

Quid, N°. 19, pp. 29-34, Jul-Dic, 2012, ISSN: 1692-343X, Medellín-Colombia

DEVELOPMENT OF A HIERARCHY COLLISION DETECTION ALGORITHM IN ORDER TO

IMPLEMENT A LAPAROSCOPIC SURGICAL SIMULATOR

DESARROLLO DE UN ALGÓRITMO DE DETECCIÓN DE COLISIONES JERÁRQUICA PARA LA

IMPLEMENTACIÓN DE UN SIMULADOR DE CIRUGÍA LAPAROSCÓPICA

Est. Juan Sebastián Muñoz

Universidad EAFIT,

Laboratorio de Realidad Virtual.

Carrera 49 N° 7 Sur — 50,

Medellín, Colombia

PhD. (c) Christian Andrés Diaz

León,

Universidad EAFIT,
Laboratorio de Realidad Virtual.

Carrera 49 N° 7 Sur — 50,
Medellín, Colombia

cdiazleo@eafit.edu.co

PhD. Helmuth Trefftz Gómez,

Universidad EAFIT,
Laboratorio de Realidad Virtual.

Carrera 49 N° 7 Sur — 50,
Medellín, Colombia
htrefftz@eafit.edu.co

(Recibido el 12-05-2012. Aprobado el 20-06-2012)

Resumen: el sistema de detección de colisión de un simulador quirúrgico es una de las partes más críticas para ser

desarrolladas, debido a que encontrar cuál sección de un órgano choca con un instrumento laparoscópico tiene que

hacerse en tiempo real y con la mayor precisión posible. En este trabajo se utiliza una aproximación denominada

"más cerca de los dos triángulos más lejanos", puesto que con ello, no existe la preocupación por el problema de

delimitación y superposición en la aproximación de los cientos de objetos de delimitación (esferas, cajas, etc.).

Palabras claves: simulador quirúrgico, detección de colisión, aproximación de jerarquías.

Abstract: the collision detection system of a Surgical Simulator is one of the most critical parts to be developed,

because finding which section of an organ collides with the laparoscopic instrument has to be done in real time and

as accurately as possible. In this paper we use a "most near from the two farthest triangles" approximation because

we do not have to worry about the bounding-overlap problem in the bounding objects (spheres, boxes, etc.)

approximation.

Keywords: surgical simulation, collision detection, bounding hierarchies.

1. INTRODUCCIÓN

In a surgical simulation an important component of

the system is the collision detection algorithm, it

provides the surgeon the interactivity with the virtual

environment, allowing him/her to execute the

common tasks of surgical simulation. Typical

applications in computer graphics normally detect

collisions between rigid bodies (concave and

convex), but surgical simulators impose somewhat

different requirements. Firstly, the objects (organs

and tissues) are deformable. Secondly, the number of

polygons of each object is very high in order to

achieve acceptable realism. Hence, very efficient

algorithms are required.

In such an application, the following interactions of

pairs of objects that need testing can be found:

 Between surgical tools (Rigid objects).

 Between a surgical tool and a virtual organ (Rigid

and deformable objects).

 Between virtual organs (Deformable objects).

The first phase is a broad phase where the idea is to

select pairs of objects which are probably colliding,

this can be handled using spatial decomposition

algorithms. In this area several approaches aiming at

decomposing the space have been proposed

implementing voxels (García, et al., 1994) and

(Dickheiser, 2000), binary space partition trees

(Thibault, W. C. and Naylor, 1987) and sweep and

prune approach (Cohen et al., 1995).

30

Quid, N°. 19, pp. 29-34, Jul-Dic, 2012, ISSN: 1692-343X, Medellín-Colombia

The second phase is a narrowing phase. In this phase,

the exact colliding point between two objects is not

computed, but broader areas of collision, which are

called the "zone of collision". In this area several

works have been proposed depending of which

object is going to be evaluated. For objects with

convexed geometry, algorithms like GJK (Gilbert et

ál, 1999) LC (Lin and Canny, 1991) or EGJK

(Cameron, 1997) are the most used. These

algorithms determine the distance between two

objects; this distance can be negative or positive

depending if the objects are or not overlapped,

respectively. On the other side, when objects are

concave, the idea is to divide the object into convex

sub objects and then to apply these algorithms.

However, on deformable objects like the ones

present in surgical simulators, the convex division of

the object has to be updated and this can usually not

be done in an iterative rate. Finally, in deformable

objects, the best way to proceed is the bounding

volumes Hierarchies that can be spheres (Benitez et

ál, 2005), AABBs (Zhang and Kim, 2007) or OBBs

(Gottschalk, 1996). These hierarchies offer a fast test

finding the collision zone that can be easily updated.

The problem is that these hierarchies can have some

precision issues finding the correct fitting of the

volumes to the actual object geometry.

Finally, on the third phase, the exact point of collision

is determined and the entities colliding are

determined. In this phase very simple collision tests

are applied (like sphere-sphere, triangle-triangle and

box-box test). In the above mentioned approaches,

the one described in this paper is the one that detects

collision in the presence of deformable objects; in

specific, the narrowing phase. One of the best known

techniques for collision detection in deformable

objects is the bounding-spheres techniques, which

consists in wrapping the parts that compose the

object to be collided with spheres, because of the

invariance of the spheres in the presence of rotations,

it makes searching a fast and simple process. The

problem is that the spheres that wrap the triangles are

overlapped which make that searches can fail.

Bounding spheres can be changed to bounding

boxes, but the box-box test is more complex than the

sphere-sphere test. It is because of this that we

propose an algorithm, which uses a hierarchy. For

this reason, the algorithm is fast. It does not use

bounding volumes, instead uses a "most near from

the two farthest triangles" approach to build the

hierarchy.

The rest of the paper is organized as follows: Section

2 describes similar projects. Section 3 gives an

overview of the proposed collision detection

Algorithm, the hierarchy creation, searching in the

hierarchy and the experimental setup. Section 4

present the obtained results and finally, section 5

describes the conclusions reached so far and the

future work.

2. RELATED WORKS

Several algorithms have been developed to detect

collisions in a surgical environment, but the most

widely used method to detect collision between

surgical instruments and organs (this interaction is

composed for a rigid and deformable object) is the

bounding volume hierarchy. It is commonly used

because the hierarchy allows an easy update of the

data structure. This is the key point, because the

features of the deformable objects change their

position during collisions.

Mainly three different bounding volumes to build

hierarchies have been used (Fares and Hamman,

2005). The most simple are the spheres-bounding

volumes, but fitting the sphere to the object geometry

is very poor and therefore the precision is not very

good and in some cases the search can diverge if the

hierarchy has not been built correctly. On the other

hand, speed is very high because the sphere-sphere

test has a low complexity. In (Hubbard, 1996) we can

find a description of the building and searching of

sphere hierarchies. On the other hand, the bounding

box hierarchies can be of two different ways, using

AABB (Zhang and Kim, 2007) or OBB (Gottschalk,

1996). When we use a bounding box hierarchy, two

important decisions have to be made. The first is

regarding the orientation of the box, because it

provides a good fitting and the second is how to

divide the nodes. The OBBs are normally oriented

using the statistical principal components as the axis,

on the other hand AABBs are oriented parallel to the

local axis frame. The OBBs hierarchies provide a

better fitting to the object geometry than the ABBs

hierarchies, however the construction of the OBBs

hierarchy is more complex than the ABBs

hierarchies. In the Fig. 1 we can observe the

adaptation achieve with everyone of the bounding

volumes to a simple object.

In a surgical simulation, the objects (organs and

tissues) are subject to continuous deformation inside

the virtual environment. This implies that the

hierarchies have to be updated in order to adapt the

deformed object. In the literature two different

techniques of modified hierarchies have been

proposed:

31

Pcenter =
3

PI + P2 + P3 (1)

Quid, N°. 19, pp. 29-34, Jul-Dic, 2012, ISSN: 1692-343X, Medellín-Colombia

Fig. I. Comparison of the 2D urinary protein

profile acetone and ethanol precipitation.

 Rebuild: This process is the entire reconstruction

of the tree from parent to child (top-bottom) or

child to parent (bottom-top).

 Refitting: This process only changes the affected

bounding volumes. The changes are the

propagated from node to node until root or leaf is

reached.

Several research projects that involve bounding

volumes, as mentioned before, have been made.

Vand der Bergen (Bergen, 1997) proposed a method

to update an AABBs hierarchy using a bottom-up

refitting technique. On the other hand, Larsson and

Moller (Larsson, and Akenine-Moller, 2001)

enhanced the algorithm proposed by Van der Bergen

in AABBs hierarchies. The basic idea is similar to

Van Der Bergen's but instead of doing a bottom-up

update sequence, an intermediate level in the

hierarchy is chosen as the starting point for the

update process. Hence, the levels up of the

intermediate level were updated using the bottom-up

strategy and the remaining levels were update using a

top-town strategy. Finally, an approach to update

sphere hierarchies was developed by Brown et al. in

(Brown et ál, 2001) applied in a surgical simulation,

where the radius and position of the sphere center

taking the nodes that have been modified are

updated. It uses a bottom-up strategy.

3. COLLISION DETECTION ALGORITHM

The algorithm that we propose in this paper is

divided into two parts, the first one is the building

process of the collision hierarchy, where a tree

structure is built. Sets of tridimensional points are

stored in non-leaf nodes of the t ree, and

tridimensional points that reference each triangle of

the object (organ) are stored in the leaves of the trees.

On the other side, the second part consists on how to

manipulate the hierarchy in order to find the triangle

that can be colliding with the laparoscopic

instrument.

3.1 Hierarchy creation

The minimum element that the object (organ) is

made from is a triangle, but in order to achieve

simplicity we do not use triangles to perform a search

(that is three points), instead we use a central point

that is the average of the sums of the vertex of the

triangle, then we make a reference (In the

programming context) for each 3d point calculated to

each triangle (see Fig. 2).

Fig. 2. Triangle with the vertex and

the average point.

Where P1, P2 and P3 are the vertices of the triangle.

For the hierarchy building process we like this

 The set u0 denotes the finite universe of

valid t r i a n g l e s t h a t c o m p o s e

t h e o r g a n N i = | U i | is the size of a

group of elements named |Ui| which is a

subset of Uo

 Tj is the point j within Ui
 Uit and Uk two sub-groups from Ut

where is father of Ui and Uk in which

Ui u Uk = Ut and Ui n Uk = 0

 The function d: X x X - R denotes a

measure of "distance" between two points

(the smaller distance, the closer are the

points).

The next algorithm describes how we build the
hierarchy.

32

Quid, N°. 19, pp. 29-34, Jul-Dic, 2012, ISSN: 1692-343X, Medellín-Colombia

LoadHierarchy (Ud

If Nt > 1 then

Divide Ut in Uk and Uf

Does Ut father of Uk and U1

LoadHierarchy (Uk)

LoadHierarchy (U1)

End if

End LoadHierarchy

Fig. 3. In the figure a geometric mesh composed by

four triangles, and the hierarchical structure

associated with this, composed by three levels, and

binary in nature is observed.

In this way to divide Ut in Uk and Ui the algorithm

searches the two point Ck and Ci farthest between

in Ut using this definition d(Ck, ci) = max(d(U3) (2).

Where it is the index of group analyzed in that instant.

Based on this criterion, we proceed as follow to

define the content of the hierarchy:

For each Ci in Ut - [Ck,Cii do

1f d(Ci , Ci) > d(Ck, then

Include Ti in Uk

Else If

Include Ti in U

End if

End For

3.2 Searching in the hierarchy

After building the hierarchy, we can search the

triangles with a possible collision, applying this

algorithm:

SearchCollision(110, T)
Usearch = UO

While Nsearch > 1 do

If d(T , Ci) > d(T , Ck)
Usearch = Uk

Else if

Usearch = U1

End if
End While

Find the triangle Tr refer to Usearch

Find the triangle Tc belong to T

Return if there are collision between Tr and T
End SearchCollision

Where Usearch is the group of points where the search is

happening and Tr is the triangle reference of the

point T.

3.3 Experimental Setup

In order to evaluate the algorithm, we added it as a

module of the surgical simulator, which it has been

developing in Virtual Reality lab at EAFIT

University. The complexity of the algorithm was

determined in order to compare it with other

hierarchical algorithms. On the other hand we

developed an experimental test to determine the

efficiency of the algorithm which was looking for the

primitives (triangle, edge or point), that is closer to

the object. In our experimental configuration, one of

the objects (the rigid one), was changed to a triangle.

For our virtual development we used a triangle that

was at the end of the surgical instrument. We did not

do any simplification with the deformable object, all

its triangles were considered during the process of

collision detection. Several meshes of different sizes,

describing the deformable objects were created, and

the size was determined by the number of edges of

the mesh. In the measurement taken during the

experiment, we took the time that is necessary for the

algorithm to find the two closest primitives.

The tests were run on a DELL XPS computer, with a

dual core processor of 2.0 GHz, 2 GB of RAM and

Windows XP.

4. RESULTS

As was mentioned in the experimental configuration,

was determined the time it took the algorithm to find

the closest primitives. Figure 4, describes the results

and the behavior of the algorithm as the size of the

mesh was increased.

33

Quid, N°. 19, pp. 29-34, Jul-Dic, 2012, ISSN: 1692-343X, Medellín-Colombia

Fig. 4. Execution time with continuous translation

between a triangle and a mesh to

several size of mesh.

Table 1 shows the sizes of the meshes used and the

time to find the two closest primitives.

Table 1. Features of the meshes used for the

experimental test to evaluate the execution time of

the search algorithm

 Triangles Vertex Edges

Mesh 1 128 81 207

Mesh 2 242 144 384

Mesh3 392 225 615

Mesh 4 512 289 799

Mesh 5 648 361 1007

Mesh 6 722 400 1120

Mesh 7 882 484 1364

Mesh 8 1058 576 1632

Mesh 9 1152 625 1775

Mesh 10 1250 676 1924

Mesh 11 1458 784 2240

Mesh 12 1568 841 2407

Mesh 13 1682 900 2580

Mesh 14 1800 961 2759

Mesh 15 1922 1024 2944

Mesh 16 2048 1089 3135

Mesh 17 2178 1156 3332

Mesh 18 2312 1225 3535

Mesh 19 2450 1296 3744

Mesh 20 2592 1369 3959

Mesh 21 2738 1444 4180

Mesh 22 2888 1521 4407

Mesh 23 2964 1560 6164

In Fig. 5 we can observe the visual representation of
the algorithm implementation. Three models
compose the surgical scene. The red one is a
wireframe representation of the liver and blue and
green ones are representations of the surgical
instruments. The yellow and green triangles on the
liver mesh are the nearest triangles to the tip of the
blue and green surgical instruments, respectively.

Fig. 5. Figure showing the detection algorithm

proposed running with a wireframe representation

of a liver model and two surgical instruments.

5. CONCLUSIONS

Current results suggest that, even as the size of the
mesh is increased, the proposed algorithm shows a
very stable behavior. We are currently working on
tests with more complex objects that better resemble
real anatomic structures.

We are also working on updating the hierarchy in
order to determine collisions involving deformable
objects as some organs and human tissue.

REFERENCES

Garcia, A., Serrano, N. and Flaquer, J. (1994)
Solving the Collision Detection Problem. In IEEE
Transactions on Computer Graphics and
Applications, Volume 14, Issue 3, pp. 36-43.

Dickheiser, M. (2000) Game Programming Gems 6,
Cengage Learning.

Thibault, W. C. and Naylor, B. F. (1987) Set
Operations on Polyhedra using Binary Space
Partioning Trees. In Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive
Techniques, New York NY, USA, pp. 153-162.

Cohen, J. D., Lin, M. C., Manocha, D. and Ponamgi,
M. (1995) I-COLLME: An Interactive and Exact
Collision Detection System for Large-scale
Environments. In Proceedings of the Symposium on
Interactive 3D graphics, New York NY, USA, pp.
189-194.

34

Quid, N°. 19, pp. 29-34, Jul-Dic, 2012, ISSN: 1692-343X, Medellín-Colombia

Gilbert, E. G., Johnson, D.W. and Keerthi, S. (1999)

A Fast Procedure for Computing the Distance

between Complex Objects in Three-dimensional

Space. In IEEE Transactions on Robotics and

Automation, Volume 4, Issue 3, pp. 193 - 203.

Lin, M. C. and Canny, J.F. (1991) A Fast Algorithm

for Incremental Distance Calculat ion. In

Proceedings IEEE International Conference on

Robotics ant Automation, Sacramento, CA, USA,

pp. 1008-1014.

Cameron, S. (1997) Enhancing GJK: Computing

Minimum and Penetration Distances between

Convex Polyhedra. In Proceedings IEEE

International Conference on Robotics and

Automation, Albuquerque NM, USA, pp. 3112-

3117.

Benitez, A., Del Carmen Ramirez, M. and Vallejo o, D.

(2005) Collision Detection using Sphere-Tree

Construction. In Proceedings of 15th International

Conference on Electronics, Communications and

Computers, Puebla, Mexico, pp. 286-291.

Zhang, X. and Kim, Y. (2007) Interactive Collision

Detection for Deformable Models Using Streaming

AABBs. In IEEE Transactions on Visualization and

Computer Graphics, Volume 13, Issue 2, pp. 318-

329.

Gottschalk, S., Lin, M. C. and Manocha, D. (1996)

OBBTree: A Hierarchical Structure for Rapid

Interference Detection. In Proceedings of the 23rd

annual conference on Computer graphics and

interactive techniques, New York, NY, USA, pp.

171-180.

Fares, C. and Haman, Y. (2005) Collision Detection

for Rigid Bodies: A State of the Art Review

Proceedings of International Conference Graphicon

2005, Novosibirsk Akademgorodok, Russia, pp.

142-163.

Hubbard, P. M. (1996) Approximating Polyhedra

with Spheres for Time-critical Collision Detection.

In ACM Transactions on Graphics, Volume 15, Issue

3, pp. 179-210.

Bergen, G. (1997) Efficient Collision Detection of

Complex Deformable Models usingAABB Trees. In

Journal of Graphics Tools, Volume 2, Issue 4, pp. 1-

14.

Larsson, T. and Akenine-Moller, T. (2001) Collision

Detection for Continuously Deforming Bodies. In

Eurographics 2001, Short Presentat ions,

Manchester, England, pp. 325-333.

Brown, J., Sorking, S., Montgomery, K., Bruyns, C.,

Sephanides, M. and Latombe, J.C. (2001) Real-time

simulation of deformable objects: tools and

application Proceedings of the 14th Conference on

Computer Animation, Seoul, South Korea, pp. 228-

258.

