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Abstract. One of Da Costa's motives when he constructed the paraconsistent logic Cw was
to dualise the negation of intuitionistic logic. In this paper I explore a different way of
going about this task. A logic is defined by taking the Kripke semantics for intuitionistic
logic, and dualising the truth conditions for negation. Various properties of the logic are
established, including its relation to CWo Tableau and natural deduction systems for the logic
are produced, as are appropriate algebraic structures. The paper then investigates dualising
the intuitionistic conditional in the same way. This establishes various connections between
the logic, and a logic called in the literature 'Brouwerian logic' or 'closed-set logic'.
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Introduction

Newton da Costa is justly famed for his epoch-making work on paraconsistent logic.
At a time ,when the very idea of such a subject seemed to most logicians to be outra­
geous, he showed that the notion is perfectly coherent, and rich in mathematical and
philosophical applications. Only the most hardened of troglodytes can now doubt
this. Newton, through his own work, and that of his students and collaborators, has
played a major role in the establishment of the subject. It is a pleasure to dedicate
this article to him.

In some of his earliest work on paraconsistency, he invented a family of systems
of logic now nonnally called 'the C systems'. In his seminal paper, 'On the Theory of
Inconsistent Fonnal Systems' (da Costa 1974), he describes the systems and some of
the motivating ideas. Though he never says as much, one of the ideas, it has always
seemed to me, is this. Intuitionist logic is a logic that allows for "truth value gaps";
for example, the Law of Excluded Middle fails. It ought to be possible to construct a
logic which is the same, except that negation behaves in a dual fashion, so that the
Law of Non-Contradiction fails. The C systems, and particularly Cw, l achieve this, .
though there are clear costs: for example the substitutivity of provable equivalents
fails in negated contexts (which creates real problems for the algebraicisation of the
systems; see Mortensen 1980).

_ Principia 13(2): 165-84 (2009).
Published by NEL - Epistemology and Logic Research Group, Federal Universityof Santa Catarina (UFSC), Brazil.



166 Graham Priest

Newton proceeded axiomatically, preserving the positive part of intuitionist logic,
and changing the axioms for negation. But the various semantics for intuitionist logic
suggest other ways of pursuing da Costa's goal. In what follows I will show how this
may be done, taking a lead from the Kripke semantics for intuitionist logic.2

1. Dualising Intuitionist Negation

Kripke semantics for intuitionist logic are well known, and require little by way of
exposition (see, e.g., Priest 2008, ch. 6). A Kripke interpretation for intuitionist
propositional logic is a structure (W, R, v), where W is a set of worlds, R is a binary
relation on worlds which is reflexive and transitive, and v assigns a truth value, 1
or 0, to each propositional parameter, p, at each world, subject to the following
constraint: For each parameter, p:

if wRw' and vw(p) = 1 then vw,(p) = 1.

This is called the Heredity Constraint. The truth conditions for the logical operators
are as follows. For all w E W:

vw(a /\ f3) =1 iff vw(a) = 1 and vw(f3) =1,

vw(a V f3) =1 iff vw(a) = 1 or vw(f3) = 1,

vw(a - f3) =1 iff for all w' such that wRw', if vw,(a) =1 then vw,(f3) = 1,

vw(...,a) = 1 ifffor all w' such that wRw', vw,(a) = O.

Alternatively, for negation, we may take the language to contain a logical constant,
1., such that for all w E W:

.,.,a may then be defined as a - 1.. It is not difficult to show by induction that the
Heredity Constraint extends to all formulas, not just propositional parameters.

An inference is intuitionistically valid (F[) if it preserves truth at all worlds of all
interpretations. It is not difficult to show that F[ a - ...,...,a, but JC[ ...,...,a - a; and
F[ (a /\ ""a) - f3, butJC[ f3 - (a V ""a).

To produce a logic that is the same as intuitionist logic, except that the negation is
dualised, everything remains the same, except that'the truth conditions for negation
are replaced by their dual:

vw(...,a) = 1 iff for some w' such that w'Rw, vw,(a) = O.

It is not difficult to check that the Heredity Constraint still generalises to all formulas.
The case for"" in the inductive argument goes as follows. Suppose that wRw' and
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Vw(-,a) = 1. Then for some w" such that w"Rw, vwll(a) = O. By the transitivity of
R, w"Rw'. Hence VWI( -,a) = 1.

Let us call this logic, in honour of Newton, Va Costa Logic, and write its semantic
consequence relation as I=D' As is to be expected, the properties of negation in da
Costa logic are dual to those of intuitionist logic. In particular, as we shall see in
a moment, we have jeD a - -'-'a, but I=D -,-,a - a; and jeD (a 1\ -,a) - fJ, but
I=D fJ - (a v.a).

2. Tableaux

A tableaux system for intuitionist logic is as follows. Lines are of the form a, +i,
a, -i, or irj, where i and j are natural numbers. The tableau for the inference with
premises at> ... , an and conclusion fJ, starts with lines of the form at> +0 ... an' +0,
and fJ, -0. The tableaux rules are as follows:

al\fJ,+i

!
a,+i
fJ,+i

a V fJ,+i

/ '\.
a, +i {3, +i

a - {3,+i
irj

/ '\.
a, -j fJ, +i

-,a,+i
irj

!
a,-j

al\{3,-i

/ '\.
a, -i (3,-i

aVfJ,-i

!
a,-i
fJ,-i

a - fJ,-i
!

irk
a,+k
fJ,-k

-'a, -i

!
irk

a,+k

where k, in any of these rules, is a number new t6 the branch. We also have rules
for r and the Heredity Condition:

irj irj

! jrk p,+i
iri ! !

irk p,+j
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A branch of the tableau is closed if it contains lines of the form a, +i and a, -i. And
an inference is tableau valid if all branches close.

A tableau system for Da Costa logic is exactly the same, except that the rules for
negation are replaced by:

-'a, +i -'a, -i
! jri

kri !
a,-k a,+j

where again, k is new to the branch. Let us use f- T to denote tableau validity in this
system.

Here are tableaux to establish that f- T -'-'P - P and f- T q - (p V -,p). (I double
up on some lines to save space.)

-'-'p - p,-O
OrO

Or1,lr1
-'-'P, +1
p,-l

2r1,2r2
-'P, -2
p,+2
p,+l

x

q - (p V -'p ), -0
OrO

Or1,lr1
q,+l

p V -'p,-l
p,-2

-'P, -2
p+2

x

In the left'tableau, the penultimate line follows from the preceding one because 2r2,
and the last line is an application of the Heredity Rule. In the right tableau, the last
line follows from the preceding one because 2r2 .

Here is a tableaux to show that ¥T (p 1\ -,p) - q .

(p 1\ -,p) - q,-O
OrO

Or1,lr1
p 1\ -'P, +1

q,-l
p,+l

-'P, +1
2r1,2r2
p,-2

Counter-models are read off from an open branch of a tableau in the natural way.
There is a world, Wi, for every i on the branch; WiRwj iff irj is on the branch; and
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VW(p) = 1 iff p, +i is on the branch. Thus the open tableau above determines a
model which may be depicted as follows. I omit the arrows given by reflexivity and
transitivity for simplicity:

-p,-q Wo

WI

+p,-q

W2 -p,-q

It is routine to check that the counter-model works.
The tableau showing that ¥T p - """"p is infinite. But here is a (diagram of a)

finite counter-model.

""p holds at WI and woo So """"p fails at wo, as then, does p - """"p.
Soundness and completeness for finite sets of premises are established essentially

as for intuionistic logic, as in Priest 2008, 6.7. The only differences are in the cases
for negation.

For the Soundness Lemma. Suppose that the function f shows branch b to
be faithful to the interpretation ~. If we apply the first rule for negation, then
vf(i)(""a) = 1. So for some W such that wRf(i), vw(a) =O. Let f' be the same as f,
except that!,(k) = w. Then!, shows the extended branch to be faithful to~. Ifwe
apply the second rule for negation, then vf(i)(...,a) = 0, and f (j)Rf (i). So for every
w such that wRf(i), and in particular, f(j), vw(a) = 1. So f shows the extended
branch to be faithful to ~.

For the Completeness Lemma. Let ~ be the interpretation induced by branch b.
Suppose that ...,a, +i is on b. Then for some k such that kri is on b, a, -k is on b. So
wkRwi, and vWk (a) = 0 by induction hypothesis (IH). Hence, vWi ( ""a) = 1. Suppose
that ...,a, -i is on b. Then for any j such that jri is on b, a, +j is on b. So for every
Wj such that WjRWi, vWj(a) = 1, by IH. Hence, vwi(...,a) =O.

Trees for infinite premise sets can be defined, and the soundness and complete­
ness proofs extended to these, as in as Priest 2008, 12.7 and 12.10. Finally, I note
that the semantics and tableaux can be extended to the first-order case, where the
positive logic is positive intuitionist logic. The cQnstruction is exactly as in Priest
2008, ch. 20.

3. Facts about Da Costa Logic

In this section, I will establish some further facts about Da Costa logic.

.. Principia 13(2): 165-84 (2009).
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1. First, consider the fragment of the logic with sentences containing just /\, V,

and -'. In the case of intuitionist logic, the logical truths of this language do not
coincide with classical logic (since, e.g., p V -'p is not a logical truth). In da Costa
logic they do (and so, in particular, FD -,(a /\ ""a)). Any classical interpretation is
effectively a one-world interpretation for da Costa logic. Hence, anything valid in da
Costa logic is valid in classical logic. Conversely, suppose that ~D y. Then there is
an interpretation, and a world, w, ofthe interpretation, such that vw (y) :/;1. Let r x

be the set of propositional parameters in y true at world x. If y Rx, then r y f: r x'

by heredity. There must be a world, x, such that xRw and for all y such that y Rw,
r y = r x' For otherwise, we could find an infinite sequence ... xn+lRxnR ...Rw such
that ... r x 1 C rxc ... c r w, which is impossible, since r w is finite. Call this world

n+ n

w'. By heredity, vw'( y) :/;1.
Now, for all a and x such that xRw', a is true at w' iff a is true at x. From right

to left this holds by heredity. The converse is proved by induction. For propositional
parameters it is true by the construction of w'. The cases for conjunction and dis­
junction are trivial. For negation, suppose that -,a holds at w'. Then for some y such
that yRw' , a fails at y. By IH, a fails at w' and so x. So ""a holds at x, as required.

Finally, define a classical interpretation, J.t, which agrees with w' on the propo­
sitional parameters. If we can show that for all a, vw,(a) = 1 iff J.t(a) = 1, we are
home, since it follows that J.t(y) = O. The argument is by induction. The cases for
propositional parameters, conjunction, and disjunction are trivial. For negation, sup­
pose that J.t(-,a) = 1, then J.t(a) = O. By IH, vw,(a) = O. Hence, vw'( -,a) = 1. Con­
versely, suppose that vw,(-,a) = 1. Then for some x such that xRw' , vx(a) = O. By
the lemma of the last paragraph, vw,(a) = O. By induction, J.t(a) =0, so J.t(""a) = 1.

2. Next, we may define the logical constant T as a V -'a, for any a we choose,
since this is true at every world of every interpretation. We may define 1- as -,T. This
is true at no world of any interpretation; so for all f3, 1- FD f3. (In particular, then,
da Costa logic is finitely trivialisable, as Cw is not (da Costa and Guillaume 1964),
since -,(a V -'a) FD f3.) The addition of 1- to positive intuitionistic logic produces
full intuitionist logic. Hence da Costa logic is an extension of intuitionistic logic. In
particular, we may define the intuitionist negation of a as a -+ L It is not difficult
to check that a -+ 1- FD -'a, but not the other way around.

However, intuitionist logic does not contain da Costa logic. Specifically, there is
no formula in the language of intuionistic logic, a(p), which is logically equivalent
to -'p. To see this, consider a Kripke interpretatidn, ~, of intuitionist logic of the
'following form (again I omit the arrows of reflexivity):

W-l -+ Wo

-p +p

Let ~' be exactly the same, except that it contains only woo Every intuitionist for-
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mula a(p) has the same truth value at Wo in both interpretations. (Since all truth
conditions are "forward looking".) But if a(p) were logically equivalent to ""p, it
would have different truth values in the two interpretations, since ""p holds at Wo in
the first, and fails at Wo in the second.

3. Finally, the connection between da Costa Logic and Co)' Axiomatically, Cw is
obtained from positive intuitionist logic by adding the axiom schemas (Priest 2007,
4.3):

aY""a.

In other words, let 1+ be positive intuitionist logic. Let Al be the set of all formulas
of the form ...,...,a --+ a; and let A2 be all sets of formulas of the form a Y ...,a. Then an
inference is valid in Cw iff the conclusion follows from the premises plus members
of Al U A 2 in positive intuitionist logic. It is easy to check that da Costa Logic is at
least as strong as Cw , since it verifies all the members of Al UA2 at every world, and
the rules of positive intuitionist logic preserve truth at every world.

However, da Costa Logic is stronger than Cwo Where +--+ is defined in the usual
way, though a +--+ (a A a) is valid in Cw , ""a +--+ ""(a A a) is not (Priest 2007,4.3). It
is easy to check that it is valid in da Costa logic. In fact, da Costa logic delivers the
substitutivity of logical equivalents. In particular, if FD a +--+ {3 then FD ...,a +--+ "'{3.3
For suppose that FD a +--+ {3, but not FD ...,a +--+ ..,{3. Then, there is an interpretation
with a world, w, where ...,a is true, but "'{3 is not (or vice versa, which is similar).
Hence, there is a WI such that wlRw, such that a is false at WI, and {3 is true. This
is impossible since a +--+ {3 is a logical truth, and so holds at WI. It should be noted,
however, that in da Costa Logic, it is not the case that a +--+ {3 FD ...,a +--+ ..,{3. Here is
a (diagram of a) counter-model for the instance p +--+ q.!CD ""p +--+ ...,q:

WI

+p,-q
--+ Wo

+p,+q

It is easy to check that p +--+ q is true at wo, but ""p +--+ ""q is not.

4. Natural Deduction

For theoretical investigations, rather than practicalpurposes, natural deduction sys­
tems or sequent calculi are often more useful than tableau systems. So let me for­
mulate a natural deduction system (in the style of Prawitz 1965) for da Costa logic.
A rule system for positive intuitionist logic has the following rilles.

aA{3
a

.. Principia 13(2): 165-84 (2009).
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The vertical dots indicate a sub-proof, and the bar over the assumption indicates that
the rule discharges it. To these, we add the following rules for negation:

aV""a

a V f3 ...,a

f3

The first of these means that a V ...,a can always be introduced, and when it is, it
is not an undischarged assumption. In the second, it is important that the proof of
a V f3 depends on no undischarged assumptions, i.e., that it is a logical truth. (If
we drop this assumption, it is easy to show that we can prove Explosion, and hence
that we have a rule system for c1assicallogic.) Let us use I- N for natural-deduction
derivability.

As an example to illustrate the rules, let us show that if a I-N f3 then ""f3 I-N ...,a.
Suppose that we have a proof, II, of f3 with only a as an undischarged assumption.
We show that ""f3 I-N ""a as follows:

aV""a

a
II

f3

...,a V f3

It is straightforward to show that the rule system is sound with respect to the
Kripke semantics. Specifically, we establish that if we have a proof of a, with undis­
charged assumptions in ~, then ~ FD a. This is proved by a recursion over the
construction of proofs. The cases for the intuitionist rules are straightforward. The
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argument for the first negation rule is also straightforward. Here is the argument for
the second. We suppose, by IH, that FD a V(3 and E FD -'a. Consider any interpreta­
tion, and world, W , where all the members of E are true. Then vw ( -,a) = 1. So for
some w' such that w'Rw, vw/(a) = O. Since vw/(a V(3) = 1, vw/((3) = 1. By heredity,
vw ((3) = 1, as required.

Completeness is proved using the canonical model construction. Call a set of
formulas, E, deductively closed if:

if E f-N a then a E E,

and prime, if:

if a V(3 E E then a E E or f3 E E.

E is prime deductively close (pdc) if it is both. It is easy to check that if E is pdc then:

a /\ f3 E E iff a E E and (3 E E;

a V (3 E E iff a E E or (3 E E.

Next, define E f-N n to mean that for some disjunction, 1T:, of members of n, E f-N 1T:.

We have the following:

Fundamental Lemma. If E I'-N n, there is a pdc, A, such that E ~ A and A I'-N n.

Proof. Enumerate the formulas of the language, ao, at> ... Define by recursion:.
AO = E;

An+1 = An U {an} if An U {an}I'-N n; otherwise An+1 = An;

A=U Ai'
i<w

Clearly, for each n, An I'-N n. It follows that A I'-N n. A is deductively closed. For
suppose that A f-N a, but a i A. Then for some n, and disjunction of members of
n, 1T:, An U {a} f-N 1T:. But then An f-N 1T:. Hence, A f-N n, which is impossible. A is
prime. For suppose that a V(3 E A, but a i A and (3 i A. Then for some n, m, 1T:t>
and 1T:2, AnU{a} f-N 1T:l and Am U{(3} f-N 1T:2' Itfollows that AU{a} f-N 1T:l V1T:2 and
AU {(3} f-N 1T:l V 1T:2' Hence, A U {a V(3} f-N n, which is impossible since a V f3 EA.

Define the canonical model, (W,R, v) as follows.

W = {r : r is pdc};

vr(p)=liffpEr,

rRA iffr ~ A.
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The model is indeed an interpretation. The Heredity Condition is obviously satisfied,
and R is reflexive and transitive.

To finish the proof, we need two further lemmas.

Lemma 1. If r is pdc and y - 5 ¢. r, there is a pdc e such that rRe, y E e, and
5 ¢. e.

Proof. Let I:: = r u {y}, and n = {5}. If I:: Y-N n, we can let e be the A of the
Fundamental Lemma. This obviously has all the right properties. So suppose that
r u {y} I-N 5. Then r I-N y - 5, which is impossible.

Lemma 2. If.6 is pdc, and ...,5 E .6, there is a pdc e such that eR.6, 5 ¢. e.

Proof. Let I:: = ¢, and n = {y : y ¢. .6} u {5}. If I::Y-N n, we can let e be the .6 of the
Fundamental Lemma. This dearly has the right properties. So suppose that I:: I-N n.
Then there is some disjunction of members of n, y = y1V ... V Yn, such that I-N 5 V y.
Thus, ...,5 I-N y. Since ...,5 E A, Y E .6. So for some i, Yi E.6, which is impossible.

We can now show by induction that for every formula, a, and every r E W:

Vr(a) = 1 iff a E r.

The atomic case is true by definition. The cases for /\ and V are straightforward.
For -: Suppose that a - {3 E r. Then for all r such that rRA, a - {3 E .6,

so if a E .6, (3 EA. That is, by IH, if vA(a) = 1, vA ({3) = 1. So vr(a - (3) = 1.
Conversely, suppose that a - {3 ¢. r. Then by Lemma 1, there isa pdc .6, such that
rRA, a E·.6 and (3 ¢'.6. By IH, vA(a) = 1 and vA ({3) = O. So vr(a - (3) =O.

For...,: Suppose that ...,a E r. By Lemma 2, there is a pdc A such that ARr, and
a¢. r. By IH, vA(a) = O. Hence, vr(...,a) = 1. Conversely, suppose that ""a ¢. r.
Then for every A such that ARr, ...,a ¢. A. Since a V ...,a E A, a E.6. By IH,
vA(a) = 1, and vr(""a) = O.

Finally, suppose that I:: Y-N a. Then by the Fundamental Lemma, there is a pdc .6
such that I:: ~ .6, and a ¢. .6. The result follows.

5. Da Costa Algebras

Let us now turn to the algebraic structures assotiated with da Costa logic. The
algebraic structures corresponding to intuitionistic logic are Heyting algebras (HA).
Unsurprisingly, the algebraic structures corresponding to da Costa logic have the
same positive part as Heyting algebras, but a dual treatment of negation.

The standard definition of a HA is as follows.4 The algebra is a structure (A, V, /\,

-, .l), where (A, v, /\) is a distributive lattice. In particular, we can define a partial
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order, ::S, on the lattice (a ::s b iff a /\ b = a). /\ is a residual with respect to the
ordering, that is: a /\ b ::s c iffa ::s b - c; and 1. is a minimal element, that is: 1. ::s a.
The relative pseudo-complement of a, -.a, is defined as a - 1.. To dualise this, we
need to reformulate slightly. In particular, a Heyting algebra can be taken to be a
structure (A, v, /\, -, -.) where everything is as before, except that mention of 1. is
dropped, and -. satisfies the conditions:

(1) a /\ -.a ::s b,
(2) a /\ b ::s c /\ -'c then a ::s -.b.

It is not difficult to see that this is an equivalent formulation. For a start, the standard
formulation implies these two conditions:

So
In particular
And since
(1) follows.

a-b::Sa-b
a/\(a-b)::Sb
a /\ (a -1.) ::s 1.
1.::Sb

Now, suppose that a /\ b ::s c /\ (c - 1.). As we have just seen, c /\ (c - 1.) ::s 1.; so
a /\ b ::s 1., and a ::s b -1., which is (2).

Conversely, by (1), a /\ -.a = b /\ -.b ::s c. So we can define 1. as a /\ -'a for any a.

Since a /\ -.a ::s 1., -'a ::s a - 1.. And since a /\ (a - 1.) ::s 1., it follows from (2) that
a - 1. < -.a . So a - 1. = -.a.-.

Having established this, it is clear what the dual of a Heyting algebra is. A da
Costa algebra is a structure (A, v, /\, -, -.) where everything is the same, except that:

(ld) a::S b v -.b,
(2d) c v -.c ::s a V b then -.a ::s b.

Clearly, we can define a top element, T, as b V -.b, for any b; and a ::s T. (2d) can
therefore be written as: if T ::s a V b then -.a ::s b.

Given a da Costa algebra, we can define an interpretation as a map, J.L, from the
language into the algebra which is a homomorphism with respect to the operators.
(So that J.L(a - {3) = J.L(a) - J.L({3), etc.) An inference with a finite set of premises
is algebraically valid, al>"" an 1=A {3, iff for every-algebra, and every interpretation
into the algebra, J.L(at) /\ .. . /\JL(an) /\ T ::s JL({3), i.e., T ::s J.L(at) /\ .. . /\J.L(an) - p,({3),
Le., T ::s J.L((at /\ ... /\ an) - {3).

For finite premise sets, algebraic validity is equivalent to validity in the Kripke
semantics. We show this by proving that the algebraic semantics are sound and
complete with respect to the rule system of the previous section.

- Principia 13(2): 165-84 (2009).
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For soundness, we show that if we have a deduction with undischarged assump­
tions I:: and conclusion {3 then I:: FA (3. The proof is by recursion over the construc­
tion of proofs. The positive cases are as in intuitionist logic, and the cases for the
rules for negation just deploy (ld) and (2d) in the obvious way. Here is the case for
(2d). Suppose that we have a proof from zero undischarged assumptions of a V f3.
Then by IH, for any algebra and interpretation I-t, T ~ I-t(av (3). So T ~ I-t(a) V1-t({3).
By (2d), ...,I-t(a) ~ 1-t(f3), and T A I-t(...,a) ~ 1-t({3). By IH, I:: FA ...,a. It follows that

I::FAf3·
For finite sets of premises, we prove the converse by constructing the Linden­

baum algebra. Define a relationship on formulas a '" {3 to mean that a ....U-N f3
(where this indicates bi-deducibility). It is easy to see that'" is an equivalence re­
lation. Moveover, it is a congruence relation with respect to the logical constants.
Thus, if a '" f3 then a V y '" f3 V y, Y A a '" y A {3, Y - a '" y - f3, ""a '" ...,{3,
etc. Showing this for the positive connectives is as in intuitionist logic. The case for
negation follows from the fact that if a I-N {3 then ""'{3 I-N ...,a, which we have already
seen. Let [a] be the equivalence class of a under"'. T = [y V ...,y] .

We define the algebra (A, V, A, -,""') where A = Ha] : a a formula of the lan­
guage}; and [a] V[{3] = [aV f3], ....,[a] = [""a], etc. (This is well defined, since'" is a
congruence relation.) [a] ~ [{3] iff [aA{3] = [a] iffaA{3 -ll-N a iff a I-N {3. It is easy
to check that the algebra is a da Costa algebra. Here, for example, is the verification
of (2d). Suppose that T ~ [a]v[fJ]. Then yV""y I-N aVfJ. Hence,I-N aVfJ, ...,a I-N {3,
and [""'a] ~ [fJ]. Now; suppose that at> ... , an ¥N (3. Then [al A ... Aan] i [f3].
Consider the function, I-t, such that I-t(a) = [a]. This is an evaluation, since it is a
homomorphism into the algebra. We have I-t(at A.. .Aan) i 1-t(f3), so at> . .. , an ~A f3.

To extend the result to arbitrary sets of premises we can go a couple of ways.
First, we can restrict ourselves to complete da Costa algebras (where every set of
members of the algebra has a meet and join), and define I:: FA a to mean that
for all algebras and evaluation functions, I-t, T A I'dl-t(a) : a E I::}~ I-t(a). We
then proceed as in the finite case, though we have to show that the Lindenbaum
algebra can be embedded in a complete Lindenbaum algebra. More simply, we can
just define I:: FA a to mean that for some finite subset I::' = {a 1> ••• , an} of I::,
I-t(al) A... AI-t(an) AT ~ I-t(a). The result then follows from the finite case. I will

. adopt this definition for all algebraic semantics which follow, and so restrict myself
to the finite premise sets.

6. Dualising-

Just as ...., dualises intuitionistic negation, so may we dualise the intuitionistic -. Let
us start by returning to the Kripke semantics. We add a new binary connective, +-,
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to the language, with the conditions dual to those for ---+:

vw(a - (3) = 1 iff for some w' such that w'Rw, vw,(a) = 1 and vw,({3) = O.

It is simple to check that the Heredity Condition still obtains. If we take the language
to contain a logical constant, T, such that for all w E W:

vw(T) = 0,

then it is easy to see that ...,a may then be defined as T - a. I will use FD for the
consequence relation of the extended semantics as well.

Tableaux for the new connective can be obtained by adding the rules:

a - {3,+i
L

kri
a,+k
{3, -k

a-{3,-i
jri
/~

a,-j {3,+i

where, in the first rule, k is new to the branch. It is a simple matter to show that the
extended rule system is sound and complete with respect to the new semantics, and
I leave it as an exercise.

A natural deduction system for the extended language is obtained by adding the
rules:

a

f3Vy

y

a-{3 a

(a - (3) V {3

where, in the first, a is the only undischarged assumption in the proof of {3 V y.

! lwill use f.-N for the extended natural deduction system as welL To prove sound­
ness for the extended natural deduction system, we simply have to check the new
rules. For the first, suppose that a FD {3 V y, and that a - {3 is true at some world,
w, of some interpretation. Then for some w' such that w'Rw, a is true at w', and {3
is false. Since a is true at w', so is f3 V y. And since {3 fails at w', y holds there. By
heredity, y holds at w.

For the second, suppose that a holds at world w. Then either f3 holds there, and
so the disjunction does, or {3 fails there, in which' case a - {3 holds there, and so
'does the disjunction.

In the completeness theorem we need an additional lemma.

Lemma 3. If r is pdc and a - {3 E r, there is a pdc e such that eRr, a E e, and
(3 i e.
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Proof. Let 1: = {a}, and n = {tJ} U {y : y ¢. n. If 1: ¥ 0, we can let e be the ~
of the Fundamental Lemma. This obviously has all the right properties. So suppose
that for some Y1> ••• , Yn ¢. r, {a} I-N tJ V Y1 V ... V Yn' Then {a +- tJ} I-N Y1 V ... V Yn'

Since r I-N a +- tJ, r I-N Y1 V ••• V Yn> which is impossible.

In the proof of the theorem, we now have to check an additional case for +-,

namely:

VrCa +- tJ) = 1 iff a+- tJ E r.

Suppose that a +- tJ E r. Then by Lemma 3, there is a pdc e such that 8R.6., a E 8,
and tJ ¢. e. By IH, veCa) = 1, and veCtJ) = O. Hence vrCa +- tJ) = 1. Conversely,
suppose that a +- tJ ¢. r. Then for all ~ such that .6.Rr, a+- tJ ¢. .6.. Now suppose
that v~Ca) = 1. Then by IH, a E.6.. Since a I-N Ca +- tJ) V tJ, and a +- tJ ¢. .6.,
tJ E .6.; and so by IH, v~CtJ) = 1. Hence there is no ~ such that v~Ca) = 1 and
v~CtJ) = O. That is, vrCa +- tJ) = O.

Thrning to the corresponding algebras, an extended da Costa algebra is a struc­
ture (A, v, A, -,.." +-), where (A, v, A, -,"") is a da Costa algebra, and +- behaves
dually to -. That is:

(*) a ~ b V c iff a +- b ~ c.

The extended rule system is sound and complete with respect to the extended alge­
braic semantics.,

For the soundness of the first rule for +-, suppose that we have a proof of tJ V Y
from just a. Then by IH, j.LCa) AT ~ t-tCtJ vy), So t-tCa) ~ t-tCtJ) Vt-tCy), t-tCa) +- t-tCtJ) ~
t-tCy), and t-tCa +- tJ) A T ~ t-tCy), as required. For the second, t-tCa) +- t-tCtJ) ~ t-tCa +­

tJ), so t-tCa) ~ t-tCa +- tJ) V t-tCtJ), and t-tCa) A T ~ t-tCa +- tJ) V t-tCtJ), as required.
For completeness, we have to'check that the Lindenb~um algebra satisfies con­

dition (*). If [a] ~ [tJ] V [y] then a I-N tJ V y. It follows that a +- tJ I-N y. That is,
1 [a +- tJ] ~ [y]. Conversely, if [a +- tJ] ~ [y] then a +- tJ I-N y. Let 0 be aproof

from a +- tJ to y. Consider the following deduction:

a+-tJ
o

a y tJ
Ca +- tJ)v tJ tJ Vy tJ Vy

tJVy

We see that a I-N tJ V y. That is, [a] ~ [tJ] V [y], as required.
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7. Brouwerian Algebras
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An extended da Costa algebra is of the form {A, V, A, -,..." -}, or equivalently,
(A, v, A, -, T, -), since T and..., are inter-definable, given -. If we drop the com­
ponent for -, we get what is often called in the literature a Brouwerian algebra
(Tarski and McKinsey 1948). If we restrict ourselves to a language without -, then
a notion of validity may be defined using Brouwerian algebras, as for da Costa al­
gebras. Let us call this Brouwerian logic, and write it as FB's We may show that for
sentences not containing -, validity in (extended) da Costa logic and Brouwerian
logic coincide. It suffices to show this for finite sets of premises, since the algebraic
definition of validity for arbitrary sets of premises ensures compactness. So assume
:E to be finite.

If :E .ICA a then there is a da Costa algebra which invalidates the inference. The
algebra obtained by dropping the component - is a Brouwerian algebra, and also,
obviously, invalidates the inference. Hence :E.lCB a.

To show the converse, we need a couple of Lemmas.

Lemma 4. Any finite distributive lattice has an operator, -, satisfying the condition
that a ~ b v c iff a - b ~ c.

Proof Let (M, V,A) be a finite distributive lattice. Let XB = {b : a ~ b V c} =
{bv ... , bnl. Define a - cas bI A ... A bn. Clearly, if a ~ b Vc then a - c ~ b.
Conversely, suppose that a - c ~ b. Then bIA.. .Abn ~ b. So (bIA...Abn)vc ~ bVc,
Le., (bI Vc) A... A(bn Vc) ~ b Vc. But for each bi, a ~ bi VC. SO a ~ b Vc..
Lemma 5. Any finite distributive lattice has an operator, -, satisfying the condition
that a A b ~ c iff a ~ b - c.

Proof Let (M, V, A) be a finitedfstributive lattice. Let XB = {b : a A b ~ c} =
{bI> ... , bn }. Define a - c as bI V ... V bn • The proof then just dualises the proof in
~e preceding lemma.

We can now prove the converse. Suppose that :E.lCB a. Then there is a Brouwe­
rian algebra, (A, v, A, T, -), and a map J.L, which invalidates the inference. We shoW;
first, that there is a finite Brouwerian algebra with the same property.

Let 5 = {J.L(Y) : Y is a sub-formula of any fonnula in :E U {a}} U {T,.l} and let
A.' be the closure of 5 under V and A. Consider the sub-lattice (A', V, A). This is a
distributive lattice, and it is finite. (By distribution, every member ofA.' is equivalent
to something of the form CI V .•• V Cn' where each Ci is a conjunction of members
of 5, T, and .l. There is only a finite number of these.) By Lemma 4, there is an
operator, _, such that (A', V, A, T, _') is a Brouwerian algebra..
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Let p,' be an evaluation of formulas into the new algebra which agrees with p,
on all propositional parameters. If we can show that for every sub-formula, y, of a
formula in I:: U {a}, p,(y) = p,'(y), then it follows that the new algebra is a counter­
model for the inference, and we have what we need. This is proved by recursion.
The cases for parameters, conjunction, and disjunction are trivial. For -, it suffices
to show that if a- b EA', a - b = a -' b. Note that if a- b EA', then a, b EA'.
We have the following:

1. if c EA' then a -' b ~ c iff a ~ b Vc,

2. if c EA then a - b ~ c iff a ~ b V c.

By 2, a ~ b V (a - b); so by 1, a -' b ~ a-b. Conversely, by 1, a ~ b V (a -' b);
so by 2, a - b ~ a -' b. Hence, a - b = a -' b.

To finish the proof: the algebra we have just constructed is finite; hence, by
Lemma 5, it has an operator, - satisfying a /\ b ~ c iff a ~ b - c. Hence it is a da
Costa algebra, and so I::~A a.

Goodman (1981) proves that there is no connective, -, definable in terms of
the connectives of Brouwerian algebra, such that FB a - {3 iff a FB {3. What we
have now seen is that Brouwerian logic can be embedded in da Costa logic, which
has such a connective.

Finally, it follows from the equivalence that da Costa logic and Brouwerian
logic have the same /\-V-. fragrnent. 6 Where (A, /\, v, -,.) is Brouwerian algebra,
Mortensen and Lavers call (A, /\, V,.) a paraconsistent algebra.? The logic gener­
ated by this class of algebras is exactly the same fragment. If there is a Brouwerian
algebra which invalidates an inference, there is certainly a paraconsistent algebra.
Conversely, if there is a paraconsistent algebra, we can produce a Brouwerian alge­
bra by essentially the same construction we have just been through.8

8. Topological Semantics

Dual intuitionist negation also has a topological semantics that is worth noting. Intu­
itionist logic can be given a topological interpretation. Specifically, given any topo­
logical space, an interpretation for intuitionist logic is given by a map, p" of the
propositional parameters into the open sets of the,space, extended to all formulas by

'the following clauses:

p,(a /\ (3) = p,(a) n p,(f3),

p,(a V (3) = p,(a) U p,({3),

p,(a - (3) = (p,(a) V p,({3)Y,
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JL(l.) = 4>,
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where a is the complement of a, and a i is the interior of a. Taking negation to be
--i

defined, JL(""a) = JL(a ~ 1.) = JL(a) . A formula, a, holds in the interpretation iff
JL(a) is the whole space. It is well known that intuitionist logic is sound and complete
with respect to these semantics (Dummett 1977, ch. 5).

We can dualise these semantics by operating with closed sets, instead of open
sets. Specifically, a topology is a structure (5, c), where 5 is a set and c is an operator
from subsets of 5 to subsets of 5 (a closure operator9) satisfying the conditions that
for all X, Y ~ 5:

X ~XC,

X CC =Xc,

4>C = 4>,
(X u Y)' =Xc U yc.

A set, X, is closed if XC = X. It is not difficult to establish that 5 is closed; that if X
and Yare closed, so are X U Y and X n Y; and if X ~ Y, XC ~ Y c• (Proof of the last
of these: if X ~ Y then X U Y = Y. So (X U Y)' =Xc, XC U Yc =Xc, and XC ~ Y C

.)

Given a topological space, an evaluation is a map, JL, from propositional param­
eters to closed sets. It is extended to all ~ -free formulas by the clauses:

JL(a V (3) = JL(a) U JL((3),

JL(a A (3) = JL(a) n JL((3),

JL(a +- (3) = (JL(a) n JL((3))',

JL(T) = 5.

. ~

Taking negation to be defined, JL(...,a) = JL(T +- a) = JL( a) . Note that we cannot
extend these semantics to ~, since even if JL(a) and JL((3) are closed, (JL(a) V JL((3)Y
may not be. An inference is topologically valid, at> ... , an FT (3, iff for every topol­
ogy, and every interpretation into the topology, JL(al) n ... n JL(an ) n 5 ~ JL((3).

McKinsey and Tarski (1947, Theorem 1.19.) established that the closed sets of a
topology, under the defined operations, is a Brouwerian algebra, and conversely, that
every Brouwerian algebra is isomorphic to a sub-algebra of the closed sets of some
topological space. Hence, the algebraic and the topological semantics are equivalent.
As we saw in the last section, Brouwerian logic is equivalent to the ~-free fragment
of da Costa logic. It follows that this fragment is sound and complete with respect
to the topological semantics.
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9. The Meaning of ..,

Graham Priest

Let us end by addressing the question of the meaning of -, in da Costa logic. Return
again to the Kripke semantics. The interpretation of Kripke models in terms of proof
conditions is well known. Essentially, the truths at a world are things of which
we have a proof at some time; wRw' iff w' is the set of those things proved at a
later time, at which we have some number (possibly zero) of further proofs. The
truth conditions of the connectives can then be interpreted in terms of proofs. In
particular, a - {3 is proved at a certain time if we have a construction which applies
to any proof of a to give a proof of {3. If we have such a construction, then at
any later time at which a becomes proved, {3 will automatically become proved.
Conversely, if we have no such construction, it is possible that there will be a future
time at which we have a proof of a, but still no proof of {3 (see Priest 2008,6.2, 6.3).
For its dual, a proof of a+-{3 is a proof that there is no proof of {3 from a. If we
have such a proof then there was, in principle, a time at which a had been proved
and {3 had not. Conversely, if we have no such proof then it is possible that there is a
proof of {3 from a, and hence that at all past times at which a was proved, so was {3.

Take the intuitionist negation of a to be defined as a - 1-. One normally thinks
of 1- as something of which there can be no proof. A proof of a - 1- is a construction
which turns any proof of a into a proof of L Since there can be no proof of 1-, this
construction is effectively a proof that a cannot be proved. But one might think of
1-, slightly differently, as expressing the things which are antithetical to whatever
inquiry we are in. A proof of a - 1- is then a construction to the effect that if we
have a prQof of a, we are in Trouble. We might have neither of a - 1- nor -,a - 1- at
some stage of our investigation: neither may have been shown to get us into Trouble.
Dually, one may think of T as the set of things that are fundamental to our inquiry
(that is, whatever theory it is that is a taken as a given at any stage of our inquiry).
Then a proof of T +- a will be a construction that a cannot be demonstrated on the
i ...

jbasis of T. It is then clear why we may have both T +- a and T +-- -,a: a may simply
be independent of T.

One might ask whether, in the light of this, -, in da Costa logic really is negation.
Exactly the same question may be asked, of course, of the negation of intuitionist
logic. This raises interesting questions appropriate for another occasion. I end sim­
ply by noting that the technical duality between the two negations provides a new
philosophical perspective from which to view such questions.
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Resumo. Uma das razoes de da Costa para erigir a 16gica paraconsistente Cw foi a dua­
liza~ao da 'nega~ao intuicionista. Neste artigo eu exploro urn modo alternativo de chegar a
este resultado. Uma 16gica e definida a partir de uma semantica de Kripke para a 16gica in­
tuicionista, e entao dualizando as condi~oes de verdade para a nega~ao. Varias propriedades
desta 16gica sao estabelecidas, incluindo suas rela~oes com CWo Sistemas de tableau e de
;dedu~ao natural sao apresentados, bern como as estruturas algebricas apropriadas. 0 artigo
'investiga entao a dualiza~ao do condicional intuicionista seguindo 0 mesmo procedimento.
Isso estabelece vanas conexoes entre a logica, e uma 16gica denominada na literatura de
'logica Brouweriana' ou 16gica 'closed-set'.

Palavras-chave: da Costa, paraconsistencia, intuicionismo, Cw , semantica de Kripke, alge­
bras Brouwerianas, 16gica closed-set, nega~ao.

Notes

1 The sytems CiJ for finite i, have a "consistency operator", 0, which allows for the definition
of a classical negation. This makes the positive part of these logics classical, not intuitionist.
See Priest 2007, 4.3.
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2 That one can proceed in this way is explained without details in Priest 2007, Section 3. The
Kripke semantics is also given by Rauszer 1977, where the logic is called Heyting-Brouwer
Logic.
3 The general case of substitutivity can be proved by an induction on the complexity of the
formula into which one is substituting. The proof is routine, given that the case for negation
is unproblematic.
4 See Dummett 1977, 172ff. I use the same symbols for the logical opertors and the algebraic
operations. Context will suffice to distinguish which is at issue.
s Goodman 1981 formulates this logic, and calls it anti-intuitionistic logic.
6 This proves the conjecture of Priest 2007, 156, fn. 86.
7 Mortensen 1995, 103ff. They include a top element, T, in the algebra. As we have noted,
this is redundant.
B Let (A, A, v,"') be a paraconsistent algebra, with top element T. We construct a finite
Brouwerian algebra (A', V,A, T,_') from this as before. The algebra has a negation ..,Ia,
defined as T -' a. Suppose that..,a eA' (and so a eA'). We have:

1. if c e A' then T :5 a V c iff ..,1a :5 c,

2. if c e A then T :5 a V c iff..,a :5 c.

Since T :5 a V "'a, ..,1a :5 ..,a, by 1. And since T :5 a V "'a, ..,a :5 ..:,'a, by 2. Hence ..,a = ..,'a.

9 Interior and closure operators are inter-definable. Specifically, Xi = XC.
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