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Introduction

The main objective of this paper is to present various ways
existing of  dealing with non-normal data presented on a
continuos scale, as well as their transformation to adjust
models (Saris, 1982, Bentler and Yuan, 1998).

The starting point of this article is the discussion of ac-
tual methodology used in many papers when data are not
considered as normal. The unique method offered to
researchers is that of  transforming the Pearson correlation
matrix in another matrix with polyserial and/or polychoric
partition (Joreskog, 1986). In a second stage it is suggested
to submit the new matrix to the Asymptotic General Least

Re-escalamiento y transformación de
datos continuos no normales en análisis
de estructuras de covarianzas: un intento
de taxonomía
Resumen. A partir de datos recopilados de
una investigación previa con modelos de
Análisis de Estructuras de Covarianzas, este
artículo pretende clasificar los distintos
tratamientos y transformaciones necesarios para
variables observables con datos continuos y
ordinales considerados como no-normales.
Palabras clave: datos normales,
modelización con estructuras de covarianzas,
métodos ML, GLS, AGLS, robusto, matriz de
correlaciones de Pearson, transformaciones
poliseriales y policóricas.

Abstract. Based on data compiled from
previous research with Covariance-based
Structural Equation Models, this paper seeks
to introduce a classification of different
treatments as well as necessary
transformations for observable variables with
continuous and ordinal data considered as
non-normal.
Key words: normal data. Covariance
Structural Modeling. ML, GLS, AGLS, robust
optimization methods. Pearson correlation
matrix, polyserial and polychoric
transformations.

Squares (AGLS) (Bentler and Wu, 2002) or Asymptotically
Distribution Free procedure (Steiger, 1990; and Steiger and
Hakstian, 1982) depending on what program is considered
(Sharma et al., 1989).

Data issued from questionnaires are traditionally ordinal.
When they are not normally distributed it is suggested (or more
exactly the Pearson correlation matrix) that they be submitted
to some programs like Prelis (Pre-processor to Lisrel) (Joreskog
1990) or EQS (Bentler, 1993), which transform the correlation
matrix into a new polyserial and polychoric correlation matrix.
The polychoric partition computes new thresholds and re-
centers data, making (normality adjustments) them more
adjustable to traditional covariance structural programs.
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Traditionally data are presented on
an ordinal scale, which facilitates the
task. In situations where data are
presented on a continuous scale, the
consequence is an extended scale and
an increase possibility that the data be
non-normal (Bagozzi, 1982; Bentler
and Weeks, 1980, Lee et al., 1995).

In this paper we will submit data that
are highly non-normal but nevertheless
adjusted to more traditional methods
(McDonald, 1984) and fitting well. We will proceed
transforming data, scales and matrices for a better fit
(Mardia, 1970).

Data are issued from a large questionnaire (Lévy Man-
gin 1997, 1999a) and presented in a continuous scale ran-
ging from 1, which represents the lowest score to 100, the
maximum score.

Initially, the data will be analyzed as continuous, and fit
indices will be computed according to Maximum Likelihood
(ML), General Least Squares (GLS) and Asymptotic Distri-
bution Free or Asymptotic General Least Squares (AGLS)
procedures (Browne, 1984; Arbuckle, 1995; Bentler and
Yuan, 1998 and 1999).

In a second stage data will be partly rescaled whereby
some will be kept as continuous while the rest is rescaled
within a range of 1 to 5 instead 1 to 100. The new data will
then be submitted to the procedures defined in stage 1.

In a third stage, the partly rescaled data will be
transformed so that the Pearson correlation matrix will be
converted into a polyserial-polychoric matrix and submitted
to four classical procedures ML, GLS, AGLS and the Satorra-
Bentler Robust procedure.

In a fourth stage all data be completely rescaled, fitted
and analyzed according to the four traditional procedures
of  Structural Equation Modeling.

The last stage will consist of  transforming the complete
rescaled data into a polychoric correlation matrix, which will
be submitted to the four classical optimization procedures.

1. Implementation

To implement a taxonomy, an example of  non-normal data
has been selected with 99 data and eight variables (b2 to f3)
(Lévy Mangin, 1997, 1999a y 1999b) (see table 1). In the
next table we can observe that variables f3, f1, d3, b4 and
b2 have important Skewness coefficients with critical ratios
higher to –1.96. The Kurtosis critical ratios appear to be
within two boundaries  –1.96 to 1.96, excluding f1.

Data are issued from a questionnaire, which was adminis-
tered in a prior research. The model used could be a factor
analysis with three latent variables: the Product Satisfaction
(PS) with four indicators b2, b4, c1 and e1; Rebates (R) with
two indicators d3 and d6; Satisfaction of  Performance (SP)
with two indicators f1 and f3.

1.1. Adjusting continuous data
As previously explained, the variables data will be presented
in a continuous scale ranging from 1, the lowest score, to
100, the maximum score. All variables will be ranged on
the same scale.

The first adjustments have been made according to the
three commonly used procedures, ML (Maximum Like-
lihood), GLS (General Least Squares) and AGLS (Asymptotic
GLS) used for non-normal data.

The sample size is 99 and the chi-square fit measure will
be that we will analyse. The probability will be analyzed on
a scale ranging from zero to 1, with zero representing a bad
fit and 1 representing a perfect fit (a Chi-square probability
> 0.05 means a good fit). See table 2.

1.1.1. Partly rescaled data
In stage 2 of the procedure, the data have been partly
rescaled: variables b2 to d6 are still continuous on a scale
of 1 to 100 while f1 and f3 become ordinal along the new
scale of 1 (the lowest score) to 5 (the maximum score.
This new scale is based on subjective criteria: scores between
1 to 20 on the old scale corresponds to 1; scores of 21 to
40 corresponds to 2; scores of 41 to 60 correspond to 3 on
the new scale; scores of 61 to 80 relate to 4 on the new
scale while 81 to 100 relate to the maximum score of 5 of
the new scale.

Procedure
Probability

ML
0.256

GLS
0.357

AGLS
0.299

Table 2.  Fit for continuous data with ML, GLS and AGLS procedures (Chi-

square Probability).

All these three procedures are very significant for 1- alpha = 0.05.

Table 1.  Normality tests for data and Critical Ratios (Student’s t-Test).
Assessment of normality

f3
f1
d6
d3
e1
c1
b4
b2

Multivariate

min
20,000
10,000
10,000
0,000
10,000
0,000
0,000
30,000

max
99,000
100,000
100,000
100,000
100,000
100,000
100,000
100,000

skew
-0.737
-0.782
-0.251
-0.522
-0.364
-0.483
-0.593
-0.824

c.r.
-2.994
-3.177
-1.019
-2.121
-1.480
-1.961
-2.410
-3.348

kurtosis
0.429
1.286
-0.295
0.841
-0.536
-0.125
0.691
0.691
52,114

c.r1

0.871
2.612
-0.600
1.709
-1.090
-0.253
1.403
1.403
20.497

1. Student’s t
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Rescaled data are more homogeneous and variable
variances should be narrower.

The new partly rescaled data have been fitted with the
three traditional procedures, ML, GLS and AGLS (see table 3).

1.1.2. Partly rescaled data with polyserial and polychoric partition
With the new partly rescaled data, we can still observe
three non-normal variables, the Skewness Student’s Test

Procedure
Probability

ML
0.245

GLS
0.317

AGLS
0.359

Table 3.  Fit for partly rescaled data with ML, GLS and AGLS procedures (Chi-square

Probability).

All these three procedures are very significant for 1- alpha = 0,05.

for f1 (–2.99), f3 (–3.17) and b2 (2.61) are non-normal.
Skewness are superior to + or –1.96. Moreover, the
Student’s Test for f1 Kurtosis shows also a significant non-
normal treshold for this variable.

In order to reestablish equilibrium and re-centre the
Pearson correlation matrix, a polyserial and a polychoric
transformations of  the correlation matrix has been
performed (table 5).

This transformation is achieved as the program compu-
tes four objective thresholds for each variable (in this case
V6 or d6) with estimates and standard errors corresponding
to polyserial partition of the two continuous variables V7
and V8 (f1 and f3). Information on the polyserial correlation

is presented first in the printout (before
polychoric information) and is then
followed by estimates for polyserial
correlation with the categorical variable
(here V6 or d6) computed for continuous
variables (V7 and V8 or f1 and f3).

A similar process is done for each
categorical variable (V1 to V6) before
yielding information on polychoric
correlation estimates.

In a second stage involving this part
of the printout, we will find average
thresholds after a polychoric partition
of the Pearson correlation matrix for
variables V1 to V6 or b2 to d6, and
then a polychoric correlation matrix
between discrete variables will follow.

In this case the program has computed
four average thresholds for variables V1
to V6 (b2 to d6) and shows the polychoric
correlation matrix between ordinal varia-
bles (table 6).

In table 7 we may observe that the
significant procedures for a probability
of 1 – alpha > 0.05 are the Robust, the
AGLS and the GLS procedures.

1.2. Adjusting ordinal or completely
rescaled data
In this section continuous data have been
completely rescaled to become ordinal
data. All variables have changed: b2 to
d6 and f1 to f3. The new scale which is
based on subjective criteria is as follows:
scores of 1 to 20 from the old scale co-
rrespond to a score of 1 on the new scale,

Table 4.  Normality tests for partly rescaled  data and Critical Ratios (Student’s t-Test).
Assessment of normality

f3
f1
d6
d3
e1
c1
b4
b2

Multivariate

Min
20.000
10.000
  1.000
  1.000
  1.000
  1.000
  1.000
  1.000

max
   99.000
 100.000
     5.000
     5.000
     5.000
     5.000
     5.000
     5.000

skew
-0.737
-0.782
  0.141
  0.142
-0.184
  0.014
  0.121
-0.560

c.r.
-2.994
-3.177
  0.571
  0.578
-0.747
  0.058
  0.490
-2.277

kurtosis
  0.429
  1.286
-0.210
-0.346
-0.796
-0.693
-0.313
  0.264
37.430

c.r1

0.871
2.612
-0.427
-0.703
-1.616
-1.408
-0.635
  0.536
14.721

1 Student’s t

Table 5.  Polyserial and polychoric transformation of the correlation matrix.

Results of Polyserial Partition Using V 6 – 5 Categories
Thresholds

Estimates
-1.1663
-0.3852
  0.4055
  1.6174

STD. ERR
0.1596
0.1229
0.1243
0.2126

Estimates
Variable

V7
V8

Covariance
0.3493
0.3738

STD. ERR
0.0901
0.0877

Correlation
0.3493
0.3738

STD. ERR
0.0901
0.0877

Table 6.  Polychoric partition of the correlation matrix.

Results of polychoric partition
Average thresholds

V 1
V 2
V 3
V 4
V 5
V 6

-1.8689
-1.6166
-1.5421
-1.4455
-1.3138
-1.1671

-1.1617
-0.4701
-0.4369
-0.2311
-0.2551
-0.4020

-0.1450
   0.6334
   0.4026
   0.8679
   0.9023
   0.4034

1.2206
1.6549
1.4724
2.0923
1.9190
1.6342

Polychoric correlation matrix between discrete variables

V 1
V 2
V 3
V 4
V 5
V 6

V 1
1.000
0.507
0.466
0.453
0.413
0.630

V 2

1.000
0.494
0.495
0.433
0.485

V 3

1.000
0.537
0.481
0.642

V 4

1.000
0.664
0.568

V 5

1.000
0.623

V6

1.000
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scores of 21 to 40 correspond to a score of 2, scores of 41 to
60 correspond to a score of 3, scores of 61 to 80 correspond
to a new score of 4 and scores of 81 to 100 relate to the
maximum score of 5.

The new data appear in order and variables could prac-
tically be considered as normal (the Skewness of  b2 is
slightly non normal, –2.277).

1.2.1. Rescaled ordinal data
Table 9 will show the different fits for rescaled ordinal
data with the four classical methods of estimation. All
these three procedures are very significant for a probability
of 1 – alpha > 0.05.

The GLS estimation procedure is the most significant
procedure followed by that of the AGLS and ML, with
little difference between the probabilities of the three
Chi-square estimation methods. Adjustments of  the com-
pletely rescaled data (ordinal) shown in
table 4 for the three procedures (ML,
GLS, AGLS) show that the rescaling of
data has improved the model.

1.2.2. Rescaled ordinal data with polychoric
partition
As a consequence of the rescaling the
data to ordinal, these data have now
become quite normal. In the event that
this could not be achieved, it is possible
in a first stage to perform a polychoric
transformation of  the Pearson corre-
lation matrix and then submit it to the
AGLS procedure in a second stage.

In this case, data are ordinal and a
polychoric transformation of  the Pear-
son correlation matrix could be perfor-
med, the printout will show estimates
of four thresholds (average and non es-
timates) as well as the polychoric corre-
lation matrix between ordinal variables.

This polychoric matrix then will be
submitted to the AGLS procedure. Even
if the data reveal to still be non-nor-
mal, this procedure should adjust well
the model.

For small samples it is suggested that
the Yuan-Bentler statistics (Bentler and
Yuan, 1998 and 1999) be used.

The Robust procedure is the most
significant for a probability of

Procedure
Probability

ML
0.0271

GLS
0.0609

AGLS
0.75745

Table 7.  Fit for partly rescaled data with polychoric and polyserial partition with ML,

GLS, AGLS and the Robust-Satorra Bentler procedures (Chi-square Probability).

In the table 3 we may observe that the significant procedures for a probability of
1 - alpha > 0.05 are the Robust, the AGLS and the GLS procedures.

Robust
0.9999

Table 8.  Normality tests for completely rescaled ordinal data and Critical Ratios (Student’s t-Test).
Assessment of normality

f3
f1
d6
d3
e1
c1
b4
b2

Multivariate

min
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

max
 5.000
 5.000
 5.000
 5.000
 5.000
 5.000
 5.000
 5.000

skew
-0.325
-0.080
 0.141
 0.142
-0.184
 0.014
 0.121
-0.560

c.r.
-1.320
-0.324
 0.571
 0.578
-0.747
 0.058
 0.490
-2.277

kurtosis
0.203
0.302
-0.210
-0.346
-0.796
-0.693
-0.313
 0.264
27.440

c.r.
0.412
0.613
-0.427
-0.703
-1.616
-1.408
-0.635
0.536
10.792

Table 10.  Polychoric partition of the rescaled ordinal data.
Results of polychoric partition

Average thresholds
V 1
V 2
V 3
V 4
V 5
V 6
V 7
V 8

-1.6402
-1.4172
-1.3512
-1.2667
-1.1523
-1.0205
-1.6365
-1.6272

-1.0168
-0.4096
-0.3821
-0.2015
-0.2222
-0.3521
-0.7548
-0.8333

-0.1252
  0.5534
  0.3538
  0.7601
  0.7913
  0.3523
  0.4998
  0.3522

1.0668
1.4477
1.2874
1.8275
1.6737
1.4311
1.5413
1.6444

Polychoric correlation matrix between discrete variables

V 1
V 2
V 3
V 4
V 5
V 6
V 7
V 8

V 1
1.000
0.507
0.466
0.453
0.413
0.630
0.396
0.350

V 2

1.000
0.494
0.495
0.433
0.485
0.452
0.371

V 3

1.000
0.537
0.481
0.642
0.337
0.426

V 4

1.000
0.664
0.568
0.317
0.337

V 5

1.000
0.623
0.341
0.261

V 6

1.000
0.416
0.414

V 7

1.000
0.812

V 8

1.000

Procedure
Probability

ML
0.547

GLS
0.609

AGLS
0.571

Table 9.  Fit for completely rescaled ordinal data with ML, GLS, AGLS procedures (Chi-square Probability).

All these three procedures are very significant for 1 - alpha = 0.05.

1 – alpha > 0.05, followed by the AGLS pro-cedure (GLS and
ML are also significant but at a lowest level). See table 11.

2. Discussion

The essay of taxonomy will attempt to classify treatments
and methods and choosing among them, those, which are
the best according some criteria that will be define.

The first criterion will be the best adjustment of data,
however we realize that the sample size is limited and some
caution should be exercised in regard to any generalization.
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With only 99 valid cases we think that the best-fit index
would be essentially the Chi-square and its probability of
occurrence.

We can observe that continuous non-normal data fit pretty
well using all procedures; GLS is particularly adapted to them
as well as AGLS.

If the best fit is the selection criterion, there is no doubt
that partly rescaled data with polyserial and polychoric
transformation and completely rescaled ordinal data with
polychoric transformation  should be the most suitable
methods (methods 3 and 5 for the Robust method and 3 for
the AGLS method).

The Asymptotic Generalized Least Squares method is
a GLS method that can have arbitrary distribution accep-
table in large samples. Empirical studies tend to show
that the AGLS method could break in small samples. To
correct this problem there are two new tests substantially
more reliable: the Yuan-Bentler (1997) corrected AGLS
statistics and the Yuan-Bentler F-test (1999). Both tests
substantially correct the problem with the Chi-square
statistic.

We can easily observe that the Chi-square statistic has
substantially increased, the statistics are now more significant.

The best treatments of all should be the partial rescaling
continuous data and the transforming of  the Pearson
correlation matrix with a polyserial and polychoric partition

Procedure
Probability

ML
0.04964

GLS
0.10776

AGLS
0.35319

Table 11.  Fit for completely rescaled ordinal data with polychoric partition with

ML, GLS, AGLS and Robust procedures (Chi-square Probability).

The Robust procedure is the most significant for a probability of  1-alpha > 0,05
followed by the AGLS procedure (GLS and ML are also significant but at a lowest
level).

Robust
1.000

Table 12.  Fit for all models with ML, GLS and AGLS procedures (Chi-square Probability).

Data and treatment
1. Continuous data

2. Partly rescaled continuous data

3. Partly rescaled continuous data to ordinal with
polyserial and polychoric transformation

4. Completely rescaled continuous data to ordinal

5. Completely rescale continuous data to ordinal
data with polychoric  transformation

Procedure
ML

0.256

0.245

0.027

0.547

0.049

GLS
0.357

0.317

0.060

0.609

0.107

AGLS
0.299

0.359

0.757

0.571

0.353

ROBUST

0.9999

1.0000

Table 13.  Yuan Bentler Statistics tests with  the AGLS Procedure (Chi-square Probability and F probability).

Corrected Statistic
for each Model

Yuan-Bentler corrected c2

Yuan-Bentler corrected
F-Statistic

3. Partly rescaled continuous data
with polyserial and polychoric

transformation
0.84388

0.86360

5. Completely rescaled ordinal data
with polychoric transformation

0.54922

0.55981

(option 3) using the Robust procedure of optimization
first, and the completely rescaling continuous data to ordinal
data with polychoric transformation (option 5) using the
Robust procedure.

If  we choose to use the Yuan-Bentler statistics with
small samples, the option 3 (the par-
tly rescaled continuous data with po-
lyserial and polychoric transformation
with small samples) gives a better
solution than option 5 (which is very
acceptable too).

The second best treatment should be
to rescale the data from a continuous
scale to an ordinal scale; in this case
the most significant procedures of
optimization are GLS and AGLS. Res-
caling the data completely eliminates
those non-normal data, so the three
optimization procedures fit the data
very well (option 4).

Another very serious option to take
in account should be, to completely
rescale continuous data to ordinal data

and transform the Pearson correlation matrix into a poly-
choric matrix; when the data are still non-normal, this
option should be used with the Robust optimization method
(which gives a perfect fit). Another option should be to
use the Yuan-Bentler statistics tests for smaller samples.
In our example the Yuan-Bentler corrected statistics for
option 5 are very close to those in option 4 (option 5). So
option 4 is still an interesting option for the ML, GLS and
AGLS optimization procedures.

The chosen data of  our research are non-normal but the
three optimization methods fit the continuous data pretty
well (option 1). In the case of partial rescaling the continuous
data (option 2), the fit increases for the AGLS optimization
method, all other optimization methods staying the same.
The fit for the AGLS optimization method will improve
dramatically when rescaling and transforming the Pearson
correlation matrix into a polyserial and polychoric matrix
(option 3).

Complete rescaling the continuous data to ordinal data
without any transformation of  the Pearson correlation
matrix, permits to fit the data very well for the three classic
optimization methods (ML, GLS and AGLS).

All transformations of  the Pearson correlation matrix (for
partly or complete rescaled continuous data to ordinal data)
should be used with the Robust procedure, to obtain
acceptable good fits (options 3 and 5).
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Conclusion

In Structural Equation Modeling the classical elimination
of variables of the respecification process could suppress
those non-normal variables, so that the remaining variables
should certainly present a better distribution, and as the
matter of fact the model could be better adjusted.

This is the case with our database, where the (observed)
variable b4 could be eliminated (through the process using
Modification Indices) and the fit will be improved from a
0.256 Chi-square probability to a 0.471 probability. This non-
normal variable has been eliminated and the fit improved.

Once there is evidence of  non-normality among conti-
nuous data, it is suggested, first, to try fitting data with the
classic optimization methods like ML and GLS. However if
the data are still not well adjusted to the model, we suggest
using the Asymptotically Distribution Free estimation
method (AGLS).

In case of  necessity, we can also perform a bootstrap to
identify the appropriate optimization method that should
be more suitable to adjust the data.

In the event that data are severely non-normal, a rescaling
transformation treatment with the purpose to reduce
variability should be welcome. This implies to completely
redefine the scale. If  data are still non-normal and the fit
with ML and GLS methods are bad, we will suggest to
transform the Pearson correlation matrix into a polyserial
and a polychoric matrix and to submit it again to the Robust
and the AGLS optimization methods.

In the event that a polyserial or a polychoric partition of
the correlation matrix has been performed and that the
sample size is small (inferior to 100 observations or much
less than 10 observations by variable), it is suggested
analyzing data with the Yuan-Bentler corrected statistics tests
(more suitable for smaller samples).

In the case of  non-normal ordinal data it is suggested
using, the Asymptotically Distribution Free optimization
method (AGLS) first, this can correct the situation. If not,
you should consider the transformation of  the Pearson
correlation matrix into a polyserial and /or polychoric matrix
and then apply the Robust and /or AGLS optimization
methods.

APPENDIX

Brief description of variables used in this
research (see Lévy Mangin, 1997, 1999a
and 1999b).

b2: Customer satisfaction with products and
brands.
b3: Retailer satisfaction related to the pro-
vider influence in relation with the inventory.
c1: Retailer satisfaction with the payment
system.
d3: Retailer satisfaction on purchases related
to the leading provider.
d6: Satisfaction in relation with the total dis-
count received from the leading provider.
e1: Global satisfaction with the leading pro-
vider relationship.
f1: Retailer satisfaction with its business prof-
itability.
f3: Retailer Satisfaction with its return on
assets.
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