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Abstract— Due to the subjectivity involved cur-
rently in pulmonary auscultation process and its 
diagnostic to evaluate the condition of respira-
tory airways, this work pretends to evaluate the 
performance of clustering algorithms such as k-
means and DBSCAN to perform a computational 
analysis of lung sounds aiming to visualize a 
representation of such sounds that highlights the 
presence of crackles and the energy associated 
with them. In order to achieve that goal, Wavelet 
analysis techniques were used in contrast to tra-
ditional frequency analysis given the similarity 
between the typical waveform for a crackle and 
the wavelet sym4. Once the lung sound signal 
with isolated crackles is obtained, the cluster-
ing process groups crackles in regions of high 
density and provides visualization that might 
be useful for the diagnostic made by an expert. 
Evaluation suggests that k-means groups crackle 
more effective than DBSCAN in terms of gener-
ated clusters.

Key Word--- Lung Sounds, Crackles, Vesicular 
Sounds, Adventitious Sounds, Transformed Wave-
let, Decomposition Wavelet, Symlet, Clustering, k-
means, DBSCAN, Log-energy.

Resumen—Debido a la subjetividad que involucra 
actualmente el proceso de auscultación pulmonar 
y su diagnóstico para evaluar la condición de las 
vías respiratorias de un paciente, este trabajo busca 
evaluar el desempeño de los algoritmos de cluster-
ing: k-means y DBSCAN para efectuar un análisis 
computacional de sonidos pulmonares con el objeti-
vo de visualizar una representación de dichos soni-
dos que exalte la presencia de estertores y la energía 
contenida en ellos. Para este fin, se emplearon técni-
cas de descomposición y análisis Wavelet a diferen-
cia del tradicional análisis en frecuencia dada la si-
militud entre la forma de onda de un estertor típico 
y la wavelet sym4. Obtenida la señal de sonido pul-
monar con estertores aislados, el proceso de cluster-
ing agrupa estertores en regiones de alta presencia 
y ofrece una visualización que puede ser de utilidad 
para el diagnóstico hecho por un experto. La evalu-
ación hecha sugiere que k-means agrupa conjuntos 
de estertores de forma más efectiva que DBSCAN en 
términos de clusters generados.

Palabras Clave— Sonido Pulmonar, Estertores, Soni-
dos Vesiculares, Sonidos Adventicios, Transforma-
da Wavelet, Descomposición Wavelet, symlet, Clus-
tering, k-means, DBSCAN, log-ennergy
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I.	 Introduction

Every year around 4 million people die due to 
lung disease; diseases that affect more than 30 
million people around the world, according to 
studies carried out in 2010 and 2011 (1). These 
studies and some others relate the growing num-
ber of patients with lung cases to increasingly 
polluted environments and to social factors such 
as obesity and the smoking habit.

Given the recurrence of lung disease, the 
method of auscultation is widely popular due to 
the rapid diagnosis that provide the ease of the 
procedure and the stethoscope portability which 
is an instrument used by the examiner to hear 
lung sounds, whose identification and characte-
rization is crucial to associate a specific patho-
logy. However, despite the relevance of ausculta-
tion to determine the condition of the respiratory 
system, this procedure has not technologically 
evolved markedly in recent decades, leaving the 
nature of the diagnosis entirely on the skills and 
expertise of the examiner and involving much 
subjectivity.

A departure point will be the basic classifica-
tion of lung sounds associated with an abnormal 
condition known as adventitious sounds (rhon-
chus, wheezing and crackles). Crackles are par-
ticularly common presenting a series of acoustic 
characteristics that make it difficult to detect, 
such as its low tone that ranges from 100-200 
Hz [2] and a very short time duration ranging 
between 30-40 ms [3] [4] which permits to des-
cribe them according to Laennec, inventor of the 
stethoscope, as discontinuous sounds of explosi-
ve nature and superimposed on the normal lung 
or vesicular sounds. 

Crackles, depending on their frequency within 
a respiratory cycle, are divided into coarse crac-
kles (CC) and fine crackles (FC), and usually 
they are due to the presence of secretions or 
obstructions in the airway. Classifying them as 
thick (coarse) and thin (fine) provides informa-
tion about the type and severity of obstruction.

With the use of (more popular today than a 
few years ago) electronic stethoscopes, it is pos-
sible to digitally reveal and capture lung sounds 
in order to apply some sort of signal processing 
to help the examiner to facilitate the diagnosis 
of auscultation. Since then, one of the most fre-
quent approaches in computational analysis of 
lung sound has been crackling parametrization 
that allows finding crackles accurately within 

a lung sound signal and evaluating their pro-
perties, information that can be a support for a 
diagnosis.

For this purpose, the analysis of data based 
on Machine Learning has been applied to the 
analysis of lung sound in order to automatically 
detect one or more types of sound [5], [6]. To this 
end, the typical procedure in machine learning 
involves, on the one hand, a signal preprocessing 
that emphasizes the defining characteristics for 
its classification and, on the other hand, a lear-
ning phase to develop a discriminative model 
that identifies each of the concerning sounds.

In the preprocessing stage, because of its short 
duration, the classical analysis in frequency, 
normally carried out by the Fourier Transform, 
is insufficient to capture relevant information 
about crackling. Moreover, wavelet analysis, 
thanks to its inherent local analysis of the sig-
nal, allows the performance of this task with 
more reliably than many procedures for signal 
analysis, as shown in [7], [8], and [9].

As for learning algorithms, this paper pro-
poses an unsupervised learning to detect crac-
kles. Thus forcing the model to detect by itself 
what portions of sound is observed as abnormal, 
without the need to compare against the ver-
dict of an examiner. In this way, the robustness 
of the algorithm does not lie in the amount of 
crackling sounds noted by an examiner, but the 
ability of the wavelet to represent crackles sa-
tisfactorily. 

With the hypothesis that an unsupervised 
learning provides better detection of crackling 
given the properties of the wavelet, this article 
evaluates the performance of the most popular 
clustering methods (k-means and DBSCAN) 
within this context and, in turn, it aims at de-
termining whether they can become a diagnostic 
tool for the medical community support.

II.	 Methods

A.	Wavelet Analysis

Wavelet analysis, developed by Haar in the early 
twentieth century and continued by Gabor in 
1946 [10], allows multi-resolution analysis of the 
signal similar to that of the Fourier transform. 
However, instead of representing the signal in 
scaled versions of sinusoids, it does so by scaling 
a signal of short wave called wavelet denoted 
with the letter Ψ, as shown in (1).

	 	 (1)
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Where a and b denote the scaling and movement 
of the wavelet Ψ (t) and the values ​​contained in WT 
(x (t)) can reconstruct the signal in time f (t).

1) Discrete Wavelet Transform (DWT): In 1988, 
Mallat [10] developed a new scheme for the wave-
let transform, which obtains a subset in powers of 
2 (dyadic) of the coefficients of the traditional trans-
form but through digital filters. 

This new scheme, allowed a signal to be divided 
into 2 new samples resulting from a low-pass and a 
high-pass filter respectively, which are complemen-
tary and, when added together, resulted in the ori-
ginal signal. 

The product signal from the low-pass filter is 
called approach (A), because it contains the coeffi-
cients that contribute most to the waveform of the 
original signal. Moreover, the result of the high pass 
filter is called details (D) and it contains the remai-
ning coefficients which is information from A that is 
not contained in the original signal (Fig . 1).

Fig . 1. WDT decomposition stage.
Source : Authors 

 This decomposition can be performed in cascade, 
thereby obtaining a decomposition tree that meets 
at each stage various levels of approximation and 
details that together include all information of the 
original signal (Fig . 2) .

FIG. 2 Three level wavelet decomposition tree.
Source : Authors.

B.	Clustering

In the context of machine learning, clustering is 
one of the approaches of unsupervised learning 
that aims at grouping subsets called clusters from 
a dataset, so that the elements belonging to each 
cluster are the most similar to each other compa-
red to those of other cluster [11].

The concept of clustering in itself is not an al-
gorithm, but the partition task of a dataset into a 
number of clusters. When mapping the dataset in 
a vector space of dimension n, where n defines the 
number of characteristics of the dataset, the clus-
tering process groups the points corresponding to 
each data in a number of clusters, where each of 
these groups together data that are “close “ within 
that vector space given some metric, being Eucli-
dean the most common, as shown in (2).

	 	 (2)

Currently there are a variety of clustering al-
gorithms that are widely used. However, given the 
typical properties of a lung sound signal, not all 
of them offer an efficient performance. Such cha-
racteristics require an algorithm that is scalable 
in the order of several thousand points presenting 
a vector with recorded audio quality (higher sam-
pling frequency to 10 KHz), likewise, the num-
ber of clusters, corresponding to found crackling 
groups can vary from a few or dozens. Therefore, 
given the recommendations of machine learning 
module scikit-learn [11], this work implements 
those clustering algorithms that have greater sca-
lability, once provided the amount of points and 
clusters, which are k-means and DBSCAN.
1.	 k-means: The k-means algorithm groups data 

into clusters seeking to separate dataset in k 
groups presenting the same variance of the 
data assigned to each cluster in connection to 
the center of mass of the same, called centroid 
[12]. Therefore, the algorithm finds k centroi-
ds so as to minimize the expression (3).

con j = 1, 2 , 3 … number of samples	  (3)

2.	DBSCAN: A different way to approach the 
task of grouping data into clusters is perfor-
med by DBSCAN. This algorithm sees clus-
ters as high density areas separated by areas 
of low density [11]. Under this procedure so 
generic, DBSCAN clusters may have any sha-
pe, rather than regular clusters of k-means, 
which for example, using an L2 norm tend to 
be circular.
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Fig. 3. k-means applied to a 2D dataset.
Source: http://scikit-learn.org/stable/modules/clustering.html [11]

More formally, the DBSCAN algorithm is cente-
red on the concept of core-samples, which are sam-
ples in high-density regions of the dataset that are 
close to each other under any metric. Likewise, there 
are the non-core-samples, which oppositely, are sam-
ples in low-density regions that are close to a core-
sample but are not core-samples themselves. 

Given these concepts, DBSCAN define a cluster 
by means of two parameters, a distance d and a mi-
nimum of m samples. Having m samples of the da-
taset, that all meet the fact of being separated from 
one another by a distance less than or equal to d; 
this subset of samples, will define a cluster.

Regarding k-means, DBSCAN has the advantage 
that the number of clusters is not defined by the user 
and that not all elements of the dataset are assigned 
to a cluster and can be discarded and considered due 
to being located in areas of low density. However, 
a potential drawback is that it is very sensitive to 
variations of the parameters d and m. When trying 
the wrong parameters, the algorithm can define too 
many or too few clusters for the given dataset.

Fig. 4 shows an example of DBSCAN on a 2D da-
taset, the black points are those considered in areas 
of low density.

Fig. 4 DBSCAN applied to 2D dataset. In this example, 
three clusters are demarcated based on a defined m and d.
Source: http://scikit-learn.org/stable/modules/clustering.html [11]

C.	Databases

Lung sounds, on which the performance of the pro-
cedures described in Section IV was evaluated, 
correspond to 20 audio samples from RALE Repo-
sitory [13], which corresponds to lung sounds with 
presence of coarse or fine crackles.

Each sound has a sampling frequency Fs = 10240 
Hz. In addition, each sample was converted to WAV 
format with 16-bit PCM modulation to a single 
channel using the Audacity [14] software and crop-
ped so that it keeps the corresponding sound of a 
respiratory cycle.

III.	Design

A.	Removing Crackles by Wavelet Transform

Former works for separating vesicular sounds from 
crackling sounds by wavelet transform were done in 
[7] and [8]. A similar procedure was conducted for 
the above, as shown below:

A three level wavelet decomposition tree was im-
plemented in MATLAB R2011b language, using 
Symlet wavelet family, more specifically, the wave-
let sym4.

This wavelet was chosen because of its similarity 
in waveform with a typical crackle, as shown in Fig. 
5.

1) Reconstruction of signal and thresholding: once 
decomposition is performed on the signal, it is neces-
sary to rebuild so that only relevant information is 
retrieved.

 

Fig. 5 Typical crackle waveform (right); Wavelet sym4 (left). 
Source: “Elimination of vesicular sounds from pulmo-
nary crackle waveforms” Computer methods and pro-

grams in biomedicine (2008) [3].

 Taking a similar scheme to that of Fig. 2, each 
new stage of decomposition comes from breaking 
down each approach to the three levels established.

Provided the assumption that the crackles behave 
as details on the decomposition, each level extracts 
different types of crackles, from the least scaled in 
time (D1) to the shortest duration (D3).

 A threshold stage is used for eliminating coeffi-
cients in each level which are very small in relation 
to those extreme values of the signal. These atypical 
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extreme values are those which occur due to the ap-
pearance of a crackle [8]. Values located within the 
range of quartiles Q1 and Q3 are eliminated using 
the median as the estimator.

Once these new coefficients are obtained for de-
tails, the signal is reconstructed inversely to the 
decomposition process, although for this procedure, 
the last level of approximation is not used (see Fig. 
6); the results are as shown in Fig. 7.

Fig 6. Scheme of decomposition, threshold and 
reconstruction. D1, D2 and D3 containing the high 

frequency coefficients of the signal S. A threshold is 
implemented in each  one for obtaining D1 ‘, D2’ and 
D3 ‘. The new signal S’ is reconstructed from these 

new details regardless A1, A2 or A3.
Source: Authors

B.	Clustering over Extracted Crackles

Samples of lung sound signals converted into time, 
where crackles can be highlighted using wavelet 
transform over the rest of the sound, can be of great 
help to the interpretability in auscultation.

 However, to effectively group subsets found crac-
kles and see what energy they contain within the 
signal is a task that can hardly be made by an exa-
miner and, if he had this information at hand, this 
would further support the diagnosis of the patient. 
Therefore, clustering algorithms are arranged in a 
form suitable for this procedure, and using the re-
sults obtained, it is possible to make a visual repre-
sentation of these for interpretation.

Due to the nature of audio signals, consisting of a 
1D vector of tens of thousands of samples, as a typi-
cal audio signal, not all clustering algorithm scales 
well for the task to do. For this work, k-means and 
DBSCAN were chosen because they scale well for 
large volumes of data, provided they do not have too 
many dimensions and, in the case of k-means, the 
number of clusters is not high.

The clustering procedure was implemented in 
Python 2.7.3 using IPython programming environ-

Fig 7. Signs of lung crackling sound (left); reconstructed signals from the details of wavelet 
decomposition tree (right).

Source: Authors
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ment. Additionally, clustering algorithms were pro-
vided by the module scikit-learn v0.14 [11], designed 
to work in this language.

 1) Preprocessing (crackling indexing). Time sig-
nal S ‘(see Fig 6) provided by the wavelet analysis 
is not useful for the clustering procedure as it does 
not directly represent in what instant of time a crac-
kle appears. This signal corresponds to a series of 
values of the same length as the original signal S 
which emphasizes the presence of crackles and sets 
the rest to 0.

Information relevant to the process of clustering 
is the location of the crackling, so a new vector Spos 
is created from the crackling signal S’ that stores 
indexes S’ that are due to the presence of a crackle. 
That is, Spos indexes = | S ‘|> 0.

2) Clustering with k-means: once obtained the 
vector with the location of each crackle, the k-means 
algorithm from scikit-learn module [11] is applied to 
the Spos vector.

The only relevant k-means parameter is the num-
ber of clusters k. There are other user-adjustable 
parameters, like how to initialize the cluster or the 
number of iterations, but these are focused on ma-
naging the computational cost.

To set the number of clusters k, an elbow curve 
was used to determine optimal k manually. The 
elbow diagram shows the inertia of implementing 
k-means based on k. The inertia is expressed as 
shown in (4).

(4)

Logically, each elbow curve is different for 
each sound. However, all comply with a similar 
pattern where the inertia goes down to almost 0 
using over 10 kernels as shown in Fig. 8.

3) Clustering with DBSCAN: As in k-means, 
DBSCAN is applied to the index crackling vector 
Spos to estimate the optimal value of its parame-
ters.

 DBSCAN requires the parameters d and m 
(see section II) to adjust the model on a dataset. 
In this case, d was fixed as = 1000, as it was as-
sumed that separated crackles among themselves 
by a space of 100 ms or less are due to a high 
density area. Given the sampling frequency Fs = 
10240 Hz, it means that 100 ms comply with a 
space of Fs * 0.1≈1000 points in the time series.

With fixed d, it is easier to determine the opti-
mal value of m by a curve that plots the number of 
clusters found by DBSCAN depending on m.

It is important to note that when m>d, the 
number of clusters is 0. This case can only be 
present in this type of one-dimensional signals, 
because if the algorithm DBSCAN is asked to 
find more than m samples in a space of k points 
in one dimension, it is logically impossible, and 
therefore the entire sample will be considered as 
non-core-samples.

 

Fig. 8 elbow curves (right) for two signal samples with extracted crackling (left). The minimum inertia is achieved with k> 10.
Source: Authors
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Fig. 9. Curves showing the number of clusters found by DBSCAN depending on the number of core-samples needed to 
define a cluster (right) corresponding to the signal samples with accented crackles of each curve (left). 

Source: Authors

Based on the results of Fig. 9, together with 
those obtained from the other samples, it is diffi-
cult to determine a fixed value for m for the en-
tire dataset, because when m exceeds a certain 
value, the number of found clusters drops steeply 
until almost 0. However, in order to fix a value, 
m= 200 is established, which defines a consistent 
number of clusters, although very high compared 
to k-means.

IV.	 Results

K-means and also DBSCAN were applied to a 
set of twenty pulmonary signals with crackling 
sounds. The information on each one of the found 
clusters was used to create a visual representa-
tion, as shown in Fig. 10, which draws every clus-
ter in a time window equal in length to the origi-
nal signal.

An important observation about these graphs is 
that unlike k-means where the clustering number 
is not greater than 10, the abundant number of 
clusters estimated by DBSCAN generates a graph 
that does not differ much from that obtained if we 
equal any found value in the crackling signal S ‘to 
a unique value, for example, to 1.

Therefore, it was decided to establish k-means 
as k = 10 clusters for displaying crackles of a sam-
ple of lung sound.

A.	Measurement of Post-clustering Energy

To display the partitions obtained by clustering 
has the disadvantage that it does not take into 
account some information relating to the energy 
contained in the Spos crackling signal, as only their 
location is taken into account for the clustering 
process.

That’s why as a final addition to the visualiza-
tion, the color of each partition process regarding 
the energy contained in each cluster of the measu-
red signal on the portion between t1 and t2 corres-
ponding to the signal S’ as in (5) is determined. 

 (5)

Due to low amplitude of the Spos signal, the ener-
gy measured by the above equation results in very 
small values. Therefore, a slight change was made 
in a base 10 logarithmic scale for easy interpreta-
tion as shown in (6).

(6)

Using the values of E0s for coloring each cluster, 
a new presentation is obtained, as shown in Fig. 
11.
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VI.	 Conclusions

The proposal for a visual representation by making 
use of techniques of wavelet analysis and clustering 
that facilitates the interpretation of how crackles 
affect lung sound is shown possible and with results 
that can support a medical diagnosis when linking 
found patterns in these visualizations with a speci-
fic pathology.

Of the various clustering algorithms currently 
used, there were chosen those known as scaling well 
with large dataset and not many clusters (k-means 
and DBSCAN), which complies with the nature of 
an audio signal and the aim sought in this work. 
However, due to the instability of the m parameter 
for the DBSCAN algorithm and the huge amount of 
estimated clusters, DBSCAN was discarded leaving 
k-means with k = 10 clusters as partitioning method 
of the signal in representative groups of crackling. 

The graphs obtained after measuring the energy 
in each partition facilitates the interpretation of how 
the presence of crackles affect a lung sound signal 
specifically. Even, due to the little information that 
is required to obtain this chart (location of the cen-
troid, width of each cluster, and corresponding ener-
gy), it is possible that this representation will work 
for a lung sound classifier based on machine lear-

 

 Fig. 10. Display of clusters obtained by DBSCAN and k-means (2nd and 3rd row respectively).

Source: Authors
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Fig. 11. Display of clusters obtained by k-means (2nd row) and color 

clusters according to the energy contained in S ‘(3rd row).
Source: Authors.

ning, however, this hypothesis should be tested in 
future work. 
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