations to CPU or GPU inversely to their estimated latency, which can be taken from those times

reported in Tables 5 and 6. For example, when communication cost is considered, six and two 1Kx1K

1D-FWTs in the CUDA and OpenCL versions, respectively, will be assigned to the GPU for each one

computed on the CPU, and when this cost is neglected, up to eighty and sixty 2Kx2K 1D-FWT in

the CUDA and OpenCL implementations, respectively, may be computed on the GPU for a single on

the CPU.

A combined effort is also feasible on applications performing 3D-FWTs over a list of queued videos

on a batch processing basis: Larger videos are mapped to the GPU, whereas smaller ones stay on the

CPU for an even workload balance on each platform to maximize task parallelism.

Overall, our programming efforts on multicore CPUs and manycore GPUs provide multiple chances

for a compatible scenario where they may cooperate for an additional performance boost.

8 Summary and conclusions
In this paper, different alternatives and programming techniques have been introduced for an efficient

parallelization of the 3D Fast Wavelet Transform on multicore CPUs and manycore GPUs. OpenMP

and Pthreads were used on the CPU to expose task parallelism, whereas CUDA and OpenCL were

selected for exploiting data parallelism on a new Fermi Tesla GPU with an explicit memory handling.

Similar programming efforts and hardware costs were invested on each side for a fair architectural

comparison. The implementation on CUDA achieves better speedups, ranging from 5.3x to 7.4x for

different image sizes. OpenCL presents gains up to 2.8x with regard the best implementation on

CPU. However, these outcomes are even lower than those obtained with CUDA. OpenCL is hardly

competitive with CUDA in terms of performance because the first one has and environment setup

overhead that is large and should be minimize. This fulfills our expectations for a class of algorithms

like the 3D-FWT, where we face low arithmetic intensity and high data bandwidth requirements. Our
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performance gains also enable the GPU for real-time processing of the 3D-FWT in the near future,

given that GPUs are highly scalable and become more valuable for general-purpose computing in the

years to come.

If we discard the cost of communications between CPU and GPU, profits rise to a factor of 80.6x

for larger image in the CUDA version. Moreover, the difference in the communication time between

CUDA and OpenCL is very significant, because the last one has been designed for general compute

devices.

Following this trend, the 3D-FWT may benefit extraordinarily given its leading role for under-

standing video contents in applied scientific areas and performing video compression in multimedia

environments. Our work is part of the developing of an image processing library oriented to biomedical

applications. Future achievements include the implementation of each step of our image analysis pro-

cess so that it can be entirely executed on GPUs without incurring penalties from/to the CPU. Our

plan also includes porting the code to CPU/GPU clusters.
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