
34

Overvoltage by Ferroresonance 
on a Rural Distribution Feeder: 

Case Report and Simulation

Sobretensiones por Ferroresonancia en un 
Sistema de Distribución Eléctrica Rural: 

Reporte de Caso y Simulación
Case Report - Reception Date: June 12, 2014 - Acceptance Date: December 15, 2014

Guillermo F. Di Mauro
Electrical Engineer. Department of Engineering, Universidad Nacional de Mar del Plata (Argentina).  gdimauro@fi.mdp.edu.ar

Rubén Ferreyra
Electrical Engineer. Department of Engineering, Universidad Nacional de Mar del Plata (Argentina). roferrey@fi.mdp.edu.ar

Juan A. Suárez
Electrical Engineer. Department of Engineering, Universidad Nacional de Mar del Plata (Argentina). jsuarez@fi.mdp.edu.ar

Alejandro D. Jurado
Electrical Engineer. Department of Engineering, Universidad Nacional de Buenos Aires. Ciudad Autónoma de Buenos Aires 

(Argentina). ajurado@fi.uba.edu.ar

To cite this paper:
G. F. Di Mauro, R. Ferreyra, J. A. Suarez and A. D. Jurado. “Overvoltage by Ferroresonance on a Rural Distribution Feeder: Case 
Report and Simulation”, INGE CUC, vol. 11, no. 1, pp. 34-47, 2015.

Abstract – The objective of this work was to ana-
lyze an overvoltage case in a rural distribution 
feeder belonging to an electrical distribution 
company in the southeast of the Buenos Aires 
Province in Argentina. The network was mod-
eled in the Electromagnetic Transients Program, 
based on the electrical parameters that make up 
the circuit, in order to evaluate its behavior under 
various switching and load states. The simulation 
analysis showed that during certain operation 
and load situations, the conditions for the over-
voltage phenomenon occurred, causing a voltage 
increase in the single-phase transformer feeding. 
The guidelines for prevention and control of the 
phenomenon were provided taking into account 
the results obtained in the study.

Key words— Overvoltage, ferroresonance, rural 
electrical distribution, fuse opening, ATPDraw, 
nonlinear circuits.

Resumen-- El objetivo del trabajo presentado fue el 
de analizar un caso de sobretensión en un sistema 
de distribución de energía eléctrica rural (13,2kV) 
perteneciente a una Cooperativa de Electricidad 
del sudeste de la Policía de Buenos Aires, Rep. Ar-
gentina. A partir de los parámetros que componen 
el circuito eléctrico se modeló la red dentro del en-
torno del programa computacional Electromagnetic 
Transients Program, con el fin de evaluar su com-
portamiento ante distintas maniobras de interrup-
ción y estados de carga. El análisis de la simulación 
demostró que, en ciertas situaciones de operación y 
carga, se conjugaron las condiciones para la ocurren-
cia del fenómeno de ferrorresonancia, ocasionando la 
elevación de tensión de alimentación en transforma-
dores monofásicos. Considerando los resultados del 
estudio, se brindaron pautas a tener en cuenta para 
la prevención y control del fenómeno.

Palabras claves-- Sobretensiones. Ferroresonan-
cia. Distribución eléctrica rural. Apertura de fus-
ibles. ATPDraw. Circuitos no lineales.

* Article derived from the research project “Quality of Electricity”. Funded by Universidad de Mar del Plata. Start date: January 1, 2015. Completion 
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I. IntroductIon

The laws governing the distribution of electricity in 
the region of the Province of Buenos Aires, Argenti-
na (Act 11769/96) imposes quality conditions to the 
power supply system under the concept of “Electri-
cal product quality” evaluating, among other para-
meters, the magnitude of the voltage delivered. The 
distribution service providers are sanctioned by 
the withdrawal of voltage magnitudes compared to 
reference values, thus implying unnecessary econo-
mic expenditures.

  Different circumstances in the operation of a 
distribution system may cause undesirable voltage 
values which, although short in time, are likely to 
become detrimental to both the user and the net-
work equipment itself: lightning, earth fault, equip-
ment operation, etc.

Ferroresonance, as an overvoltage result, occurs 
in a distribution system by the interaction of capa-
citance and inductance components present in the 
circuit. While its appearance is conditioned by the 
characteristics of the network [1] and simultaneity 
of factors [2], [3], its consequences can have a high 
degree of severity [4], [5].

Overvoltage caused by ferroresonance in distri-
bution systems were analyzed from the middle of 
the last century. Experimental and analytical stu-
dies have been conducted to understand and miti-
gate the phenomenon [1], [6]-[9].

The current evolution of power systems has led 
to an increase in the occurrence of this phenomenon 
as a consequence of the use of components that are 
conducive (shielded cables, single phase switching 
devices, the use of low load transformers, etc.), 
which in the field of research arouses a great inter-
est for its study. 

In this framework, the paper presents a case re-
port of ferroresonance in a medium voltage rural 
distribution line (13,2kV) belonging to an electrical 
distribution company in the southeast of the Buenos 
Aires Province in Argentina. In the environment of 
the Electromagnetic Transients Program (EMTP-
ATPDraw), the involved circuit is modeled and 
conditions that could have caused the phenomenon 
are analyzed. The results indicate the feasibility 
of overvoltage under certain operating conditions, 
coinciding with reports of technical personnel and 
contingency accounts of users. 

II. Ferroresonance

In this section, basic concepts associated with fe-
rroresonance are provided. Specialized literature 
delves into mathematical and physical details [10], 
[11].

 If we consider a series circuit like Fig. 1 where 
all parameters are assumed linear, the intensity of 
the current is given by (1):

=
+ −

0

L C

UI
R j( X X )

(1)

where:
U0: Power Supply /voltage source
XL: 2πfL Inductive reactance of circuit 
XC: 1/2πfC Capacitive reactance of circuit
R: Circuit resistance 
If on the same circuit, the magnitude of the elec-

trical capacitance (C) is varied, a plot of the current 
I can be obtained regarding the capacitive reactance 
(XC) as shown in Fig. 2.

 
 Fig.1. Series circuit RLC.

Source: [11]

Fig. 2. Resonance in a series circuit RLC with linear 
inductance.
Source: [11]

The maximum current can be expressed by (2).

(2)=max

U
I

R
0

This maximum value is obtained for the series 
resonance condition (XL = XC) and is limited only by 
the circuit resistance.

This operating state can be the cause of signifi-
cant increases in voltage in the components of the 
circuit itself.

In distribution networks, the presence of power 
transformers gives nonlinear characteristic to the 
circuit inductance.

If the linear and nonlinear characteristics of the 
inductances are compared, it is observed that the 
inductive reactance (XL) associated with the latter 
acquires an infinite number of values above the sa-
turation elbow of its magnetic core (Fig. 3).
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If the graphic I-Xc is repeated again for the series 
circuit RLC, but with nonlinear inductance, it can be 
seen in Fig. 4 there is ample margin of values Xc for 
which the resonance condition is satisfied. Indeed, 
past the saturation elbow, for each value of inductive 
reactance, there is a capacitive reactance value (gi-
ven by a respective value of capacity) that matches. 
Since this situation is strictly due to the presence of 
ferromagnetic material in the inductance, the pheno-
menon is called ferroresonance. 

 
Fig.3. Inductive reactance with linear and nonlinear L. 

Source: [11]

 Fig. 4. Resonance in a series circuit 
RLC with nonlinear inductance.

Source: [11]

Fundamental differences of a ferroresonant cir-
cuit with respect to a linear resonant circuit are:
• the ability to resonate within a big range of capa-

citance values.
• the frequency of the voltage and current waves 

may be different from the excitation.
• the existence of several permanent regimes of 

operation for a given configuration and parame-
ter values. The achieved regime depends on the 
initial conditions (electric charges accumulated in 
the condensers, capacitors or power lines, remai-
ning flux of the material forming the magnetic 
circuit of the transformer, the connection / discon-
nection instant, etc. [12].) 
The behavior of a ferroresonant circuit can be ex-

plained graphically [11].
Assuming the circuit RLC resistance equals to 

zero (Fig. 5), a steady-state voltage is obtained given 
by (3) and (4): 

(3)0 = +L CU U U

This relationship can be written as:

(4)L
IU U

wC
± = +0

  

Fig 5. Series Circuit L C.
Source: [11]

Where:
UL: Voltage drop in the inductance L
UC: Voltage drop in the capacitor C
w: 2πf 
The positive sign (+) corresponds to inductive 

currents and the negative (-) to capacitive. The 
three components of this equation are plotted in 
Fig. 6.

The right side of (4) is represented by a straight 
line intersecting the axis of the voltage in the va-
lue U0 and its slope is obtained from tanα = 1/wC.

The intersection points of the straight lines 
with the nonlinear characteristic of the inductan-
ce UL=f(i) satisfy the relation given by (3.)

For small values of capacitance (line 1), the zone 
of negative currents (capacitive) only yields a cu-
toff point. The capacitive reactance is larger than 
the inductive reactance, resulting in higher than 
normal voltage in the capacitor.

As the capacitance increases (lower slope of the 
line), the point of solution is drawn into the satu-
ration elbow of the curve UL=f(i). 

For higher capacity values (line 2) three inter-
sections can be obtained with curve UL=f(i), with 
two intersections in the positive current zone (in-
ductive). The intersection marked with c is an uns-
table operation point that can be reached during 
a transient. The intersections a and b are stable 
positions and can exist in steady state.

For points a and c, there will be high values of 
voltage and current. The natural tendency is to 
reach the position of point a where a small voltage 
is developed across the capacitor.

To increase the system voltage (U0), the capaci-
tor line 2 would move upwards, which in turn re-
moves the operating point b that is reached in the 
third quadrant as operating zone. Under this con-
dition, the circulating current can reach very high 
values that cause the voltage to drop and again an 
operating point is reached as b. Phenomena like 
these are seen in cases of ferroresonance, voltage 
and current appear to vary randomly [5].
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Fig. 6. Graphical solution of (4).
Source: [11]

milar values, ferroresonance occurs and surges can 
occur both in the windings of the transformers (XT) 
and the supply lines to earth (XC). 

Fig. 7 Single line feeding circuit 
at risk of ferroresonance.

source: [10]

Fig. 8. Two line- feeding circuit 
at risk of ferroresonance.

Source: [10]

Due to the symmetry of the electrical parameters 
of the circuit, and not being necessary to consider 
the capacity to earth of the fed line, the problem 
can be simplified to the system shown in Fig. 9 [18].

Voltages to earth of phases “b” and “c” take the 
value shown in (5):

(5)= = −
−

a C
b c

CT

XUU U .( j )
XXj j 2

2 2

Mathematically operating on (6):

When observing (6) the XC / XT ratio approaching 
1, the value of Ub = Uc tends to infinity, involving 
high overvoltage values in phases without feeding.

Fig. 9. Circuit with a single feeding line. Simplified.
Source: Authors.

III. Ferroresonance In dIstrIbutIon systems

Conditions favorable to ferroresonance are innu-
merable given the presence of elements capable of 
storing electrical charges (overhead lines, shielded 
cables, capacitor banks,) non-linear inductance in a 
distribution system and the great variety of network 
operation configurations. The literature section do-
cuments the different cases in which the phenome-
non occurs in real networks [10], [13]-[17]. In this 
section there is an analysis of the most common ge-
neric cases for a typical rural distribution system in 
the region that uses MT / BT-delta / star transfor-
mer with earthed rigid neutral.

A. One or two -phase fed Transformer

In Figs. 7 and 8 circuit configurations conducive to 
ferroresonance [10] are presented. The phenomenon 
occurs when a transformer in vacuum or with a very 
little load feeds on a network with one (Fig. 7) or two 
phases (Fig. 8).

These circumstances may occur after a fault or 
operation of a cutoff device: performance of one or 
two fuses, unipolar reclosers operation, conductor 
cutoff. 

Capacitances involved generally come from over-
head lines or shielded cables that feed transformers 
whose primary windings are connected in delta, 
in isolated neutral star or earthed neutral. For the 
schemes of Figs. 7 and 8, the ferroresonant circuit 
is originated by series capacitances to earth of the 
open phases (between the opening point and the 
transformer) and the magnetizing inductance of the 
transformer.

Fig. 7 shows the case of the opening biphasic whe-
re XT and XC are part of trajectories circulated by 
the same current. When the values of the resulting 
series reactances (capacitive and inductive) reach si-
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IV. case report

The concession area of the electric company for the 
distribution of electric power, on which the case is re-
ported, is mostly comprised of rural areas. Farm hou-
ses, ranches, and irrigation systems, are the typical 
loads in low voltage.

In Fig. 10 the scheme of the three-phase trunk dis-
tributor which is 4.71 km of length is shown directly 
feeding three 100 kVA transformers and from which 
each monofilament line departs with earth return 
(LMRT) of the phases b and c with a total of 3 km, 
similar to the system that have reported faults.

The primary distribution system in 13,2kV is ca-
rried out from a transformer station 33 / 13,2kV 
through three wire trunk lines without neutral trans-
port, which can reach 50 km. The typical used conduc-
tors are aluminum alloy 25 to 95 mm2 and they are 
aerially transported in horizontally coplanar arrange-
ment. The loads are single phase, unipolar or bipolar 
and three-phase transformers in delta-star connec-
tion, with its powers being from 5 kVA (single) to 160 
kVA (three-phase), with secondary voltage of 380 / 
220V. It is also common to find lines LMRT type that, 
after some kilometers, feed a 5 kVA transformer with 
simple secondary voltage similar to the previous. 

Protective and switching equipment generally used 
in medium voltage lines are unipolar switches-acting 
fuses, reclosers, surge arresters, etc.

Fault reports of the represented circuit indicate 
overvoltage with damage to low voltage loads fed by 
5 kVA transformers (T4 and T5) belonging to LMRT 
lines (Fig. 10). The user of the transformer T5 also no-
ted “strong vibrations” coming from this device.

At the same time, technical staff of the electrical 
company detects the action of the phase b and c fuses 
(F) of the 13.2 kV trunk line.

  Under these circumstances the company decided to 
conduct a study of the distribution network involved, 
in order to find possible causes of technical failure. 

V. cIrcuIt modelIng In atpdraw

Simulation and study of transients and ferroresonan-
ce phenomena that occurred in electric power systems 
requires specialized software. The Electromagnetic 
Transients Program offers in its graphic environment 

(ATPDraw), an appropriate medium for the analysis of 
those phenomena.

The studied circuit lines were modeled from its 
constituent materials and geometric data with the 
Line Constants routine (LCC). Being ferroresonance 
a transient case of low frequency [19] between 0.1Hz 
to 1kHz [20], according to [20], [21], a multi-phase 
model of concentrated and constant parameters (PI), 
including asymmetry of conductors, it is sufficient to 
model a medium voltage overhead line of a short and 
less than 50 km length. 

The three phase trunk line is the overhead type 
with wires of Al / Al 25mm2 mounted on crossarms 
IRAM 110 Standard [22] in a horizontal coplanar 
arrangement at a pole of 7.5 m. height. The monofila-
ment line with earth return (LMRT) is constituted by 
the same conductor type and is mounted at the same 
height.

The three-phase transformers are of the three co-
lumn type and were represented by the Hybrid Model 
(XFMR), which turn out to be appropriate to represent 
its transient behavior in low and medium frequency 
like ferroresonance [12], [23] - [27].

Available data from the three- phase transformers 
are given in Tables I and II and comply with the provi-
sions of IRAM 2250 standard [28].

table I. nomInal and testIng data oF a short 
cIrcuIt oF three- phase transFormers 

Power 100 kVA

Voltage 13.2 / 0.4 kV

Connection Dy11

DC. Voltage 4%

DC. Losses 1.75 kW

Source: Usual information featured 
in a transformer front plate.

table II. Vacuum testIng data oF three-phase transFormers

Testing Voltage % Un I Vacuum % Vacuum losses [kW]

100 % 2,5 % 0,35

105% 3,5% 0,386

Source: Usual information featured 
in a transformer front plate. 

Fig.10. Single line diagram of the radial rural distributor being studied.
Source: Authors.
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The single-phase transformers were represented 
by the Saturable model with the aid of Satura su-
broutine. Details thereof are given in Table III.

table III. nomInal and testIng data oF sIngle 
phase transFormers 

Power 5 kVA

Voltage 7,62/0,231 kV

DC Voltage 4,1 %

DC Losses  0,110 kW

I Vacuum 10,7 %

Vacuum Losses 0,063 kW

Source: Usual information featured in a transformer 
front plate.

Fig .11   shows the modeled circuit with ATPDraw.

 Fig. 11. Scheme of the modeled distributor in ATPDraw .
Source: Authors.

VI. case analysIs 

A.  Opening of two Fuses

The opening simulation of phases b and c fuses was 
made (according to the facts described by techni-
cal personnel of the electrical company) assuming 
that the transformers are unloaded. The results are 
shown in the following figures.

Fig. 12 shows the voltages to earth reached by 
conductors a, b and c of the trunk distributor after 
the opening of the fuses. Phase a remains with the 
same values   as before the opening, while phases b 
and c reach maximum pick values   up to 20.1 kV in 
transient (1.93 p.u, in respect to the peak phase vol-
tage of the system) and 16.2 kV (1.5pu) at steady 
state in phase b.

(f ile otamendi_saturado_3_G1.pl4; x-v ar t)  v :X0017A     v :X0017B     v :X0017C     
0,020 0,066 0,112 0,158 0,204 0,250[s]

-22,0

-13,4

-4,8

3,8

12,4

21,0

[kV]

 

Fig 12. Voltages to earth of a, b and c conductors of the distributor. Opening of two fuses.
Source: Authors.
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The voltages developed between phases of the pri-
mary windings of the three-phase transformers are 
shown in Fig. 14. It can be seen that the maximum 
peak value reached in steady state corresponding 
to the voltage a-b and is 17 kV, which represents 
0.91p.u expressed in value relative to the peak of 
the composed voltage of the system. This situation 
implies an unsaturation regime of the transformer 
cores.

These tensions, Ub and Uc, appeared in capacitors 
Xc which correspond to the open phases of the cir-
cuit of Fig. 7 and they are the ones applied to single-
phase transformers (T4, T5.) Fig. 13 shows a resul-
ting simplified circuit diagram.

Fig.14. Voltages at the primary windings of three-phase transformers. Opening of two fuses.
Source: Authors.

Fig. 15 shows the voltage waveforms of the low 
voltage side of the single-phase transformers T4 and 
T5 fed on phases c and b respectively. The maxi-
mum peak voltage in transient is reached in T5 with 
a value of 583V (1.9 p.u.) In steady state, a value of 
492V is reached (1.6pu in respect to the voltage of 
peak phase low voltage.)

 The simulation results are consistent with the 
phenomena described by the system users, referring 
to damage in low voltage installations and “inten-
se vibrations” of single-phase transformers and the 
absence of these symptoms in the three-phase ones. 

According to [15], the ferroresonance phenome-
non is manifested in greater magnitude when the 
load applied to the secondary of the transformer is 
low value.

The asymmetry of the circuit, due to the length 
of power conductors and single-phase transformers, 
causes both the phase to earth voltages not to be 
equal and the b-c windings voltage of the three-pha-
se transformers not to be zero, as shown respectively 
in Figs. 12 and 14.

For the case of zero load, the behavior is analyzed 
in the preceding paragraphs.

One possible low load scenario for the distribution 
network under study may correspond to the rainy 
season, as the main loads of three-phase transfor-
mers are irrigation pumps. In these circumstances 
and considering some type of residential consump-
tion in farm houses, it may be a charge of 4% for a 
single phase (T4) and 1% for a three-phase transfor-
mer (T1). 

Once the simulation was performed in the set con-
text, it is observed the appearance of an overvoltage 
of 1.45 p.u in the peak voltage to earth phase b (Fig. 
16) which is reflected in the secondary winding of 
the single-phase transformer powered by the same 
phase with a value of 1.5 p.u (Fig. 17).

Fig.13. Simplified circuit with opening of phase a and b fuses.
Source: Authors 
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Fig15. Voltage from the low voltage side of single-phase transformers. Opening of two fuses.
Source: Authors

There are multiple variants of loads that can be 
simulated; in particular, those in which the surge 
phenomenon is alleviated almost entirely for this cir-

Fig 16. Voltage to earth of conductors a, b and c of the distributor with load 4% in T4 and 1% in T1. Opening of two fuses. 
Source: Authors.

cuit; for example, for a load of 6% for a three-phase 
transformer (T1). Fig. 18 shows the phase voltages 
of MT side with a maximum value of 1.06 p.u in b.
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Fig. 17. Voltage in low voltage side of the transformer T5 with load 4% in T4 and 1% in T1. Opening of two fuses.
Source: Authors 

Fig. 18. Voltage to earth of the conductors a, b and c of the distributor with load 6% in T1. Opening of two fuses.
Source: Authors.

B. Opening a fuse

For the same load conditions as in the previous sec

tion, the opening of a fuse on the c phase was simu-
lated. In none of the presented cases for this circuit 
configuration, with unloaded transformers (Figs. 
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Fig. 19. Voltages to earth of the a, b and c conductors of the distributor. No load; opening of a fuse.
Source: Authors.

Fig. 20. Voltage of the low voltage side of single-phase transformers. No load; opening of a fuse.
Source: Authors.

19 and 20) and with a load of 4% in T4 and 1% in 
T1 (Figs. 21, 22), overvoltage effects are observed. 
By contrast, the voltage in the open phase, both in 

the medium and low voltage side of transformer T4, 
presents lower values than the nominal steady-state 
values.
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Fig. 21. Voltages to earth of conductors a, b and c of the distributor with load 4% in T4 and 1% in T1. Opening of a fuse.
Source: Authors.

Fig. 22. Voltages in low voltage side of single phase transformers with load 4% in T4 and 1% in T1. Opening of a fuse. 
Source: Authors

VII. mItIgatIon guIdelInes

Before thinking about mitigation measures of the 
ferroresonance phenomenon, it is convenient to fo-

recast these situations from the design of the distri-
bution network. This entails, inter alia, parameters 
and length of lines; features and connection of the 
transformers; type and location of switching ele-
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ments; and load conditions of users. The selection of 
the appropriate characteristics and network topolo-
gy can help identify risk configurations.

Considering the cases above discussed, and de-
pending on the parameters of the intervening com-
ponents of the electrical network, a radical solution 
is the use of three-pole switching devices. Unfortu-
nately this solution is not always technically and /or 
economically convenient.

A relevant parameter turns out to be the length 
of feeder lines downstream of a switching position 
(and / or protection) with unipolar opening. On such 
length depends that the   involved capacitance to ear-
th takes on values that can lead to the circuit reso-
nance paired with the transformers being fed The 
number and location of switching devices on trunk 
and branch lines deserves to be evaluated.

It is suitable to have an adequate coordination 
between the protection devices of transformers and 
those located upstream in the supply line. In case 
of own faults or in the secondary of any transfor-
mer, opening one or two protection fuses, will not 
create any situation susceptible to ferroresonance; 
whereas, it can occur if the opening is done in the 
upper protection as already discussed.

If in the trunk line of the discussed network, swit-
ching elements with automatic cutoff are positioned 
downstream of the start of the distributor and coor-
dinated with fuses F, it’s possible, in the event of a 

fault posterior to those, and if any of its elements 
is opened, to achieve a change in the capacitance / 
inductance ratio at stake in a probable series reso-
nant circuit. 

Once analyzed the different locations where the 
above conditions prove effective, it was found that 
a possible place to locate a fuse in the trunk line, is 
point F1 at 0.2 km downstream of the transformer 
T2 (Fig. 10.) It is observed that the surge phenome-
non hardly occurs when the same type of fault that 
occurred downstream of F1 with opening phases b 
and c was simulated (Fig. 23.) 

T1, T2, and T3 transformers, as mentioned in 
section IV, are used to power irrigation pumps in 
dry seasons. In this sense the circuit behavior was 
analyzed in the event that any of the transformers 
would be left out of service. The failure was simu-
lated again with the transformer T1 disconnected. 
The results are shown in Fig. 24 wherein as seen 
there is virtual absence of surges in the circuit. 
By performing the same tests with the T2 and T3 
transformers, the same results are obtained.

On the other hand, other mitigation actions are 
feasible to consider. Having unipolar cutoff elements 
in the network, the occurrence of ferroresonance 
conditions can be avoided with proper sequence of 
maneuvers at the time of operation, particularly 
when transformers are operating in vacuum or 
lightly loaded. 

Fig. 23. Earthed voltages of conductors a, b and c of the distributor in point F1 with opening of two fuses in the same place.

No load. Source: Authors.
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Fig. 25 shows a transformer with elements of lo-
cal protection (T) fed from a line with its fuse switch 
disconnectors positioned upstream (S). It is about 
using a proper sequence and thus prevent the ear-
thed capacitances of the feeder with the inductan-
ce of the primary winding of the transformer from 
being in series. For the energizing of the circuit, it 
is needed in first instance, the closure of the switch 
disconnectors S of the line, and then the transfor-
mer protection T. The reverse sequence is suitable 
for de-energizing.

In reference [29] it is verified the existence of a 
correlation between core loss of transformers and 
capacitance needed to maintain a condition of fe-
rroresonance. From the same reference it can also 
be noted that transformers with higher losses in 
the core are candidates to be located in those places 
where the network conditions are conducive to the 
emergence of the phenomenon.

As it was discussed above, when transformers 
have some load on the secondary, the effects of ferro-
resonance are attenuated considerably. Therefore, 
to make a maneuver with unipolar cutoff elements, 
it is desirable to do it with loads connected to the 
transformers and with the least possible delay bet-
ween the cutoff elements of each phase.

Fig. 25. Scheme for switching energization / de-energization.
Source: Authors 

VIII. conclusIons

The study of the actual distribution system consis-
ting of rural overhead lines, allowed verifying that 
under certain operating conditions and depending 

on the characteristics of its components, the pheno-
menon of ferroresonance can be present.

The results of the simulation of different events 
for switching by ATPDraw program showed that fe-
rroresonance presents overvoltage values   that can 
be harmful to the single-phase transformers with 
earth return connected to the phases on which the 
circuit was opened. These effects coincided with tho-
se observed by operators and customers of the elec-
tricity distributor.

For the particular case of this analyzed circuit, 
it was found that when simulating the opening of 
the phase fuses b and c with any of the disconnec-
ted three-phase transformers, the overvoltage phe-
nomenon is almost nonexistent. With this fact and 
as a guideline to mitigate the phenomenon, it is su-
ggested the disconnection of those transformers for 
irrigation during the rainy season.

Furthermore, it was verified that locating fuse 
elements downstream of the start of the distributor 

Fig. 24. Earthed voltages of conductors a, b and c of the distributor. Disconnection of transformer T1.
Source: Authors.
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and coordinated with the precedent ones, in case of 
a similar failure beneath them, would not allow fe-
rroresonance to appear, which is another example 
of mitigation. 
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