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Introduction

The soliton –a solitary wave with the properties of a moving
particle– is a fundamental object of nature. Solitons of the
non linear Schrödinger equation model (NLSE solitons) appear
in many branches of modern science including physics and
applied mathematics, non linear quantum field theory,
condensed matter and plasma physics, nonlinear optics and
quantum electronics, fluid mechanics, theory of turbulence
and phase transitions, biophysics, and star formation.

The current state-of-the-art in this very active field is
reviewed, for instance [1, 2]. Characteristic properties of NLSE
solitons include a localized wave form that is retained upon

interaction with other solitons, giving them a ‘‘particle-like’’
quality. The theory of  NLSE solitons was developed for the
first time in 1971 by Zakharov and Shabad [3]. Over the
years, there have been many significant contributions to the
development of the NLSE soliton theory (see, for example,
[1-9] and references therein). After predictions of the
possibility of the existence [10] and experimental discovery
by Mollenauer, Stolen and Gordon [11], today, NLSE optical
solitons are regarded as the natural data bits and as an important

Manejo de solitones para telecomunicaciones
de alta velocidad

Resumen. La metodología desarrollada provee un método sistemático de encontrar un número infinito de
las novedosas islas solitónicas (‘‘soliton islands’’) estables, brillantes y obscuras en un mar de olas solitarias,
para la ecuación no lineal de Schrödinger  con dispersión y no linealidad variables y con ganancia o absorción.
Se muestra que los solitones existen sólo bajo ciertas condiciones y las funciones paramétricas que describen la
dispersión, la no linealidad, la ganacia o absorción no homógenea, no pueden ser electas independientemente. Se
han descubierto los regímenes de manejo fundamental solitónico para comunicaciones a velocidades ultra-
rápidas a través de fibras ópticas.
Palabras clave: telecomunicaciones en fibras ópticas, solitones.

Abstract. The methodology developed provides for a systematic way to find an infinite number of  the novel
stable bright and dark ‘‘soliton islands’’ in a ‘’sea of  solitary waves’’ of  the non linear Schrödinger equation
model with varying dispersion, non linearity and gain or absorption. It is shown that solitons exist only under
certain conditions and the parameter functions describing dispersion, non linearity and gain or absorption
inhomogeneities cannot be chosen independently. Fundamental soliton management regimes for ultra-high
speed fiber optics telecommunications are discovered.
Keywords: fiber optics telecommunications, solitons.
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alternative for the next generation of ultra-high speed optical
telecommunication systems [12-17].
Ultra-high speed optical communication is attracting word-
wide interests as the 21st century infra-structure for
computer based information age. Most agrees that optical
soliton will play major role as the means of transmission,
however, it has not yet demonstrated decisive merit over
linear transmission scheme because of  it’s intrinsic problems.
The quasi-soliton concept is developed to overcome these
difficulties and to demonstrate decisively its merit as the
mean of  information carrier of  expected terabit/second
ultra-high speed network.

The problem of soliton management in the non linear
systems described by the NLSE model with varying
coefficients is a new and important one (see, for example,
the review of optical soliton dispersion management
principles and research as it currently stands in [18-23] and
references therein). Soliton interaction in optical
telecommunication lines has attracted considerable attention
in view of  its effect on achievable bit rates.

Dispersion managed soliton technique now is the most
powerful technique in the fiber optics communication
systems. The 40 Gbit/s - 1000 km soliton transmission test
was realized recently [23] in which Nakazawa group from
NTT Network Innovation Laboratories, Japan, used the part
of  the Tokyo metropolitan optical loop network.

In this Report we show that methodology based on the
quasi-soliton concept, provides for a systematic way to discover
a novel stable soliton management regimes for the non linear
Schrödinger equation (NLSE) model with varying dispersion,
non linearity and gain or absorption. Quasi-soliton solutions
for this model must be of rather general character than
canonical solitons of standard NLSE, because the generalized
model takes into account arbitrary variations of group velocity
dispersion, non linearity and gain or absorption.

I. Novel soliton solutions for non linear Schrödinger
equation model

Our starting point is the NLSE model with varying coefficients:
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NLSE (1) is written here in standard soliton units, as they
are commonly known. There it is assumed that the
perturbations to the dispersion parameter D2(Z), non linearity
N2(Z) and to the amplification or absorption coefficient Γ(Z)
are not limited to the regime where they are smooth and
small. Due to the well known spatial-temporal analogy [3]

both temporal and spatial solitons are described by (1). In
the case of temporal solitons T is the non dimentional time
in the retarded frame associated with the group velocity of
wave packets at a particular optical carrier frequency. In
the case of two-dimensional spatial solitons T=X represents
a transverse coordinate.

Theorem 1
Consider the NLSE model Eq. (1) with varying dispersion,
nonlinearity and gain or absorption. Suppose that the
Wronskian W{N2, D2} of  the functions N2(Z) and D2(Z) is
nonvanishing, the two functions N2(Z) and D2(Z) are thus
linearly independent. There are then an infinite number of
a solitary wave solutions for the Eq. (1) written in the
following form:
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where the real function Q+(S) describes canonical functional
form of  bright (sign= +1, Q+(S)= ηsech(ηP(Z)T)) or dark
(sign= -1, Q-(S)= ηtanh(ηP(Z)T)) NLSE solitons [1,2,3], and
the real functions D2(Z), N2(Z), Γ(Z) and P(Z) satisfy the
equation system:

)(2)()(
)(),(

)}(),({
;0)()(

)(
2

22

22
2

2 ZZPZD
ZNZD

ZDZNW
ZDZP

Z
ZP Γ=−=+

∂
∂

  (3)

Theorem 2
Consider the NLSE model (1) with varying dispersion,
nonlinearity and gain or absorption. Suppose that the
Wronskian W{N2, D2} is vanishing, the two functions N2(Z)
and D2(Z) are thus linearly dependent. There are then an
infinite number conserving the pulse area solitary wave
solutions for the Eq. (1):
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where the real functions Q±(S) describe a canonical form
of bright (Q+(S)) or dark (Q-(S)) NLSE solitons, and the real
functions P(Z), D2(Z), N2(Z) and Γ(Z) satisfy the equation
system:

                                                                             (5)
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The explicit solutions for the travelling solitary waves can
easily be constructed by applying the Galilei transformation
and by using the equation for the “soliton center’’ Tsol(Z)
given by

)(
)(

2 ZVD
Z

ZT
sol −=
∂

∂
                                                    (6)

where V is a soliton group velocity (in the case of spatial
soliton V=tanθ, and θ is the angle of propagation in the
X-Z plane).

The phase function K+(Z) for the bright soliton solution
of Eq. (1) is given by

)()(
2
1

)( 2
2

2 ZPZDZK η=+

and the correspondent phase function K–(Z) for the dark
soliton solution is represented by

)()()( 2
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By applying Theorems 1 and 2 we develope a systematic
analytical approach to find the fundamental set of the
different NLSE solitons management regimes.

Case 1. Soliton dispersion management. In this case the
dispersion management function D2(Z) is assumed to be
given: D2(Z)=Φ(Z) (wecall it control function here). The
function Φ(Z) is required only to be a once-differentiable
and once integrable, but otherwise arbitrary function, there
are no restrictions. There are then an infinite number of
solutions for the Eq. (1) of  the form of  bright and dark
dispersion managed solitons represented by the Eq. (2),
where the main functions P(Z) and Γ(Z) are given by:
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In the limit of N(Z)=const Eq. (7) reduces to:
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where C is the constant of integration.

Case 2. Soliton energy control. In this case the soliton energy
control function E(Z)=2D2(Z)P(Z)/N2(Z) is assumed to be

given. The function E(Z) is required only to be a once-
differentiable and once integrable, but otherwise arbitrary
function, there are no restrictions. There are then an infinite
number of  solutions for the Eq. (1) of  the form of  bright
and dark solitons represented by the Eq. (2), where the main
functions D2(Z), P(Z) and Γ(Z) are given by:
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Case 3. Soliton intensity management. In this case the
soliton pulse intensity (peak power) is assumed to be
controlled by the function Θ(Z)=D2(Z)P2(Z)/N2(Z), where
the control function Θ(Z) is required only to be a once-
differentiable and once integrable. There are then an infinite
number of  solutions for the Eq. (1) of  the form of  bright
and dark solitons represented by the Eq. (2), where the main
functions, D2(Z), P(Z) and Γ(Z) are given by quadratures:
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and the non linearity is assumed to be a constant (N2(Z)º 1).

Case 4. Soliton pulse width management and the problem
of optimal soliton compression. In this case the soliton pul-
se width control function is assumed to be given: ϒ=P-1(Z)
The real function ϒ(Z) is required only to be a twice-
differentiable, but otherwise arbitrary function, there are
no restrictions. There are then an infinite number of  solutions
for the Eq. (1) of  the form of  bright and dark solitons
represented by the Eq. (2), where the main coefficients of
the NLSE model D2(Z) and Γ(Z) are given by:
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Case 5. Soliton amplification management and the problem
of optimal soliton amplification. In this case the gain (or
loss) function Γ(Z) is assumed to be given: Γ(Z)=Λ(Z). The
gain control function Λ(Z) is required only to be once
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integrable. There are then an infinite number of solutions
for the Eq. (1) of  the form of  bright and dark solitons
represented by the Eq. (2), where the main functions D2(Z)
and P(Z) are given by quadratures:

[ ]∫ += Λ 12 CdZZZDZP )(exp)()( 2                                   (13)

[ ] }{ 22 CdZZDZPZD +∫ ±Λ= )()()(2exp2
                          (14)

where the integration constants 
2,1

C are determined by initial
conditions.

Case 6. Combined non linear and dispersion soliton
management regimes. In this case the Wronskian { }22 , DNW
is assuming to be vanishing, that means the non linearity
and dispersion are linearly dependent functions. The main
feature of soliton solutions given by Theorem 2 consists in
the fact that the soliton pulse area is conserved during
propagation. Suppose that the dispersion management
function )(2 ZD is determined by the known control function

),()(2 ZZD Ξ= where the function )(ZΞ  is required only to
be a once integrable. There are then an infinite number of
solutions for the Eq. (1) of  the form of  bright and dark
conserving pulse area dispersion managed solitons
represented by the Eq. (4), where the main functions

)(),(),( 22 ZNZPZD and )(ZΓ are  given by quadratures:

                                                                           (15)
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The interested reader can take different control functions
)(ZΦ (Eqs. 7-8); E(Z) (Eqs. 9-10); )(ZΘ (Eqs. 11); )(Zϒ (Eqs.

12); )(ZΛ (Eqs.13-14) and )(ZΞ (Eqs. 15-16) to find the
novel ‘‘soliton islands’’ in a ‘‘sea of solitary waves’’ for the
NLSE model (1) by using algorithms developed in this work.

Notice, that soliton solutions exist only under certain condi-
tions and the parameter functions D(Z), R(Z) and )(ZΓ cannot
be chosen independently (see Eqs. 3,4 and Eqs. 5.6).

Examples. Let us consider some examples. The funda-
mental set of dispersion managed (DM) solutions can be
expressed in trigonometric and hyperbolic functions. Assume
that dispersion coefficient of the NLSE model (1) is a
periodically varying control function:

kZZZD mδsin1)Φ()( +==                                            (17)

Then an infinite number of the DM-soliton solutions are
given by the Eqs.(2) and (8). Integration in (8) is elementary
for any value of the parameter m, and in the simplest case
(m = 1) is given by:

[ ]kkZZCZP )/δcos()( 1 +−−=−                                        (18)

kZkPZ cosδΦΦ)(2 1 +−=Γ −                                         (19)

Let us consider periodical soliton dispersion management
regimes in the case of Theorem 2. The main feature of
soliton solutions given by Theorem 2 consists in the fact that
the soliton pulse area is conserved. Assume the dispersion
inhomogeneity D(Z) to be a potential barrier, for instance, of
the cos or sin functional form. Then the combined nonlinear
and dispersion management regime is given by:

PDZCPZD −=−−== − 2Γ;)sin(;cos 1                              (20)

where arbitrary constant .1>C

Let us consider the soliton pulse width management
regimes. One of  the simplest periodical soliton solution is
given by:

PDZZP −=Γδ+−=Θ= 2sin1)( 2 );()( Z                           (21)

                                                                           (22)
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FI GU RE  1 .  CON T OU R S  P LO T  F OR  T H E  EV O LU T I ON  O F  T H E 
D I S PE R SI ON  M A N A G E D  B R IG H T  SO L IT A R Y  W A V E S  (EQ S. 2,  
A N D  18-19 )  A S  A  FU N CT I ON  O F  T H E  PR OP A G A T I ON  

D I ST A N C E.  I N IT IA L  CON DI T I ON S:  5.0;8;1 ====∂∂∂∂======== km  A N D 
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The main features of analytical solutions predicted (Theorem
1 and 2) have been investigated by using direct computer
simulations. Their soliton-like features have been proved in
our computer simulations with the accuracy as high as 10-9.
The time-space evolution of DM-solitons for the case
represented by the Theorem 1 (Eqs. 2 and 18-19) is shown
in figure 1. The time-space dynamics of the propagation
and interaction of DM solitons for the case of the Theorem
2 (Eqs. 4 and 21) is shown in figures 2 and 3. An important
feature of  the solitary waves solutions given by Eqs. 2-5
consists of  the elastical character of  their interaction. We
also have investigated the nonlinear dynamics of high-order
solitons generation in the frame of the NLSE model (1).
Computer experiments show periodical time-space evolution
of the bound state of two -solitons and represents the decay
of this bound state produced by self-induced Raman soliton
scattering effect which have been considered within the
framework of the oscillator model [24]. This remarkable
fact also emphasizes the full soliton features of solutions
discussed. They not only interact elastically but they can
form bound states and these bound states split under
perturbations.

Conclusions

In sumary, the methodology developed (theorems 1 and
2) provides for systematic way to discover and investigate
an infinite number of the novel solitary waves for the
NLSE model with varying dispersion, non linearity and gain
or absorption. The surprising aspect is that analytical
solutions are obtained here in quadratures. Their pure
soliton-like features are confirmed by the accurate direct
computer simulations.

Finally, let us consider an example of  the dynamic
dispersion soliton management technique. It is the well
known fact that due to the Raman self-scattering effect
[25](called soliton self-frequency shift [26] the central
femtosecond soliton frequency shifts to the red spectral
region and the so-called colored solitons are generated [27].
This effect decreases significantly the efficiency of the
resonant soliton amplification in the femtosecond time
duration range. The mathematical model is based on the
modified NLSE including the effects of molecular vibrations
and soliton amplification processes (see details in [24]). As
numerical experiments showed the dispersion inhomo-
geneity in the spectral domain  allows one to capture a
soliton in a sort of  spectral trap. As soliton approaches the
dispersion well, it has got into the well and is trapped as

shown in figure 4. There exists a long time of soliton trapping
in internal region of the spectral dispersion well (see figure
4). This effect opens a controlled possibility to increase
the energy of  a soliton. As follows from our computer

S O L I T O N  M A N A G E M E N T  F O R  U L T R A - H I G H  S P E E D  T E L E C O M M U N I C A T I O N S

FI GU RE  3.  CON T O U R S  P L OT  FO R  T H E  N ON LIN EA R  
T R A PP IN G  O F  T W O DM- SO L IT ON  PU L SE S  IN  T H E 

P E R IO DI CA L LY  D I S PE R S I O N  M A N A G ED  ST R U CT U R E  (21 ).  
I N IT IA L C ON D IT I ON S:  9.0;5.0)0( =∂==ΓZ  A N D .0.10)0(2,1 ±==ZV  
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simulations the capture of a moving in the frequency space
femtosecond colored soliton by a dispersive trap formed
in an amplifying optical fiber makes it possible to accu-
mulate an additional energy and to reduce significantly the
soliton pulse duration. This effect can be considered as
the spectral soliton management regime.

The results obtained in this Letter are of general physics
interest and should be readily experimentally verified. The
finding of a new mathematical algorithm to discover solitary
wave solutions in non linear dispersive systems with spatial
parameters variations is important to the field, and might
have significant impact on future research.
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