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crop production

Introduction

The need for optimal solutions to most agricultural 
sector problems is a priority because the current 
focus on concepts, such as performance, efficiency 

and costs, demand that the agricultural sector 
look for a higher sustainability in competitive 
markets. In this context, information gathered by 
studies on the spatial variability analysis of culture 
productivity with geostatistics techniques has 
increased the scope of this area of study, with the 
identification of high and low productivity zones, 
and the total produced and possible relations with 
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spatial variability in soil properties (Reichert et 
al., 2008; Johann, et al., 2010).

However, the description of the spatial vari-
ability of any attribute that is georeferenced in 
thematic maps depends substantially on the ac-
curacy of the geostatistics analysis results and the 
experimental viability in terms of the available 
resources for data collection and the measurement 
of variables. Therefore, it is necessary to devise a 
reduced sampling scheme that can minimize the 
operational costs needed while maximizing the 
quality of results obtained in spatial predictions 
for unsampled localizations. 

Studies in the present literature have assessed 
the use of classical spatial sampling schemes, 
including random, centered systematic, triangular, 
hexagonal and stratified schemes, for experimental 
planning in order to find information that may 
support an efficient description of spatial vari-
ability in the georeferred data (McBratney et al., 
1981; Yfantis et al., 1987, Oda-Souza et al., 2010). 
Nevertheless, with the acceptance of variations 
in the parameters and characteristics that support 
the spatial process, such as the nugget, sill, range 
and anisotropy effects, the sampling schemes 
described above have generated very unreliable 
results (Yfantis et al., 1987; Dunn and Harisson, 
1993; Diggle and Ribeiro Junior, 2007).

However, failing to use these classical sampling 
schemes in an experimental area where the 
sample population of points is infinite and un-
countable makes the determination of a sample 
design based on this population of points an 
extremely complex task. A helpful methodol-
ogy that can be used in this case involves the 
discretization of the area under study, which is 
represented by an initial sampling grid with a 
large number of points. This provides a limited 
area of sampling points. Thus, choosing the most 
efficient sampling design for spatial prediction 
can be defined as an optimization problem that 
consists of choosing, from an initial sampling 
grid, the best small-sized sampling design 

that can minimize both losses in the accuracy 
of results regarding the spatial prediction and 
costs in the field data collection and laboratory 
analyses.

Studies to find optimized sampling designs in 
variables displaying spatial dependence are very 
recent. This optimization methodology is used, 
for example, in problems of rationalization of 
environmental monitoring network stations 
(Ruiz-Cárdenas et al., 2010). 

A few studies have investigated optimized sam-
pling designs in relation to maximizing prediction 
efficiency for the analysis of spatial variability 
in assessing soil properties and crop yields, spe-
cifically (Van Groenigen, 2000; Ferreyra et al., 
2002). However, these studies have not compared 
thematic maps generated by the initial sampling 
grid or by the optimized sampling design using 
similarity measures (Guedes et al., 2011). They 
also did not use the smallest possible sampling 
size for this optimized design to minimize the 
loss of spatial prediction accuracy. 

There are many search procedures to tackle the 
problem of finding the best sample design. For 
instance, sequential search methods (Bôer et al., 
2002), such as the global reduction enumeration 
method, can be used, which consist of analyz-
ing all possible solution combinations (Le et al., 
2003). The methods previously mentioned are 
only efficient and computer-friendly when given 
a small number of possible groups. 

However, metaheuristic strategies are used in 
artificial intelligence, such as the simulated anneal-
ing algorithm (Costa Filho et al., 2010; Guedes et 
al., 2011) and the genetic algorithm (Chakrapani 
and Rajan, 2008; Ruiz-Cárdenas, 2010, Guedes et 
al., 2011), which use an iterative search method 
to determine the optimal solution.

The present work has developed optimized sample 
designs with the smallest possible size relative to 
their efficiency in predicting spatial locations not 
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sampled by the simulated annealing search method. 
This methodology was applied to simulated data 
sets while considering two objective functions: 
the sum quadratic error for the spatial prediction, 
which should be minimized, and an accuracy 
measure called overall accuracy, which should 
be maximized. Nonetheless, simulated data sets, 
with different structures of spatial variability, have 
been used and evaluated to discover how much 
this structure may influence the determination 
of optimized sampling designs.

These simulations have oriented the execution 
of the main objective of this work: to optimize 
the size and sampling designs for analyzing soy 
productivity georeferenced data sets inside a 
commercial area, collected with a harvester ma-
chine that represents the discretization of the area 
studied. The sampling design will be optimized 
by the simulated annealing method. Based on this 
optimized sampling design, it will be possible 
to use geostatistic techniques to estimate, for 
the reference year and oncoming crop years, the 
amount to be harvested from each of the regions 
of the study area and the total production, thus 
minimizing the costs of the experiment while 
preserving its spatial prediction trustworthiness 
and quality.

Materials and methods

First, 10 simulated data sets were generated 
and distributed over a regular initial 20 × 20 
sampling grid with 400 sampling points and a 
maximum coordinates limit of 100 m, which 
represented a discretization in the area of study. 
For each simulated data set, the values used as 
the regionalized variables in these localizations 
were simulated by a Monte Carlo experiment, 
which represented realizations of multivariate 
stochastic processes and displayed stationary 
Gaussian variables, with no directional trend, 
isotropic or exponential model, as described in 
Equation 1, with a nugget effect (C0), sill (C0 + 
C1) and range (a) of 2, 10 and 60, respectively.

 	
(1)

The soy productivity data (t ha-1) for this study 
was collected during the 2004/2005 crop year, in a 
commercial area of 57.16 ha located in the city of 
Cascavel, West of Paraná, Brazil. The geographic 
coordinates for the area are approximately 24.95º 
South and 53.57º West, datum SAD-69, at an 
average height of 650 m above the sea level. In 
the rhodic hapludox area, which had a clay-like 
texture, the topographical scope was performed 
by GPS receivers with fixed positioning and 
preprocessed differential corrections. 

The data set for the productivity corresponds to 
5000 sampling points registered in the productivity 
reading of the harvest monitor. The reading was 
performed by sensors installed in the harvester 
machine, which measure the instantaneous grain 
yield during harvesting using an impact plate 
in the flowing grain. This data set, which has a 
large number of sampling points, represents a 
partitioning of the productivity distribution in 
the area under study.

The selection of the best set of sampling points 
and the smallest sampling size that should fulfill 
a minimally efficient criterion for the spatial 
prediction consisted of a reduction in the sam-
pling size of the initial grid of 400 points in the 
simulated data sets and of 5000 points in the crop 
production data. This was accomplished with an 
optimization process called Simulated Annealing, 
consisting of an iterative method to search for 
optimized solutions to complex problems with a 
large space for possible solutions and no need for 
any information about derivatives, nonlinearity 
and discontinuity.

The method consists of a set of systematized random 
actions that simulate the natural thermodynamic 
phenomenon of metallurgy known as annealing. 
In this process, metal or glass is heated to high 
temperatures, allowing the atoms to move freely 
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and rapidly in a disorderly state. The material is 
then slowly and gradually cooled down until it 
solidifies and becomes stronger (Benvenga, 2011). 

The algorithm implementation, which defined 
the sampling size and optimal sampling design, 
consisted of the following stages:

Stage 0. From i = 0 it was predetermined that 
the initial sampling size d0 should be 15% of 
the number of points in the initial grid. Some 
measures for the simulated annealing algorithm 
were also previously defined based on initial 
tests: the stopping criterion for the algorithm was 
equal to 1200 interactions (defined by observing 
the algorithm stationary trend), the value of the 
initial temperature was set to 1 and the geometric 
cooling schedule was equal to ti+1=0.9 × ti. The last 
two results guaranteed that the process escaped 
optimal places and searched for more promising 
regions in the solution range.

Stage 1. In a simple and random way, a sampling 
design Si iS of the reduced size d0 was selected 
from the initial grid.

Stage 2. For this sampling design, an exponential 
model was adjusted using the maximum likelihood 
method, and the spatial prediction of the variable 
values in localizations at the original grid were 
performed using a geostatistical interpolation 
method called kriging. An objective function for 

iS was then calculated. Two optimal designs were 
generated independently, with distinct objective 
functions. In the first process (TS1), the objective 
was to maximize an accuracy measure called the 
Overall Accuracy (OA), which is used to measure 
the similarity between two maps and is present 
in Equation 2 (Anderson et al., 2001; De Bastiani 
et al., 2012).

,	 (2)

where, N is the value for the total area and xjj 
are the elements in the diagonal error matrix. 

Each xjk element in this matrix represents the 
total area of each part that belongs to the class 
j ( j =1,…, r) of values in the model map (a map 
that expresses the spatial variability of values 
predicted in the initial grid localizations obtained 
through the sampling points resulting from 
the optimization process) and to the class k (k 
=1,…, r) of values in the reference map (a map 
that expresses the spatial variability of values 
displayed in the initial grid).

Therefore, the main diagonal line represents the 
amount of area with the same classification in the 
two maps, while values outside the main diagonal 
line represent the amount of area with classifica-
tions without any match. Ten class intervals (r=10) 
with the same amplitude were used in this work, 
guaranteeing that if in a certain area of the two 
maps there is the same classification, the values 
predicted will be very similar.

In the second optimization process (TS2), the 
objective function to be minimized was the sum 
quadratic error of the spatial prediction.

Stage 3. A new sampling design Si+1 was registered 
when a point in the former design Si+1 was chosen 
randomly and replaced by another point chosen 
randomly in the surroundings.

Stage 4. The objective function was calculated 
for the sampling design Si+1 in the same was as 
described for stage 2.

Stage 5. The objective function variation between 
two sampling schemes was calculated by the ex-
pression . If the objective is to 
minimize the sum quadratic error of the spatial 
prediction, the new solution Si+1 will be accepted 
with the probability described in Equation 3.

.	 (3)
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The following similarity measures were used 
for comparison: an overall accuracy, described 
in Equation 2, with a minimum accuracy level 
of 0.85, a concordance index Tau (T), expressed 
in the Equation 5- (a), and a Kappa index (K), 
expressed in Equation 5-(b), both with a low 
accuracy if T(or K) ˂ 0.67, an average accuracy 
if 0.67≤T(or K) ˂ 0.80 and a high accuracy if 
T(orK) T(or K)≥ 0.80 (Ma and Redmond, 1995; 
Anderson et al., 2001; De Bastiani et al., 2012).

 (5-a)

 (5-b)

In addition to the spatial dependence model al-
ready cited, the best methodology to determine 
sampling designs with reduced sizes was carried 
out for different sizes of the initial grid (with 
625, 900 and 1600 sampling points) and differ-
ent models of spatial dependence in the sets of 
simulated data. The vector of the parameters 
(a, C0, C0+C1) that define the structure of spatial 
dependence for the spatial models used for the 
construction of simulated data sets are: (75,2,10), 
(90,2,10) and (60,5,10). For each size of a regular 
initial sampling grid and for each model, ten data 
sets were simulated and the best optimization 
methodology was applied. The main objective 
for variations in the sampling sizes of the initial 
grid, and in range and nugget effect values, was 
to study the efficiency of the optimization meth-
odology applied in a more refined partitioning of 
the area under study and to determine how far 
the parameters that define the spatial dependence 
structure of the regionalized variable influence 
the choice for smaller sampling designs.

The geostatistical analyses were performed using 
the software R (R Development Core Team, 2010) 
and the module geoR (Ribeiro Jr. and Diggle, 2001).

However, if the objective is to maximize overall 
accuracy, the new solution Si+1 will be accepted 
with the probability described in Equation 4.

.	 (4)

Stage 6. For the current sampling size dm, the 
optimization process will be finished if the stop-
ping criterion has been achieved. Otherwise, the 
cooling schedule described in stage 0 should be 
applied to the current temperature value followed 
by i=i+1, and a return to stage 3.

Stage 7. If the overall accuracy value for TS1, with 
size dm, is equal to 0.85, which corresponds to 
a high level of similarity between the two maps 
(Anderson et al., 2001; De Bastiani et al., 2012) 
the optimization process is finished. Otherwise, 
we have to go back to stage 1 with d m+1 = dm 

+ 20 (for the simulations) and dm+1 = dm + 200 
(for the productivity data). For the optimization 
process TS2, the process was finished when the 
sum quadratic error of the spatial prediction cor-
responded to 15% of the same calculation for the 
smallest sampling design.

In the simulations, the size-reduced optimized 
sampling grids were compared between them-
selves and two simple random sampling schemes 
generated in a sampling size that satisfied the 
criteria described in stage 7 of the optimization 
process.	

The measures associated with the spatial prediction 
of the initial grid, with its 400 sampling points, 
were as follows: estimates of the parameters in the 
exponential model adjusted to the semivariance 
function, mean variance of the spatial predic-
tion, percentage and total values predicted for 
the variable, which are above the third quartile, 
and the sum quadratic error of the percentage 
and total of values predicted, which are above 
the third quartile. 
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the overall accuracy (Figure 1-a) and minimize 
the sum quadratic error of the spatial prediction 
(Figure 1-b). The two optimization processes may 
also define a sampling design that will provide a 
better scope of the area studied (Figures 1-c and 
1-d). Similar results can be found in Guedes et 
al. (2011), who considered the spatial prediction 
average variance as an objective function to be 
minimized, and Lark (2002), who has proved 
through simulations that the regularity of points 
distributed in the area can be found in the gen-
eration of optimized designs for a regionalized 
variable with lower range values. 

The exponential model estimates (Equation 
1) of the semivariance function (Table 1) are 
displayed for these simulations. It is clear that 
there was a moderate dispersion of estimates 

Results and discussion

Analysis of the simulation results: a comparison 
between optimization processes

The simulated data sets, which have initial sam-
pling grids of 400 sampling points with a nugget 
effect (C0), a sill (C0 + C1) and a range (a) equal to 
2, 10 and 60 meters, respectively, are presented in 
Figure 1 with one of the simulations and sampling 
sizes that fit the previously defined criteria for 
stage 7 of the optimization process. Scatter plots 
displaying the order of interactions versus the value 
for the objective function to be optimized and the 
arrangement of points obtained in the optimiza-
tion process are shown. These scatter plots show 
that simulated annealing provides an efficient 
search of sampling designs that can maximize 

  

Figure 1. A dispersion chart of the interaction order versus the objective function values 
for sampling designs, which have improved (a) the overall accuracy and (b) the sum 
quadratic error (SQE) for the spatial prediction. An arrangement of points for sampling 
designs, which have improved (c) the overall accuracy and (d) the SQE (sum quadratic 
error) for spatial prediction, considering sampling sizes that satisfied the minimum values 
for these measures in one of the simulations.
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and an underestimation of the range values for 
all reduced samplings. The mean values for the 
nugget effect and sill are closer to real values and 
are also registered in the samplings optimized 
by the overall accuracy maximization.

By analyzing the results displayed in Table 2, 
which refer to measurements related to the spatial 
prediction quality, it becomes clear that all reduced 
samplings report high accuracy measure values 
that are above or very close to levels that indicate 
a high similarity among the maps generated by the 
values simulated and obtained through the spatial 
prediction (De Bastiani et al., 2012). Moreover, 
the worst results for the spatial prediction vari-
ance mean  and for the sum quadratic error 
of the spatial prediction (SQE) could be observed 
for the sampling design that improved the overall 
accuracy, as seen in Figures (2-a) and (2-b). This 
provides evidence that the lowest values of the 
spatial prediction variance mean in the simple 
random sampling schemes (Ale1 and Ale2) and 
the lowest values of the sum quadratic error of the 
spatial prediction in the sampling schemes have 
optimized this measure (Ale2 and TS2).

However, the sampling design obtained by the 
optimization of the overall accuracy generated, 
in all simulations, optimized sampling patterns 
containing the lowest number of points, as 
displayed in Figure (2-c), with a mean of ap-
proximately 168 sampling points corresponding 
to 42% of the initial grid (Table 2). In contrast, 
other sampling schemes use approximately 71% 
to 79% of the initial grid in the formation of an 
efficient sampling design that considers spatial 
predictions. Therefore, the high values of the 
accuracy measurements and the low values of 
the variance mean and the sum quadratic error 
of spatial prediction that were accomplished by 
using other sampling schemes were mainly due 
to the high number of sampling points used to 
identify a sampling design that could satisfy the 
optimization criteria.

Analysis of the simulation results: a comparison 
of the global accuracy optimization in models 
with distinct parameters or distinct sampling sizes

Considering simulations with 400 sampling 
points, Table 3 and Figure 3 display results of 

Table 1. Descriptive statistics of the parameter estimates for the exponential model.

Statistics
Sampling 
Scheme

Mean
(x)

Standard 
Error (SE) x±2SE

Coefficient of 
variation

CE
(real = 20%)

TS1 18.68 3.19 [12.30, 25.06] 54.04

TS2 39.83  2.01 [35.81, 43.85] 15.95

Ale1 24.49  2.51 [19.47, 29.51] 32.46

Ale2 22.22  2.31 [17.60, 26.84] 32.81

Sill 
(C0 + C1)

TS1 10.41  1.21 [7.99, 12.83] 36.90

TS2  9.36  1.04 [7.28, 11.44] 35.10

Ale1  8.89  1.04 [6.81, 10.97] 36.89

Ale2  9.02  0.93 [7.16, 10.88] 32.47

Range (a) TS1 43.73 3.94 [35.85, 51,61] 28.74

TS2 49.56 5.35 [38.86, 60.26] 34.13

Ale1 52.90 5.78 [41.34, 64.46] 34.53

Ale2 50.50 5.62 [39.26, 61.74] 35.21
CE = 100×C0/( C0 + C1).
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Table 2. Descriptive statistics of the measures related to the spatial prediction quality and minimum necessary numbers 
according to the optimization criteria.

Statistics
Sampling
Scheme

Mean
(x)

Standard 
Error (SE) x±2SE Coefficient of variation

TS1 3.67 0.19 [3.29, 4.05] 16.35

TS2 2.44 0.13 [2.18, 2.70] 17.11

Ale1 1.94 0.09 [1.76, 2.12] 14.85

Ale2 1.03 0.04 [0.95, 1.11] 12.68

SQE TS1 943.88 43.14 [857.60, 1030.16] 14.45

TS2 95.58 10.75 [74.08, 117.08] 35.51

Ale1 668.22 25.88 [616.46, 719.98] 12.25

Ale2 313.49 11.93 [289.63, 337.35] 12.04

Overall Accuracy(OA) TS1 0.87 0.003 [0.864, 0.876] 1.33

TS2 0.94 0.006 [0.928, 0.952] 1.78

Ale1 0.86 0.003 [0.854, 0.866] 0.69

Ale2 0.92 0.003 [0.914, 0.926] 1.08

Kappa (K) TS1 0.80 0.006 [0.788, 0.812] 2.27

TS2 0.91 0.006 [0.898, 0.926] 2.69

Ale1 0.79 0.003 [0.784, 0.796] 1.67

Ale2 0.88 0.006 [0.868, 0.892] 1.75

Tau (T) TS1 0.83 0.003 [0.824, 0.836] 1.72

TS2 0.93 0.006 [0.918, 0.942] 1.94

Ale1 0.82 0.003 [0.814, 0.826] 0.90

Ale2 0.90 0.003 [0.894, 0.906] 1.37

Minimum Number of 
Sampling Points (n)

TS1 168.20 7.09 [154.02, 182.38] 13.03

TS2 283.90 4.55 [274.80, 293.00] 5.07

Ale1 250.40 4.83 [240.74, 260.06] 6.10

Ale2 316.30 2.61 [311.08, 321.52] 2.61

SQE: sum quadratic error of spatial prediction.

  

Figure 2. A box plot of (a) the mean spatial prediction variances, (b) the SQE (sum quadratic error) for spatial prediction 
and (c) the sampling size necessary in optimization for each reduced sampling scheme.

a b c
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the quality measures for the spatial prediction 
and the number of necessary points required to 
maximize the overall accuracy for the sampling 
designs, considering the models proposed initially. 
These results suggest that, on average, with an 
increase in the range values, there is a similar 
increase in the optimized sampling designs in 
relation to the values for the spatial prediction 
variance mean (Figure 3-d) and for the accuracy 
measures (Figures 3-a, 3-b, 3-c), and a decrease in 
the sum quadratic error of the spatial prediction 
(Figure 3-e) and in the number of necessary points 
required by the optimization criteria. 

An increase in the nugget effect also resulted in 
an increase in the variance mean of the spatial 
prediction (Figure 3-i) and in the sum quadratic 

error of the prediction (Figure 3-j). An increase 
in the nugget effect value in the simulated model 
also decreased the accuracy measure values 
(Figures 3-f, 3-g, 3-h) obtained for the optimized 
designs. The reduction in accuracy measures for 
the optimized designs, generated by an increase 
in the nugget effect, caused an increase in the 
number of necessary points for the optimiza-
tion process. According to Lark (2002, 2011), 
the conception of a sampling design optimized 
by simulated annealing depends on the spatial 
structures underlying the regionalized variable. 

Figure 4 displays box plots for some measures 
obtained for the best designs arrived at through the 
simulated annealing process in many simulations 
with different initial grid sizes (400, 625, 900 and 

Table 3. Descriptive statistics of measures of spatial prediction accuracy and the minimum number of points necessary to 
reach the lowest level of high similarity between maps among the optimized sampling schemes, in relation to the distinct 
models simulated. 

Statistics Model
Mean

(x)
Standard 

Error (SE) x±2SE
Coefficient of 

variation

Range = 60  3.67  0.19 [3.29, 4.05] 16.35

Range = 75  3.67  0.11 [3.45, 3.89]  9.65

Range = 90  3.57  0.13 [3.31, 3.83] 11.78

Nugget Effect = 5  5.71  0.16 [5.39, 6.03]  8.87

SQE Range = 60  943.88 43.14 [857.60, 1030.16] 14.45

Range = 75  857.77 37.14 [783.49, 932.05] 13.69

Range = 90  765.87 33.17 [699.53, 832.21] 13.70

Nugget Effect = 5 1377.76 59.46 [1258.84, 1496.68] 13.65

Overall Accuracy
(GA)

Range = 60  0.87  0.003 [0.864, 0.876]  1.33

Range = 75  0.86  0.003 [0.854, 0.866]  0.92

Range = 90  0.87  0.003 [0.864, 0.876]  1.61

Nugget Effect = 5  0.86  0.003 [0.854, 0.866]  1.24

Kappa (K) Range = 60  0.80  0.006 [0.788, 0.812]  2.27

Range = 75  0.79  0.003 [0.784, 0.796]  1.71

Range = 90  0.80  0.006 [0.794, 0.806]  2.74

Nugget Effect = 5  0.79  0.006 [0.778, 0.802]  2.22

Tau (T) Range = 60  0.83  0.003 [0.824, 0.836]  1.72

Range = 75  0.83  0.003 [0.824, 0.836]  1.20

Range = 90  0.84  0.006 [0.828, 0.852]  2.10

Nugget Effect = 5  0.82  0.003 [0.814, 0.826]  1.61

Minimum Number 
of Sampling Points 
(n)

Range = 60 168.20 7.09 [154.02, 182.38] 13.03

Range = 75 161.60 5.16 [151.28, 171.92] 10.10

Range = 90 158.91 5.92 [147.07, 170.75] 11.78

Nugget Effect = 5 185.45 5.24 [174.97, 195.93]  8.94

SQE: the sum quadratic error of the spatial prediction.
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Figure 3. Box plots of the measures for optimized sampling designs: (a) Overall Accuracy, (b) Kappa Index, (c) Tau Index, 
(d) Variance mean spatial prediction and (e) SQE for models with distinct range values. (f) Overall Accuracy, (g) Kappa 
Index, (h) Tau Index, (i) Variance mean spatial prediction and (j) SQE for models with distinct nugget values.
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1600) that aim to optimize the overall accuracy 
but that have the same values for the range (a = 
60), nugget effect (C0 = 2) and sill (C0 + C1 = 10) 
in the spatial dependence model. 

With these results, it is possible to see that as the 
initial grid size increases, there is a correspond-
ing decrease in the accuracy measures (Figures 
4-a, 4-b, 4-c), especially in simulations with an 
initial sampling size of 1600. There is, however, 

a decrease in the spatial prediction mean vari-
ance in the optimized designs that comes from 
simulations with higher initial design sizes 
(Figure 4-d). 

An increase in the initial grid also causes an 
increase in the sum quadratic error of spatial 
prediction and in the number of points necessary 
to generate the best sampling design. This increase 
is generated by the direct relationship between 

    

 

Figure 4. Box plots of the measures: (a) Overall Accuracy, (b) Kappa Index, (c) Tau Index, (d) Variance mean spatial 
prediction, (e) SQE and (f) number of points necessary to reach a minimum index of overall accuracy equal to 0.85 for 
optimized sampling designs reported from simulations with distinct initial sampling sizes. (g) Location for soy productivity 
values, distributed around their respective localizations in the reduced size optimized sampling grid, in which the colors 
for each point represent intervals delimited by quartiles and (h) a Thematic Map representing the spatial variability of soy 
production.
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Table 4. Descriptive statistics of soy productivity, as 
reported in the results of the harvester monitor, and the 
reduced size optimized design. Parameters estimated for 
the exponential model and measures associated with the 
spatial prediction of soy productivity based on the reduced 
optimal sampling design.

Statistics
Harvester 
Monitor Optimized grid

Number of points 5000 2000
Average 3.23 3.23
Median 3.27 3.27
Q1 2.98 2.99
Q3 3.55 3.54
Minimum 0.68 0.83
Maximum 5.44 4.99
DP 0.67 0.48
CV (%) 20.74 14.75

Parameters for the 
Spatial Model

Estimates for the 
optimized grid

Estimates for the 
sample grid

C0 0.1069 0.1457
C0 + C1 0.2173 0.2645
a 197.16 256.01
CE 49.19 55.09

0.158 0.127

OA 0.851 0.834
K 0.702 0.666
T 0.834 0.815
ME 0.0002 -0.0001
SME 0.3660 0.4214
MSE 0.0003 -0.0002
SMSE 0.9989 1.0070

CE = 100×C0/(C0 + C1),  
2
0s  is the spatial prediction variance 

mean, OA is the Overall Accuracy, and K and T are the Kappa 
and Tau indexes. The measurements obtained by cross-validation 
are ME (mean error), SME (standard deviation of the error), 
SME (mean standardized error) and SMSE (standard deviation of 
standardized error).

the sum quadratic error of spatial prediction 
and the stopping criterion of the optimization 
process ( ) and the number of sampling 
points to be predicted, which has a similar size to 
the initial grid. However, the ratio of necessary 
points to the result of the best sampling design, 
in relationship to the initial grid size, is similar 
for all the simulations, varying from 38 to 42%.

Analysis of results obtained for the optimized 
reduction of the soy productivity data

Table 4 shows the descriptive statistics for soy 
productivity, in an optimized grid with a reduced 
sampling size, and in the initial grid of results ob-
tained by the harvester monitor. The optimization 
process has reduced the initial grid size to 2000 
points according to the stopping criterion of the 
algorithm (OA ≥ 0.85). This result represents 40% 
of the initial grid and is part of the ratio interval 
of points necessary for the configuration of the 
best sampling design obtained in the simulations. 
Even with this reduction, the descriptive statistics 
of the reduced grid appeared similar to the results 
presented for the initial grid.

Figure 4-g displays a chart with soy productiv-
ity values and their respective localizations, in 
an optimized reduced sampling grid, where the 
color for each point represents a value interval 
that includes the productivity; the intervals used 
are the same as the ones defined in the Materials 
and Methods for the calculation of the accuracy 
measures. There is regularity in the point distribu-
tion, with the appearance of regions with closer 
values and an excellent scope of the selected 
sample points in the optimization process from 
the initial grid.

Estimates in the exponential model parameters 
of the semivariance function were obtained for 
the optimally reduced sampling design and the 
random sampling design, using the same sample 
size as in the previous configuration displayed in 
Table 4. It is important to highlight that the choice 

for the best spatial model was made according to 
cross validation criteria and the Akaike Informa-
tion Criterion (Faraco et al., 2008). Both models 
showed a moderate spatial dependence (25% ≤ 
CE ≤ 75%; Cambardella et al., 1994). However, 
the model that was estimated by considering the 
random sample configuration showed higher 
estimates for the parameters that described the 
structure of spatial dependence. 

Table 4 also displays results concerning measures 
related to spatial prediction. The OA indexes and 
the concordance indexes of Kappa (K) and Tau 
(T) have proved that, even considering 40% of 
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the points displayed by the harvester monitor, the 
spatial prediction of the 5000 points presents a high 
similarity to the results obtained by the harvester 
monitor using the optimized sample configura-
tion (OA ≥ 0.85, K ≥ 0.80, T ≥ 0.80; De Bastiani 
et al., 2012). This indicates that reductions in the 
sampling sizes due to the optimization process 
were efficient for the spatial prediction accuracy. 
This conclusion is confirmed by results obtained 
by cross-validation (Table 4), showing that the 
values of the mean error and mean standard-
ized error were near zero and that the standard 
deviation of the mean standard error was close 
to 1. Furthermore, Table 4 also displays results 
concerning measures related to spatial prediction, 
using the random sample configuration. These 
results showed a slight decrease in measures of 
accuracy and an increase in the standard deviation 
of the error, which showed a better efficiency in 
the spatial prediction using the optimized design 
when compared to a random sampling.

Figure 4-h shows a thematic map for soy produc-
tivity for the determination of soybean yield (t 

ha-1) in the study area, allowing for the zoning of 
areas with lower and higher productivity. This can 
facilitate the decision making of farmers, such that 
they can better standardize and maximize their 
productivity without affecting the environment.

We conclude that the analyses performed for the 
simulated data sets and real soy productivity data 
demonstrate that optimization methodology could 
define sampling designs that can provide a better 
scope of the area studied, apart from the objective 
function related to spatial predictions. We recom-
mend using the objective Overall Accuracy function 
because it allows for the determination of an opti-
mized sampling design with the smallest sampling 
size and a comparison between this design and the 
other methodologies presented.
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Resumen

L.P.C. Guedes, M.A. Uribe-Opazo, and P.J. Ribeiro Junior. 2014. Optimización del 
tamaño y de la forma de configuraciones muestrales para variables regionalizadas 
usando lo recocido simulado. Cien. Inv. Agr. 41(1): 33-48. La definición de la estructura de 
la variabilidad espacial de las variables regionalizadas por medio de técnicas geoestadísticas, 
permite estimar los valores de estas variables en lugares no incluidos en el muestreo, generando 
mapas temáticos que serán utilizados en la construcción de sectores agrícolas para aplicación 
diferenciada de tratamientos del suelo. La calidad de estos mapas depende de las estimativas 
confiables, que pueden cambiar por la selección la configuración del muestreo. El objetivo de 
este estudio fue determinar el tamaño de la muestra y la configuración de muestreo óptima, con 
el fin de maximizar la eficiencia del plano de muestreo, en la predicción de las variables con 
dependencia espacial. Las configuraciones muestrales optimizadas fueron obtenidas utilizando 
un método de búsqueda estocástica llamado Recocido simulado, a partir de una cuadrícula de 
muestreo con un gran número de puntos, inicialmente teniendo en cuenta un conjunto de datos 
simulados, con diferentes estructuras de dependencias espaciales y posteriormente un conjunto 
de datos reales de la productividad de la soya. Los resultados obtenidos de la simulación y del 
conjunto de datos reales de la productividad de la soya mostraron que el proceso de optimización 
fue eficiente en la determinación de configuración de muestreo óptima con tamaño de muestrea 
reducido, principalmente usando el índice de Exactitud Global como medida para maximizarla.

Palabras clave: Agricultura de precisión, geoestadística, interpolación, variabilidad espacial.
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