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crop production

Introduction

Biomass is a renewable source of energy, and 
its use is of particular interest because it can 
reduce greenhouse gas emissions, waste volume 

in landfills and dependence on non-renewable 
energy sources (Rudnick et al., 2011).

Biomass has high energy potential in Chile, and 
the primary sources are the residues from the 
management and utilization of native and com-
mercial forests (ProChile, 2009). According to 
a study of the biomass market in Chile (UACH, 
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2013), there are 2 million hectares available for 
the establishment of energy crops nationwide, 
which would reduce the country’s dependence 
on imported energy and improve the condition 
of soils degraded as a result of human action 
(FAO, 2008). 

Territorial suitability has a direct impact on 
crop productivity (Parthasarthy et al., 2007), 
and climatic variables are the most important 
factors determining the geographic distribu-
tion of a species, although soil variables are 
important as well. Currently, there is a wide 
variety of available ecological niche models 
(Grinnell 1917, 1924; Leibold, 1995; Chase and 
Leibold, 2003), such as GARP (Stockwell and 
Peters, 1999), Maxent (Phillips, 2006), BIO-
CLIM (Busby, 1991), and EcoCrop (FAO, 2000) 
among others. All can be used to identify areas 
with optimal climatic conditions for growing 
crops (Parthasarthy et al., 2007; Pliscoff and 
Fuentes, 2011), but due its simplicity, EcoCrop 
has comparative advantages for modeling the 
potential geographic distribution of a species 
(Ramirez-Villegas et al., 2013).

EcoCrop calculates a suitability index for the 
growth of a species based on climatic param-
eters (i.e., absolute and optimal temperatures 
and precipitation), and the predictive model 
is implemented in DIVA-GIS software (Hi-
jmans et al., 2002). However, although it is 
frequently used, the EcoCrop model does not 
account for soil properties when predicting 
land suitability, and this could be restrictive 
when modeling crop potential (Ramirez-
Villegas et al., 2013).

This study proposes a simple method for the deter-
mination of land suitability for 16 energy species 
in the Central and Southern zones of Chile. The 
method is an adaptation of the EcoCrop model 
that predicts land suitability based on both soil 
and climate species requirements.

Materials and methods

Study area and selected species

From north to south, the study area covered eight 
regions within the current administrative divisions 
in Chile: Valparaíso (Valparaíso), Metropolitana 
(Santiago), O’Higgins (Rancagua), Maule (Talca), 
Bío-Bío (Concepción), Araucanía (Temuco), Los Ríos 
(Valdivia) and Los Lagos (Puerto Montt) (Figure 1).

Figure 1. The study area in Central and South-Central 
Chile.

The following bioenergy species were assessed: 
Acacia melanoxylon, Acacia mearnsii, Acacia deal-
bata, Acacia saligna, Eucalyptus camaldulensis, 
Eucalyptus globulus, Eucalyptus nitens, Opuntia 
ficus-indica, Paulownia spp., Populus deltoides, 
Populus spp, Robinia pseudoacacia, Salix viminalis, 
Arundo donax, Panicum virgatum and Miscanthus 
x giganteus. These species were selected because 
of their high performance in different countries, 
the quality of their biomass for energy production 
purposes and their high yield potential in Central 
and Southern Chile (Alonso et al., 2010).

Climatic information

The climatic data came from four sources: Clima-
tología de Chile (PNUD-Gobierno de Chile, 1964), 
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Atlas Agroclimático de Chile (Novoa et al., 1989), 
Dirección General de Aguas (DGA) and Dirección 
Meteorológica de Chile (DMC). Temperature and 
precipitation data were collected from 1,239 weather 
stations located in the above-mentioned regions, 
but only stations with a minimum of 10 years of 
continuous data were considered. Thus, data from 
a total of 625 weather stations with a minimum of 
11 years and a maximum of 140 years of monthly 
averaged information were used and compared 
to similar studies (Novoa et al., 1989; Santibáñez 
and Uribe, 1990, 1993a and 1993b). Because data 
from different sources were indexed under differ-
ent cartographic projections and time zones, they 
were standardized under the same index system 
(WGS84 spherical datum).

Digital elevation model

A digital elevation model (DEM) corresponds 
to a data matrix with a spatial distribution of 
altitudes (Felicísimo, 1994). In this study, the 
free distribution DEM model from the Shuttle 
Radar Topography Mission (SRTM) was used in 
the construction of the topoclimatic model, and 
the data corresponded to SRTM-4 with a 90-m 
pixel, which is a scale of approximately 1:100,000 
(Farr et al., 2007). The slope and aspect variables 
were calculated from the DEM, and the distance 
to the coast was estimated by calculating the linear 
distance from the coast to one of the pixels in the 
DEM matrix.

Topoclimatic modeling 

Minimum, average and maximum temperatures 
for January and July and average annual precipi-
tation were used in a geographically weighted 
multiple regression model (Novoa et al., 1989; 
Santibáñez and Uribe, 1990, 1993a and 1993b) 
with latitude (LAT), longitude (LON) and altitude 
(ALT) as the predictor variables (Fotheringham 
et al., 2002). 

The climatic variation over the study area was 
represented by physiographic and land use fac-
tors and determined by a topoclimatic analysis 
(Morales et al., 2006), which quantitatively 
modeled the climate using a combination of land 
surface parameters (Okolowicz, 1969; Kaminski 
and Radosz, 2002).

To estimate the spatial variability of the cli-
matic data, global regressions were run with 
one spatial variable. The coefficients of the 
resulting equation could have had significant 
spatial variation (Morales et al., 2007, 2010). 
Thus, spatially explicit equations describing 
the changes in climatic variables were calcu-
lated using weighted least squares; the weight 
was dependent on the distance between each 
point and the rest of the observations (Berry 
and Feldman, 1985; Fotheringham et al., 2002). 
The geographically weighted regression (GWR; 
Brunsdon et al., 1996) was used to find the spatial 
variability in the estimated parameters through 
a multiple linear regression that incorporates the 
geographical coordinates of the observations 
into its equation. 

In summary, the goal was to adjust the same number 
of regressions as the number of observations in 
the space considered in the analysis based on the 
hypothesis that closer observations have greater 
weights in the regression, which is simulated by 
a function that decays with distance. The climatic 
variables were modeled by Equation [1]:

i
k

ikiikii0i x)v,u(a)v,u(ay ε++= ∑       [Eq.1]

where (ui, vi) indicates the coordinates of the ith 
point in the space; yi is the value of the dependent 
variable; xik is an independent descriptive variable 
at point i; ak (ui, vi) is a regression parameter for 
the independent variable, and εi is the error at 
point i. The coefficients, ak (ui, vi), were deter-
mined as follows:
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sources of soil information (CIREN, 1996, 1997, 
1999a, 1999b, 2001). The soil variables (proper-
ties) associated with each soil series were both 
(1) qualitative, which included the soil order and 
taxonomic classification of the soil series (USDA-
NRCS, 1999), and (2) quantitative, which included 
the depth of each soil layer (SD) as well as its 
textural class, particle distribution, field capacity, 
wilting point, bulk density, pH, organic carbon 
and organic matter contents. Using the depth of 
each soil layer as the weighting factor, weighted 
averages of each of the soil variables representing 
the soil series profile were calculated.

Some of the soil series in the study area were ob-
tained from previous reports and studies (CIREN, 
1996, 1997, 1999a, 1999b, 2001), so the quantitative 
information for the modal profile was incomplete 
for these variables. The GWR algorithm was 
used to estimate depth and soil pH according to 
descriptive variables or covariables, which were 
the altitude and normalized difference vegetation 
index (NDVI) value at each point in the territory 
from MODIS images (Saini, 1966; Rawls et al., 
1982; Saxton et al., 1986; Heuscher et al., 2005). 
The model used to estimate the missing data is 
proposed in Equations 1 to 3. As for the climatic 
variables, the regression coefficients in Equation 
1 were calculated using the multiple linear GWR 
method, in which the independent variables were 
altitude and the NDVI-MODIS value (Fothering-
ham et al., 1997, 2000, 2002). Due its widespread 
use and good results, ordinary kriging was used to 
estimate the spatial variability of the coefficients 
of the equation used to estimate soil depth and pH 
(Ojeda et al., 2011; Martinez-Cob, 1996; Miranda-
Salas and Condal, 2003; Vicente-Serrano et al., 
2003). The equation was applied using interpolated 
coefficients determined by SIG Idrisi 32® software 
on each polygon from the soil vectorial files to 
estimate the variables in those series for which 
there were no values. The polygon vectorial files 
were rasterized, and the resulting matrices had the 
same dimensions as the matrices of the independent 
variables and thus the same number of rows and 
columns as altitude and NDVI.

where the independent observations or descriptive 
variables are in the X matrix, and the dependent 
variables are in the Y matrix. Wi is a diagonal 
matrix of (N, N) order in which the elements of the 
diagonal are the weights, wij, which are a function 
of the focal observation and the rest of the observa-
tions (Fotheringham et al., 1997, 2000 and 2002). 
They are calculated by the following equation:

( )
2
ijd

ii ev,uW ⋅α−= 		           [Eq.3]

where α is a parameter expressing the decreasing 
distance between two points in space, and dij is the 
distance between points i and j. From a practical 
point of view, a point that is more distant from 
i will have less statistical influence on the final 
numeric relationship (Morales et al., 2007). It is 
noteworthy that the descriptive variables, xik, can 
be derived from interactions among or powers of 
the fundamental variables (Morales et al., 2006). 

The statistical model of the spatial distribution of 
the climatic variables with GWR [Equation 1] was 
formulated using a computer code developed with 
the statistical software R (R Development Core 
Team, 2009). The digital mapping method based on 
the topoclimatic model was carried out using Idrisi 
32® software tools (Clark University, Worcester, 
MA, USA); digital charts of latitude, longitude and 
altitude were used as independent variables in the 
multiple regressions defined in Equation [1]. Under 
this procedure, a value for the climatic variables was 
obtained for each pixel, which generated a digital 
map composed of seven image files (maximum, 
minimum and average temperature for January and 
July; annual average precipitation). The resulting 
climatic variable matrices have the same dimen-
sions as the matrices for the independent variables, 
i.e., the same number of rows and columns as for 
latitude, longitude and altitude.

Soil information

To create digital charts of the soil variables, 
we collected and digitized soil data from basic 



231VOLUME 42 Nº2  MAY – AUGUST 2015

Land suitability and plant species adaptability

According to the ecological characteristics of 
the different species, A. melanoxylon is found 
between regions VII and X in the Central Valley 
below an altitude of 500 m in red and yellow 
podzolic or alluvial soils (Hebert and Baurele, 
1995). A. mearnsii is found between regions V 
and X in low coastal zones and foothills from 
sea level to 900 m (INFOR, 2000a). A. dealbata 
is located in warm to cold sub-humid zones; it is 
found from high steppes to deep valleys along 
streams and rivers (INFOR, 2000a). A. saligna is 
distributed between regions III and VII where it 
tolerates superficial saline and alkaline soils and 
grows in zones of irregular and limited precipi-
tation between 100 to 250 mm year-1 (INFOR, 
2001). E. camaldulensis grows in zones with an 
annual precipitation of 250 mm year-1 from sea 
level to 600 m in altitude, and it tolerates poor 
and degraded soils of low to moderate fertility 
(INFOR, 2000b). In Chile, there are numerous 
Eucalyptus species including E. globulus, E. 
nitens and E. camaldulensis. E. globulus grows 
in a precipitation range from 200 to 1,250 mm 
year-1; E. nitens grows in a range of 750 to 1,350 
mm year-1 and E. camaldulensis between 600 to 
1,100 mm year-1. All of these species grow in thin, 
moderate and deep and silty to clay loamy soils 
with light to heavy textures (INFOR, 2005). O. 
ficus-indica is located at altitudes between 800 
to 1,800 m in clay loamy soils with a pH value 
between 6.5 to 8.5 and precipitation of 150 to 
1,800 mm year-1. It tolerates drought and requires 
a mean annual temperature between 16 to 28 
ºC (Gerencia Regional Agraria de La Libertad, 
2009). Populus sp. are found between 300 to 
3,000 m and require temperatures ranging be-
tween 14 and 30 ºC, precipitation between 1,200 
to 2,500 mm year-1 and light to moderate soil 
textures (Cazanga et al., 2010). R. pseudoacacia 
naturally grows in regions with a Mediter-
ranean climate including annual precipitation 
between 500 to 1,500 mm and a mean annual 
temperature between 10 and 18 ºC. It tolerates 
all types of soils with the exception of those that 

are extremely dry or compacted (INFOR, 1999). 
A. donax, Panicum virgatum and Miscanthus x 
giganteus are perennial rhizomatous grasses, 
and they all grow on almost any soil type from 
light to moist and compact with a pH from 5 
to 8.7. A. donax tolerates salinity and requires 
a minimum temperature of 9 ºC; P. virgatum 
requires a minimum temperature of 13 ºC, and 
Miscanthus x giganteus requires deep soils and a 
minimum temperature of 6 ºC (El Bassam, 2010). 

The adaptability of a species was expressed as a 
relative score (0-1), where 0 indicates null adapt-
ability and 1 indicates an optimum fit. This score 
was calculated using five meteorological variables 
(annual rainfall, maximum and minimum tempera-
ture in the warmest (January) and coldest (July) 
months) and two soil variables (depth and pH). To 
generate the scores, a response or performance 
function to each of these variables was calculated 
for all of the species based on their soil and climate 
requirements. These values were obtained from 
the EcoCrop database (FAO, 1997, 2000), and the 
adaptability score for annual rainfall, temperature 
and soil pH was defined by the function shown in 
Figure 2. The performance function for a species 
can be described by a parameterized function with 
four coefficients specific to each species (Table 1): 
minimum critical value (Vmin), minimum optimal 
value (Vopmin), maximum optimal value (Vopmax) 
and maximum critical value (Vmax). The species 
performance function (F) was calculated with 
the following equation:

{
0 maxmin VVoVV ≥≤

1 maxmin VopVVop ≤≤

F =
minmin

min

VVop
VV
−

−
minmin VopVV ≤≤

maxmax

max

VopV
VopV

1
−

−
− maxmax VVVop ≤≤

 [Eq.4]

The performance function (F) for soil depth (SD) 
is described by two coefficients: Vmin and Vopmin, 
which are specific to each species (Table 1). The 
performance function was calculated according 
to the following equation:
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{
0 minVV ≤

F = 1 minVopV ≥

minmin

min

VVop
VV
−

−
minmin VopVV ≤≤

 [Eq.5]

After calculating the performance function for 
precipitation (Fpp) and temperature (Ft) and the 
soil variables pH (FpH) and depth (Fdepth), an index 
of overall adaptability (IA) was obtained from 
the weighted linear sum of all of the adaptability 
functions (Equations 6 and 7):

∑
=

⋅=
N

1i
ii FWIA 			            [Eq.6]

1W
N

1i
i =∑

=

			            [Eq.7]

where Wi represents the specific weight assigned 
to each variable Fi. The weights for annual rainfall, 
temperature, pH and soil depth were defined as 
0.35, 0.35, 0.10 and 0.20, respectively (Equation 
8) based on expert judgment and previous studies 
(Cazanga et al., 2010).

depthpHtpp F2.0F1.0F35.0F35.0IA ⋅+⋅+⋅+⋅=          [Eq.8]

The variables included in the index (IA) were 
processed with Idrisi® 32 software to produce 
digital charts of the adaptability of each spe-
cies at a scale of 1:250,000 in the WGS84 and 
latitude and longitude projection in degrees. 
The species adaptability results should be 
interpreted based on the maximum productiv-
ity without climatic restrictions (FAO, 1997). 
From the literature and the IA values, it is 
possible to classify suitability into the follow-
ing categories: very suitable (> 80%), suitable 
(60-80%), moderately suitable (40-60%), 
marginally suitable (20–40%) and unsuitable 
(< 20) and to assign each category the ranks 
of 5, 4, 3, 2, or 1, respectively (Sridhar et al., 
2014; Fand et al., 2014; Mendas and Delali, 
2012; Parra-Quijano et al., 2012; Sonder et al., 
2010; Geerts et al., 2006; Utpala et al., 2006).

Figure 2. Species performance functions based on the 

independent soil and climate variables.

Statistical analysis

The statistical analysis compared the simulated 
and observed results. For the agroclimatic vari-
ables, the comparisons were made at a monthly 
average level, but a single value was compared at 
a territorial level for the soil variables. The BIAS, 
MBE (mean bias error), MABE (mean absolute 
bias error), RMSE (root mean square error) 
statistics were calculated. A simple regression 
analysis was performed to determine the coef-
ficient of determination (r2), which is widely used 
to evaluate the goodness of fit between calculated 
and observed values, and the index of agreement, 
or Nash-Sutcliffe model efficiency (E), was also 
determined (Yorukoglu and Celik, 2006; Almorox 
et al., 2005; Legates and McCabe, 1999). Due to 
its utility in comparisons of two or more statistical 
models that use the same dependent variable, the 
Akaike Information Criteria (AIC) was applied to 
evaluate the GWR topoclimatic model (Akaike, 
1973; Burnham and Anderson, 2002).

Results 

Topoclimatic modeling

The values of the spatially modeled annual mean 
rainfall (AMR), mean temperature in January and 
July (TM01, TM07), maximum temperature in 
January and July (TX01, TX07) and minimum 
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temperature in January and July (TN01, TN07) are 
presented in Table 2. The root mean square error 
(RMSE), the efficiency ratio (E), the statistical 
variance parameters, the regression parameters 
(adjusted r2 and the significance value, P) and 
the Akaike information criteria (AIC) are also 
presented in Table 2. The efficiency ratio of the 
model ranged from 48 to 92% for the average 
and maximum temperatures in July, and the ad-
justed coefficient of determination (r2) indicates 
that the model explains between 67 and 89% of 
the variability in each of the climatic variables 
depending on the altitude. The P value indicates 
that the relationships are statistically significant 
at a 99% confidence level for each model, and 
the results show that it is possible to estimate 
the spatial distribution of each climate variable 
by altitude. The annual average values were 
calculated from the average monthly matrices of 
each of the variables. The spatial distributions of 
some of the variables modeled by the regression 
equations are shown in Figure 3(a, b).

Based on the statistical criteria, the results pre-
sented in Table 1 are satisfactory and more ac-
curate compared with those from previous studies 
(Novoa et al., 1989; Santibañez and Uribe, 1992). 
In Chile, the previously used methods have been 
based on the interpolation of isolines, which are 
usually drawn freehand by an expert climatolo-
gist, but this method fails when attempting linear 
interpolations between isolines (Declercq, 1986). 
Indeed, the results obtained by interpolating 
between isolines are highly method-dependent 
and only constitute a trend. Instead, with the 
methodology used in this work, the maps of the 
climatic variables are generated by a continuous 

spatial model in a digital format with the advan-
tage that they can be integrated into a geographic 
information system (GIS) for easy analysis and 
incorporation with other databases.

Soil variables

Soil depth and pH are shown in Table 3. The 
calculated ratios illustrate the variability in their 
spatial distribution, so it was not feasible to use 
only one equation coefficient for the entire study 
area. The analyses yielded an E of 71% in the 
estimation of soil depth with an RMSE of 14.85, 
which is equivalent to 5.21%, and an r2 of 0.876 (P 
= 0.01). Soil pH had a higher agreement rate of 
80%, an RMSE of 0.41, which is equivalent 
to 6.44%, and an r2 of 0.81 (P = 0.01). Figure 
3(c, d) shows the results of the estimation of soil 
depth and pH in throughout the study area.

Species zoning 

The suitability maps of the studied species are 
shown in Figure 4; the suitability of the land for 
each species is indicated by the color bar.

To interpret the results, we used the homogeneous 
environmental area zones developed by ODEPA, 
Ministerio de Agricultura (Chile), which corre-
spond to a synthetic description of the Chilean 
agricultural sector. ODEPA also delivered a com-
plete database with the information collected in 
the 7th National Agricultural Census (2007). It is 
not advisable for bioenergy crops to compete for 
the land used for food crops, so bioenergy species 

Table 3. Linear regression coefficients for the estimation of the spatial variation in soil depth (SD) and pH as a function of 
altitude and the NDVI coefficient using a GWR model. RMSE: mean quadratic error; E: efficiency index; r2: determination 
coefficient and AIC: Akaike criterion.

Variable Intercept Altitude Coefficient NDVI Coefficient RMSE E r2 P1 AIC2

SD 92.81659 ±7.585 -0.00155 ± 0.024097 0.5005 ± 6.93701 14.85 0.71 0.876 ** 8977.572

pH 5.79069 ± 469.42 0.09378 ± 1.12473 -5.70803 ± 618.2 0.413 0.80 0.810 ** 2372.196
1** P≤0.01
2AIC: Akaike criterion
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Table 2. Linear regression coefficients for the estimation of the spatial variation in the climatic variables under study as a 
function of altitude using a GWR model. RMSE: mean quadratic error; E: efficiency index; r2: determination coefficient 
and AIC: Akaike criterion.

Variable Intercept Slope RMSE E r2 p1 AIC2

AMR 1053.504 ± 30.75 -0.26043 ± 0.025716 317 0.88 0.87 ** 18165.23

TM01 18.265 ± 0.247 -0.00167 ± 0.000168 1.53 0.87 0.83 ** 1361.25

TM07 9.493 ± 0.379 -0.001633 ± 0.000258 4.3 0.48 0.76 ** 1931.76

TX01 25.138 ± 0.315 -0.0014 ± 0.000228 1.9 0.86 0.82 ** 1648.08

TX07 13.518 ±0.316 0.000096 ±0.000228 1.4 0.92 0.89 ** 1472.10

TN01 11.769 ±0.205 -0.001851 ±0.000147 2.0 0.71 0.70 ** 1506.10

TN07 5.4035 ±0.214 -0.00237 ±0.000153 2.4 0.82 0.67 ** 1628.17
1**P≤0.01.
2AIC: Akaike Criterion.
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Figure 3. Spatial distributions of (a) annual mean rainfall (mm year-1), (b) 
temperature (°C), (c) soil depth (cm) and (d) pH as estimated by the GWR model.
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Figure 4. Land suitability maps for Acacia dealbata (a), A. mearnsii (b), A. 
melanoxylon (c), A. saligna (d), Arundo donax (e), Miscanthus x giganteus 
(f), Paulownia spp. (g), Salix viminalis (h), Eucalyptus camaldulensis (i), E. 
globulus (j), E. nitens (k), Populus deltoides (l), Populus spp. (m), Robinia 
pseudoacacia (n), Opuntia ficus-indica (o) and Panicum virgatum (p).

could potentially be established in rainfed areas. 
The ODEPA environmental homogeneous areas in 
each administrative region were used to estimate 
the suitability of the rainfed land for each species. 
Rainfed land accounts for approximately 47.435% 
of the area in Valparaíso, 24.17% in Metropolitana, 
30.482% in O’Higgins, 31.335% in Maule, 38.215% 
in Biobío, 25.303% in Araucanía, 10.477% in Los 
Lagos and 26.857% in Los Rios. Table 4 sum-
marizes the mean agroclimatic suitability classes 
for the species by the administrative regions in 
the study area (Mendas and Delali, 2012; Parra-
Quijano et al., 2012).

Discussion 

This study demonstrated that the habitat distribu-
tion patterns of bioenergy species in Central and 
Southern Chile can be effectively modeled using a 
small amount of occurrence data, environmental 
variables and the edapho-climatic requirements 
of species, which are available in databases such 
as EcoCrop. This study presents the spatial dis-
tributions of 16 bioenergy species based on their 
performance functions (Figure 1) and independent 
explanatory variables. Similar studies have used 
EcoCrop and DIVA-GIS to map the fundamental 
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ecological niches of species based on bioclimatic 
variables, but the applications have been limited 
due to the use of only two independent variables 
(Peterson, 2001; 2003; Pearson, 2007).

Based on the land suitability predicted by the 
EcoCrop method (Hijmans et al., 2005), the most 
suitable areas for A. dealbata were found to be 
the O´Higgins and Maule regions, principally on 
Alfisol, Mollisol, Vertisol, Inceptisol and Andisol 
soils (CIREN, 2010). When using EcoCrop (Hi-
jmans et al., 2005), we found that the areas with 
higher spatial suitability for A. mearnsii were the 
Maule, Bío-Bío and Araucanía regions on Alfi-
sols, Mollisols, Vertisols, Inceptisols, Andisols, 
Histosols and Ultisols. These results agree with 
those from the INFOR (2014) database, which 
suggests that the south-central part of the country 
has the highest growth potential for this species. 
For A. melanoxylon, the regions with higher land 
suitability are Maule, Bío-Bío and Araucanía, but 
INFOR (2014) only identifies Bío-Bío as a potential 
region for this species. Similar to INFOR (2014), 
our results indicate that the most suitable regions 

for A. saligna are Valparaiso and Metropolitana 
on Alfisol, Entisol, Mollisol, Vertisol and other 
miscellaneous soils.

For both E. globulus and E. camaldulensis, EcoCrop 
(Hijmans et al., 2005) and INFOR (2014) predict 
suitable territory between the Valparaiso and Los 
Rios regions. As for E. nitens, its territorial suit-
ability extends from the Maule to Los Rios regions.

Our results, as well as those from the INFOR 
(2014) database, predict that the most suitable 
territory for Populus spp .is the Bío-Bío region 
on Ultisol, Andisol and Histosol soils. However, 
P. deltoides grows in a wide range of edapho-
climatic conditions, so the suitable area for its 
cultivation extends from O´Higgins to Los Lagos.

The most suitable territory for R. pseudoacacia 
is located between Valparaíso and Maule but in 
patches with probabilities of occurrence between 
50 and 62%. In contrast, the most suitable terri-
tory for O. ficus-indica is found in the Valparaíso, 
Metropolitana and O’Higgins regions.

Table 4. Mean agroclimatic classes of the studied species in the coastal 
and interior rainfed areas of Valparaíso (V), Libertador Bernardo 
O’Higgins (VI), Maule (VII), Bío-Bío (VIII), Araucanía (IX), Los Lagos 
(X), Metropolitana (XIII) and Los Ríos (XIV). Regions are numbered as 
in Figure 1.

Species V VI VII VIII IX X XIII XIV

Acacia dealbata 3 4 4 3 2 2 3 2

Acacia mearnsii 3 4 4 4 4 4 3 3

Acacia melanoxylon 2 3 4 4 4 4 2 3

Arundo donax 4 4 5 4 4 3 3 3

Acacia saligna 5 4 3 3 3 3 5 3

Eucalyptus camaldulensis 4 4 5 4 4 4 4 3

Eucalyptus globulus 3 4 4 4 3 2 3 2

Eucalyptus nitens 2 3 4 4 4 2 2 2

Miscanthus x giganteus 3 3 4 5 4 4 3 4

Opuntia ficus-indica 4 3 2 2 2 2 4 2

Panicum virgatum 3 4 5 5 4 3 3 3

Paulownia tomentosa 5 5 5 4 3 3 5 3

Populus deltoides 2 3 3 4 4 4 2 4

Populus spp 3 3 4 4 4 4 3 4

Robinia pseudoacacia 4 4 4 3 3 2 4 2

Salix viminalis 4 3 3 3 3 3 5 3
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A novel finding of this work is the high potential for 
rhizomatous perennial grasses, such as A. donax, 
Miscanthus x giganteus and Panicum virgatum, 
which are suited to the wide edapho-climatic 
conditions of Central and Southern Chile. The 
most suitable area for these species is between 
the O’Higgins and Bio-Bio regions. 

Differences in the predicted territorial suitability 
of the studied species between EcoCrop (Hijmans 
et al., 2005) and INFOR (2014) can be attributed 
to the variables used in both studies. In this work, 
we used precipitation, temperature, soil depth 
and pH as the explanatory variables, but in the 
INFOR (2014) studies, not all of the species were 
evaluated using the same variables. However, the 
results from both studies are not very different, 
and the predictions are quite similar in some cases.

The methodology presented here could be used to 
quantify the habitat distribution patterns of other 
plant species of ecological or economic interest. 
In particular, it has great potential for use in the 
study of threatened or endangered species as well 
as conservation and restoration efforts.

The results of this study are promising, especially 
considering the enormous energy potential of bio-

mass in Chile (ProChile, 2009). Currently, there 
are 2 million hectares in the country available 
for reforestation (INFOR, 2011), and bioenergy 
crops will steadily accumulate biomass over 
time, positively affecting soils and preserving the 
country’s natural resources (Rudnick et al., 2011).

Biomass is an abundant resource in Chile, but the 
country strongly depends on imported energy 
sources and is threatened by the permanent rise 
in international energy prices. For this reason and 
because of its commitment to reduce greenhouse 
gas emissions (Figueres, 2007), Chile must aim to 
increase its use of biomass as an energy source.
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Resumen

L. Morales-Salinas, E. Acevedo, G. Castellaro, L.R. Osorio, J. Morales-Inostroza y M.F. 
Alonso. 2015. Un método simple para la estimación de la idoneidad territorial de especies 
bioenergéticas en Chile. Cien. Inv. Agr. 42(2): 227-242. En estos últimos 20 años diversas 
líneas de investigación en especies nativas y exóticas, cultivos herbáceos y plantaciones 
forestales se han orientado al desarrollo de aplicaciones energéticas domésticas, industriales y 
para el transporte. Como son un recurso importante, es estratégico contar con un método que 
permita identificar en el territorio nacional las áreas con aptitud para el cultivo de estas especies, 
con el objetivo de realizar una planificación territorial adecuada para el establecimiento de 
las plantaciones bioenergéticas. En este estudio se presenta un método simple para definir la 
idoneidad territorial de 16 especies con potencial energético (El Bassam, 2010) en el Centro 
y Sur de Chile, en base a sus requerimientos de suelo y clima. Se utilizó una adaptación del 
método EcoCrop implementado en el software DIVA-GIS para predecir la idoneidad de los 
cultivos en dicha zona geográfica. Los resultados muestran que el método propuesto representa 
una forma sencilla de estimar las zonas del territorio con idoneidad adecuada para establecer 
plantaciones bioenergéticas específicas, información que puede ser utilizada para la toma de 
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decisiones en la planificación del territorio. La regresión espacialmente explicita y el kriging 
ordinario mostraron ser una herramienta satisfactoria de interpolación de los datos obtenidos 
de redes de estaciones climáticas para la generación de rejillas continuas de datos climáticos. 
La idoneidad territorial se presenta en un formato digital continuo expresado en términos 
probabilísticos a una escala 1:1,000,000.

Palabras clave: EcoCrop, especies bioenergéticas, idoneidad territorial, modelo de nicho 
ecológico.
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