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Abstract

The concept of data indexed by finite symmetry orbits is reviewed
within the data-analytic framework of symmetry studies. Data de-
compositions are discussed in terms of canonical projections and
Plancherel’s formulas, and interpreted in terms of orbit invariants.

Keywords: irreducible representations, irreducible characters, finite groups,
canonical projections, Fourier transforms, convolution.

Resumen

Se revisa el concepto de datos indexados por órbitas simétricas
finitas en el marco de estudios de simetŕıa. Se discute la descom-
posición de datos en términos de proyecciones canónicas y fórmulas
de Plancherel, e interpretada en términos de órbitas invariantes.

Palabras clave: representaciones irreducibles, caracteŕısticas irrducibles,
grupos finitos, proyecciones canónicas, transformada de Fourier, convolución.
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1 Introduction

Scalar measurements x : G −→ R defined on a finite group G can be
naturally expressed as points

x =
∑

τ∈G

xτ τ

in the group algebra CG of G, endowed with an additive (real or complex)

vector space structure and a product rule

(xy)τ =
∑

σ∈G

xσ yσ−1τ = (x ∗ y)τ

given by the convolution x ∗ y of x, y ∈ CG. A relabeling of x by σ ∈ G is

given by

σx =
∑

τ

xτστ =
∑

γ

xσ−1γγ

in which the observation xσ indexed by σ replaces the observation x1

originally labeled by the identity. The group relabeling gives rise to the

usual regular representation

φσ : (xτ )τ∈G �−→ (xσ−1τ )τ∈G
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of G into GLg(C), where g indicates the order of G.
The assignment of measurements to objects, although an apparently

trivial pursuit,

. . . when measuring some a attribute of a class of objects or
events, we associate numbers (or other familiar mathematical

entities, such as vectors) with the objects in such a way that
the properties of the attributes are faithfully represented as

numerical properties1. . .

hides in itself the implicit arbitrariness present in the association or as-
signment of numbers to objects. As a consequence, it seems desirable that
such associations be invariant, in a sense to be made precise later, to any

possible relabeling or re-assignment of measurements to labels.
To illustrate the effect of labeling in the assignments of numbers to

objects, consider the triangle with vertices {(1, 0), (0, 2), (3, 3)} and the
evaluation of its area

A =
√

s(s − a)(s − b)(s− c)

using Heron’s Formula, where a, b, and c are the lateral lengths and

s =
a + b + c

2

its semi-perimeter. The evaluation of the area requires the choice of one
of the possible permutations

π : {a, b, c} �→ {
√

5,
√

13,
√

10}
giving the distinct indexing of the lateral sides by the symbols {a, b, c}.
In this case, obviously, πA = A for all permutations π in the symmetric
group S3, and Heron’s Formula is said to reduce symmetrically.

In contrast, the evaluation of the triangle’s index of handedness, given

by

F =
a − b

a + b
+

b − c

b + c
+

c − a

c + a
,

now shows, as one chooses the different permutations π in the labeling
of the lateral sides, that the index depends on that particular choice in

accordance with

πF =

{
−F for π ∈ {(ab), (ac), (bc)} ⊂ S3,

+F for π ∈ {1, (abc), (acb)} ⊂ S3

.

1Foundations of Measurement Volume I: Additive and Polynomial Representations,

by David H. Krantz, R. Duncan Luce, Amos Tversky, and Patrick Suppes.
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That is, F reduces anti-symmetrically.
The purpose of this short communication is presenting a brief overview

of the interpretations of orbit relabeling that are relevant to the analysis
of measurements indexed along a group orbit. The reader is referred to

[1, 2] for complete details and additional references.

2 The canonical projections

Indicate by Ĝ the set of irreducible representations of a finite group G, and

denote by χξ
τ = Trξτ ∈ C the character of ξ ∈ Ĝ evaluated at τ ∈ G.

When considered as points in CG we have χξχη = 0 for any distinct

non-equivalent ξ, η ∈ Ĝ, whereas χξχξ = gχξ/nξ, with nξ denoting the
C−dimension of the representation (space of) ξ.

Defining

πξ =
nξ

g
χξ ∈ CG, ξ ∈ Ĝ,

it then follows that

π2
ξ = πξ; (1)

πξπη = 0 for any two distinct ξ, η ∈ Ĝ; (2)
∑

ξ∈Ĝ

πξ = 1 ∈ CG. (3)

This is the abstract group-algebra formulation of the canonical projections

theorem.
Given a homomorphism ρ of G into GLn(C), the linearizations

〈x, ρ〉 =
∑

τ

xτρτ , x ∈ CG

are points in the enveloping (group) algebra A[ρ] of {ρτ ; τ ∈ G} such that

〈x, ρ〉〈y, ρ〉= 〈xy, ρ〉 (4)

for all x, y ∈ CG. In particular, for πξ as defined above, and φ the regular
homomorphism of G into GLg(C), the points

Pξ = 〈π̄ξ, φ〉 =
nξ

g

∑

τ

χ̄ξ
τφτ ∈ A[φ]

describe the regular canonical projections and, from (1)-(4), satisfy the
fundamental properties
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1. P2
ξ = Pξ;

2. PξPη = PηPξ = 0 for any two distinct ξ, η ∈ Ĝ;

3.
∑

ξ∈Ĝ
Pξ = I ,

where I indicates the g × g identity matrix. The regular projections give
a class of orbit invariants based on the important fact that they commute

with all elements φτ of the regular representation of G. That is

φτPξ = Pξφξ

for all τ ∈ G, for all ξ ∈ Ĝ.
As a consequence, for all x ∈ Rg the relabeling φτ (Pξx) of Pξx is equal

to Pξ(φτx), which remains in the projection space Wξ of Pξ, for all τ ∈ G.

For example, if G = S2
∼= {1, v}, then

φ1 =

(
1 0
0 1

)
, φv =

(
0 1
1 0

)
,

so that

P1 =
1

2

(
1 1
1 1

)

is the projection associated with the symmetric character, and

Pα =
1

2

(
1 −1

−1 1

)

is the projection associated with the anti-symmetric (α). Moreover, P1x

defines the subspace W1 generated by

〈x, 1〉 = x1 + xv

whereas Pαx defines the subspace Wα generated by

〈x, α〉 = x1 − xv .

In both cases, φτ (Pξx) remains in the corresponding (invariant) sub-

space Wξ, for ξ ∈ Ĝ = {1, α}.
This is the notion of orbit relabeling invariance as captured by the

regular canonical projections. The two summaries x1 + xv and x1 − xv

give a complete (to be made precise in Section 6) set are invariants for
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any experiment performed on a bilateral structure such as fellow eyes or
follow ears, where the notion of left-right or up-down, may be arbitrary.

The commutativity of φτ and Pξ implies that

x′Pξx, ξ ∈ Ĝ,

are orbit constants. That is, the relabeling τx = φτx leads to

(φτx)′Pξ(φτx) = x′(φ′

τPτφτ )x

= x′(φ−1
τ Pτφτ )x

= x′Pτx.

In statistical inference, these invariants are commonly referred to as vari-

ance components in the decomposition

‖x‖2 =
∑

ξ

x′Pξx, ξ ∈ Ĝ

of ‖x‖2. This is why the canonical projections are the mechanisms behind

all decompositions (or analysis) of variance for the purpose of statistically
estimating and testing the magnitude of the observed orbit constants (or
contrasts, in the statistical terminology).

All random samples have an intrinsic arbitrariness in the assignments
of observations to their labels {1, 2, . . . , n}, described by the permuta-

tions τ in the full symmetric group Sn acting on the labels. If ρτ is the
corresponding permutation matrix then we write

τx = ρτx, τ ∈ Sn

in analogy to the regular case in which the group acts on itself. The
resulting canonical projections give a decomposition

I = A + Q
of the n × n identity matrix I in which A is a n × n matrix with all

entries equal to 1/n and Q = I − A. Moreover, AQ = QA = 0 and
A2 = A,Q2 = Q.

The resulting orbit constants of random sampling are then the com-
ponents of the decomposition

‖x‖2 = x′Ax + x′Qx

= n(x̄)2 +

n∑

i=1

(xi − x̄)2,

namely, the sample mean and the sample variance.
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Proposition 2.1. The regular projections evaluate as

Pξx =
nξ

g
(χ̄ξ ∗ x).

Proof:

Pξx =
nξ

g

∑

τ

χ̄ξ
τφτx

=
nξ

g

∑

τ

χ̄ξ
τ

(
∑

σ

xτ−1σσ

)

=
nξ

g

∑

σ

(
∑

τ

χ̄ξ
τxτ−1σ

)
σ

=
nξ

g

∑

σ

(
χ̄ξ ∗ x

)

σ
σ

=
nξ

g
(χ̄ξ ∗ x).

3 The orbit invariance property

Given x =
∑

τ xτ τ ∈ CG and ρ a homomorphism of G into GLn(C), we
observe that the evaluation of the linearization

〈σx, ρ〉
of a relabeled point

σx =
∑

γ

xσ−1γγ

gives
〈σx, ρ〉 = ρσ〈x, ρ〉,

so that when ρ ∈ Ĝ, the column spaces of 〈x, ρ〉 are stable representation
spaces of ρ and in that sense we say that 〈x, ξ〉 are orbit invariants of

x ∈ CG, for all ξ ∈ Ĝ. These linearizations, for all ξ ∈ Ĝ, are called
the Fourier transforms of x over the finite group G. In other words,

The Fourier transforms over a finite group G give precisely a set of orbit
invariants for that group.

The data-analytic implication is that the Fourier transforms give pre-

cisely a set of data summaries that are orbit invariant. Every instance
of experimental results indexed by a (faithful) group orbit can be sys-

tematically summarized by evaluating the Fourier transforms over that
group.
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4 The Fourier–inverse formula

Note that

Tr [ξτ−1〈x, ξ〉] = Tr ξτ−1

∑

σ

xσ

=
∑

σ

xσ Tr ξτ−1 =
∑

σ

xσχτ−1σ

=
∑

γ

xτγχ
ξ
γ =

∑

γ

xτγχ̄ξ

γ−1

=
∑

γ

xτγ−1χ̄γξ = (χ̄ξ ∗ x)τ .

Therefore, from Proposition 2.1,

∑

ξ∈ Ĝ

nξ

g
Tr [ξτ−1〈x, ξ〉] =

∑

ξ

nξ

g
(χ̄ξ ∗ x)τ

=




∑

ξ

Pξx





τ

= xτ ,

where in the last equality we used the fact that
∑

ξ∈Ĝ
Pξ = I . This is

then the Fourier–inverse formula:

xτ =
∑

ξ∈Ĝ

nξ

g
Tr [ξτ−1〈x, ξ〉].

The inverse formula is in fact the consequence of the broader result

saying that the (algebra) homomorphism

x ∈ CG
ϕ−→ ⊕ξ〈x, ξ〉 ∈

∏

ξ

A[ξ]

is an isomorphism. Indeed, if

〈x, ξ〉 = Inξ
, for all ξ ∈ Ĝ

then, applying the orbit invariance property

〈τx, ξ〉 = ξτ , for all ξ ∈ Ĝ

so that
nξ

g
〈τx, ξ〉 =

nξ

g
ξτ
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and taking the trace on both sides we have

〈τx, πξ〉 =
nξ

g
χξ

τ =
χ1

τχξ
τ

g

and summing over Ĝ we obtain

〈τx, 1〉 =

{
1 τ = 1

0 τ �= 1

that is, x = 1. In the above equality we used the fact the
∑

ξ∈Ĝ
n2

ξ = g

and that
∑

ξ∈Ĝ
πξ = 1.

5 Fourier basis

In general, it is possible to construct a g × g unitary matrix F such that

(Fx)ξ =

√
nξ

g
〈x, ξ〉

relative to which (basis) we have

FPξF ∗ = diag(0, . . . , In2

ξ
, . . . , 0)

and
FφτF ∗ = diag(. . . , Inξ

⊗ ξτ , . . .)ξ∈Ĝ
.

To illustrate consider again the case G = {1, v} discussed earlier.
Then,

F =
1√
2

(
1 1
1 −1

)
, FF ∗ = 1,

so that

FP1F ∗ =

(
1 0
0 0

)
,

FP2F ∗ =

(
0 0

0 1

)
.

Therefore, in the Fourier basis {1/
√

2, α/
√

2} the canonical projections
are the identity operators in the corresponding (irreducible) subspaces

W1 ⊕ Wα. This, as the reader may recognize, is just a verification of
Schur’s Lemma.
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Moreover, if M ∈ Cent{ρ1, ρv} then it follows that M must have the
pattern of (

a b
b a

)
,

and, therefore, in the Fourier basis, we have

FMF ′ =

(
a + b 0

0 a − b

)

that is, in W1

M = (a + b)P1

and in Wα

M = (a − b)P2

or

M = (a + b)P1 + (a − b)Pα.

Indeed, if M = f1P1 + fαPα then PξM = fξPξ so that, for ξ ∈ Ĝ,

fξ =
Tr PξM

Tr Pξ
=

Tr PξM

dim wξ
=






Tr
1

2

(
1 1

1 1

)(
a b

b a

)
= (a + b), ξ = 1;

Tr
1

2

(
1 −1

−1 1

) (
a b

b a

)

= (a − b), ξ = α.

That is: {P1,Pα} is a basis for the center of the (matrix) group

{ρ1, ρv}.
In general, partitioning G into its conjugacy classes G = [τ1]∪ . . .∪ [τr]

it follows that ∑

η∈[τi]

η =
∑

σ

στiσ
−1 ∈ Cent CG,

and conversely, if στσ−1 = τ for all σ, then gσ =
∑

σ στσ−1 ∈ ∑
η∈[τ ] η,

so that the sums ∑

η∈[τi]

η

over the distinct conjugacy classes of G form a basis for the Cent CG.
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In addition, note that:

• If M = f1P1 + fαPα then Mk = fk
1P1 + fk

αPα, so that e−iMt =

e−if1tP1 + e−ifαtPα describes the superpositions of wave-like func-
tions.

• If F indicates the Fourier basis introduced above, and X is a random
variable with distribution N (µ, Σ) with Σ in Cent CG, then the

distribution of FX is N (Fµ,FΣF∗), with

FΣF ∗ =

[
a + b

a − b

]
, Fµ =

(
µ1 + µ2

µ1 − µ2

)

and

Σ =

[
σ2 ρσ2

ρσ2 σ2

]
,

a + b = σ2(1 + ρ)

a − b = σ2(1 − ρ)
.

• If Σx = λx and Σ ∈ Cent CG, then Σ(Pξx) = Pξ(Σx) = Pξ(λx) =

λ(Pξx), that is, all Pξx are eigenvectors associated with the eigen-
value λ.

• Symmetric tensors. Define Πf (A) = A ⊗ . . .⊗ A︸ ︷︷ ︸
f copies

. Take M = λ1P1+

λαPα ∈ Cent CG. Then Πf (M) is a symmetric tensor [3] in the
sense that it commutes with Πf (ρτ ) for all τ ∈ G. That is, the

commutator

[Πf(ρτ ), Πf(M)] = 0, ∀ τ ∈ G.

In quantum mechanics, the symmetric tensors are the observables
of the system, whereas

Πf(M)x

are the possible states of the system.

To illustrate, let f = 2, so that

Π2(M) = λ2
1P1 ⊗P1 + λ1λ2P1 ⊗Pα

+λ2λ1Pα ⊗ P1 + λ2
1Pα ⊗ Pα

is a symmetric tensor. Take any x as a superposition of

{χ1 ⊗ χ1, χ1 ⊗ χα, χα ⊗ χ1, χα ⊗ χα}.
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Then,

Π2(M)(χ1 ⊗ χ1) = λ2
1 χ1 ⊗ χ2,

Π2(M)(χ1 ⊗ χα) = λ1λ2χ1 ⊗ χα,

Π2(M)(χα ⊗ χ1 = λ2λ1χα ⊗ χ1,

Π2(M)(χα ⊗ χα) = λ2
2χα ⊗ χα.

Note that the two states χ1 ⊗ χα and χα ⊗ χ1 share the same (energy)

level λ1λ2.

6 Parseval’s and Plancherel’s equalities

From the Fourier basis definition it follows that

‖x‖2 = x∗x = (Fx)∗(Fx) =
∑

ξ∈Ĝ

nξ

g
‖〈x, ξ〉‖2,

which is the Parseval’s equality. Similarly we obtain Plancherel’s equality

x∗y =
∑

ξ∈Ĝ

nξ

g
‖〈x, ξ〉‖ ‖〈y, ξ〉‖.
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