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Abstract

A numerical method to solve a general random linear parabolic equation
where the diffusion coefficient, source term, boundary and initial condi-
tions include uncertainty, is developed. Diffusion equations arise in many
fields of science and engineering, and, in many cases, there are uncertainties
due to data that cannot be known, or due to errors in measurements and
intrinsic variability. In order to model these uncertainties the correspon-
ding parameters, diffusion coefficient, source term, boundary and initial
conditions, are assumed to be random variables with certain probability
distributions functions. The proposed method includes finite difference
schemes on the space variable and the differential transformation method
for the time. In addition, the Monte Carlo method is used to deal with
the random variables. The accuracy of the hybrid method is investigated
numerically using the closed form solution of the deterministic associated
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Analytical-Numerical Solution of a Parabolic Diffusion Equation Under Uncertainty

Conditions Using DTM with Monte Carlo Simulations

equation. Based on the numerical results, confidence intervals and ex-
pected mean values for the solution are obtained. Furthermore, with the
proposed hybrid method numerical-analytical solutions are obtained.

Key words: random linear diffusion models; uncertainty conditions; fi-
nite difference schemes; differential transformation method; analytical-
numerical solution

Solucion numérico-analítica de una ecuación de
difusión bajo condiciones de incertidumbre
utilizando DTM y Monte Carlo

Resumen
Un método numérico para resolver una ecuación parabólica general aleato-
ria lineal donde el coeficiente de difusión, el término fuente, las condiciones
de contorno e iniciales incluyen la incertidumbre, se ha desarrollado. Ecua-
ciones de difusión surgen en muchos campos de la ciencia y la ingeniería,
y en muchos casos, existen la incertidumbres debido a los datos que no se
pueden saber, o debido a errores en las mediciones y la variabilidad intrín-
seca. Para modelar estas incertidumbres los parámetros correspondientes,
coeficiente de difusión, término fuente, condiciones de contorno e iniciales,
se suponen que son variables aleatorias con determinadas distribuciones
de probabilidad. Basándose en los resultados numéricos, se obtienen los
intervalos de confianza y valores medios esperados para la solución. Ade-
más, se obtienen con las soluciones numéricas-analíticas del método híbrido
propuesto.

Palabras clave: modelos lineales de difusión aleatorios; condiciones de

incertidumbre; Esquemas de diferencias finitas; método de transformación

diferencial; solución analítica-numérica

1 Introduction

Differential equations, in general, describe the rate of change in the physi-
cal property of matter with respect to time and/or space. Real phenomena
lead to complicated differential equations, which seldom have exact solu-
tions. The difficulty of obtaining analytical solutions and the availability
of fast computing power make numerical techniques attractive. However,
numerical methods can have slow convergence and instability problems.

Mathematical models dealing with uncertainty in differential equations
have been considered in recent decades in a wide variety of applied areas,
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such as physics, chemistry, biology, economics, sociology and medicine.
Differential deterministic equations have been extensively studied, both
from both analytical and numerical viewpoints. However, in many situ-
ations, equations with random inputs are better suited in describing the
real behavior of quantities of interest than their counterpart deterministic
equations. Randomness in the input may arise because of errors in the
observed or measured data, variability in experiment and empirical condi-
tions, uncertainties (variables that cannot be measured or missing data) or
plainly because of lack of knowledge [1],[2].

Differential equations where some or all the coefficients are considered
random variables or that incorporate stochastic effects (usually in the form
of white noise) have been increasingly used in the last few decades to deal
with errors and uncertainty and represent a growing field of great scientific
interest [3],[4],[5],[6]. Additionally, uncertainty can be considered on the ini-
tial conditions or source term. Applications of the aforementioned random
differential equations are wave propagations in homogeneous media, sys-
tems and structures with parametric excitations, dynamics of imperfectly
known systems in physics, epidemics, medicine and biology [7],[8],[4].

Analytical treatment of random differential equations has been done by
[4]. It is important to remark that in general the statistical moments such
as mean and variance of the solution process cannot be determined easily,
see [4, Ch. 6] for details. Several applications to real world problems that
consider randomness or uncertainty have been developed [9],[10],[11]

The present work combines finite difference schemes for the discretiza-
tion space with the differential transformation method for the time dis-
cretization. In addition, randomness is introduced in the diffusion PDE

which models several physical processes and to the best of our knowledge
this whole process has not be done before. The differential transformation
method has been applied in several works and recently has been extended
successfully to random differential equations [12],[13]. The randomness is
incorporated since inaccuracies in the physical measurements can affect
several inputs of the diffusion PDE such as diffusion coefficient, source
term, boundary and initial conditions, and can thus introduce some degree
of uncertainty. In real world applications, the probability density functions
of those quantities can only be estimated from physical measurements. It
is important to remark that even if these measurements are done with the
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utmost care, the measured values will differ somewhat and some statistical
tests are necessary to find the probability density distributions of these
measurements.

The most commonly used distribution is the Gaussian one [1]. However,
other distributions such as Uniform, Beta and Gamma are also used and
may be more appropriate if enough data points are available to suggest
those distributions.

The real world is much more complex than anything that can be created
with arithmetic and logical operations [14, p.341 and p.342]. Therefore it
is necessary to use methods that include some real world complexity like
randomness [15]. The Monte Carlo method is one of the most versatile
and widely used numerical methods to deal with randomness. The power
of Monte Carlo simulation modeling allows us to include more complexity
to the deterministic mathematical model by incorporating the impact of
randomness on the dependent variables [16]. Random effects and the va-
riations produced by using different probability distributions can be studied
using Monte Carlo simulations. Applications of the Monte Carlo method
in different areas are given, for example, in [17],[18],[11].

The Monte Carlo method is used here with the aim of obtaining quali-
tative and quantitative behavior of the numerical solutions of the random
diffusion PDE. The Monte Carlo simulation differs from traditional simu-
lation in that the model input parameters are treated as random variables,
rather than as fixed values. These parameters must be identified with their
uncertainty ranges and shapes of their probability density functions pres-
cribed. There are no restrictions on the shapes of the probability density
functions, although most studies make use of the basic ones, such as nor-
mal, log-normal, uniform, or triangular. Maximum and minimum limits on
each input parameter can be prescribed to prevent unrealistic selection of
extreme values [19].

The main reason here to apply the Monte Carlo method is due to the
simplicity and effectiveness with which it deal with random variables. The
major challenge with the method is to efficiently carry out many realizations
and then to summarize the results into a few useful values such as the
expectation and higher moments of the solution stochastic processes [20].
The Monte Carlo method for solving random differential equations can be
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described briefly as:

• Generate sample values of the random input from their known or
assumed probability density function.

• Solve the deterministic equation corresponding to each value.

• Calculate statistics, such as mean and variance, of the set of deter-
ministic solutions.

The number of realizations or runs can be as large as desired. However,
there is always a compromise that must be reached concerning the optimal
number of runs, since each run takes a certain time on the computer. Diffe-
rent criteria can be used to choose the number of realizations and this is not
a straightforward task. A useful criteria on to select the optimal number
of realizations is to stop when the increasing them does not significantly
change expected value and variance of the physical process solution. Other
criteria include theoretical ones using Central Limit Theorem, t-Student

distribution and other probabilistic tools. Finally, it is important to remark
that the numerical simulation time can be easily reduced using parallel
processes.

The paper is organized as follows. In Section 2 the diffusion PDE is
presented. Section 3 is devoted to present the basic properties of the diffe-
rential transformation method. Numerical results for the deterministic and
random PDE, including studies of the accuracy, are presented in Section
4. Finally, in Section 5 discussion and conclusions are presented.

2 Diffusion differential equation

In this paper, we consider a general random linear parabolic equation where
the diffusion coefficient, source term, boundary and initial conditions in-
clude uncertainty. The deterministic associated problem is the following
parabolic equation:

ut(x, t) = [p(x, t)ux(x, t)]x + f(x, t), 0 < x < 1, t > 0, (1i)

u(0, t) = g1(t), t > 0, (1ii)
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u(1, t) = g2(t), t > 0, (1iii)

u(x, 0) = g(x), 0 ≤ x ≤ 1. (1iv)

Physically speaking, this model describes the heat conduction proce-
dure in a given inhomogeneous medium with some input heat source f(x, t).
The coefficient p(x, t) represents heat conduction property namely the heat
capacity. The type of boundary condition used occurs when the ends of
the bar are at given temperatures.

In a limited set of cases, solutions can be obtained in closed form by
separation of variables. Thus, the great importance of numerical methods
to calculate approximate solutions. Numerical approximations should pre-
serve the dynamical behavior of the exact solution of the model and care
should be used to avoid spurious solutions and instabilities. It is well known
that the relation ∆t

∆x2 , where ∆t is the time step and ∆x the spatial grid
size, is critical for the numerical stability of the explicit finite difference
schemes for this class of PDE, which puts serious restrictions on the time
step. Therefore it is necessary to develop schemes that are robust with a
threshold of convergence greater than for the traditional schemes.

In this paper, we introduce a hybrid method that combines the finite
difference numerical schemes and an analytic-numerical method, the diffe-
rential transformation method, to solve the diffusion PDE (1i)-(1iv) with
randomness. The differential transformation technique is used to transform
the governing equations from the time domain into the spectrum domain,
followed by use of the finite difference method to formulate discretized ite-
ration equations appropriate for rapid computation. Unlike the traditional
high-order Taylor series method, which requires a many symbolic com-
putations, the present method involves simple iterative procedures in the
spectrum domain. The approximate solution is then obtained from a the
partial sum of the inverse process.

3 Basic definitions of differential transformation method

Pukhov [21], proposed the concept of differential transformation, where the
image of a transformed function is computed by differential operations. It is
different from traditional integral transforms such as Laplace and Fourier.
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This method becomes a numerical-analytic technique that formalizes the
Taylor series in a totally different manner. The differential transformation
is a computational method that can be used to solve linear and non-linear
ordinary and partial differential equations with their corresponding initial
and/or boundary conditions. A pioneer using this method to solve ini-
tial value problems is Zhou [22], who introduced it in a study of electrical
circuits. Additionally, the differential transformation method (DTM) has
been applied to solve a variety of problems that are modeled with differ-
ential equations [23],[24],[25],[26],[27]. Some authors mentioned that DTM
can be seen as computer-specialized procedure to compute the Taylor series
[28].

The method consists of, given a system of differential equations and
related initial conditions, transforming these into a system of recurrence
equations that finally leads to a system of algebraic equations whose solu-
tions are the coefficients of a power series solution. The numerical solution
of the system of differential equation in the time domain can be obtained
in the form of a finite-term series in terms of a chosen system of basis func-
tions. In this method, we take {tk}+∞

k=0 as a basis functions and therefore
the solution is obtained in the form of a Taylor series. Other bases may be
chosen, see [29]. The advantage of this method is that it is not necessary to
do linearization or perturbations. Furthermore, large computational work
and round-off errors are avoided. It has been used to solve effectively, easi-
ly and accurately a large class of linear and nonlinear problems. However,
to the best of our knowledge, the differential transformation has not been
applied yet in seasonal epidemic models. For the sake of clarity, we present
the main definitions of the DTM as follows:

Definition 3.1. Let x(t) be analytic in the time domain D, then it has
derivatives of all orders with respect to time t. Let

ϕ(t, k) =
dkx(t)

dtk
, ∀t ∈ D. (2)

For t = ti, then ϕ(t, k) = ϕ(ti, k), where k belongs to a set of non-negative
integers, denoted as the K domain. Therefore, (2) can be rewritten as

X(k) = ϕ(ti, k) =

[

dkx(t)

dtk

]

t=ti

(3)
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where X(k) is called the spectrum of x(t) at t = ti.

Definition 3.2. Suppose that x(t) is analytic in the time domain D, then
it can be represented as

x(t) =
∞
∑

k=0

(t− ti)
k

k!
X(k). (4)

Thus, the equation (4) represents the inverse transformation of X(k).

Definition 3.3. If X(k) is defined as

X(k) = M(k)

[

dkx(t)

dtk

]

t=ti

(5)

where k ∈ Z
+ ∪ {0}, then the function x(t) can be described as

x(t) =
1

q(t)

∞
∑

k=0

(t− ti)
k

k!

X(k)

M(k)
, (6)

where M(k) 6= 0 and q(t) 6= 0. M(k) is the weighting factor and q(t) is
regarded as a kernel corresponding to x(t).

Note, that if M(k) = 1 and q(t) = 1, then Eqs. (3), (4), (5) and (6)
are equivalent.

Definition 3.4. Let [0,H] be the interval of simulation with H the time
horizon of interest. We take a partition of the interval [0,H] as {0 =
t0, t1, ... , tn = H} such that ti < ti+1 and Hi = ti+1− ti for i = 0, ... , n− 1.

Let M(k) =
Hk

i

k! , q(t) = 1 and x(t) be a analytic function in [0,H]. It then
defines the differential transformation as

X(k) =
Hk

i

k!

[

dkx(t)

dtk

]

t=ti

where k ∈ Z
+ ∪ {0}, (7)

and its differential inverse transformation of X(k) is defined as follow

x(t) =
∞
∑

k=0

(

t

Hi

)k

X(k), for t ∈ [ti, ti+1]. (8)
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For the interested readers, the operation properties of the differential
transformation method can be found in [21],[22].

From the definitions above, we can see that the concept of differential
transformation is based upon the Taylor series expansion. Note that, the
original functions are denoted by lowercase letters and their transformed
functions are indicated by uppercase letters. Thus, applying the DTM , a
system of differential equations in the domain of interest can be transformed
to an algebraic equation system in the K domain and, thus x(t) can be
obtained by a finite-term Taylor series plus a remainder, i.e.,

x(t) =
1

q(t)

n
∑

k=0

(t− ti)
k

k!

X(k)

M(k)
+Rn+1 =

n
∑

k=0

(

t

H

)k

X(k) +Rn+1, (9)

where

Rn+1 =

∞
∑

k=n+1

(

t

H

)k

X(k), and Rn+1 → 0 as n → ∞.

In many modeling situations, the computation interval [0,H] is not
always small, and in order to accelerate the rate of convergence and to im-
prove the accuracy of the calculations, it is necessary to divide the entire
domain H into n subdomains. This process can be seen as a implementa-
tion of an analytic continuation process due to the fact that the range of
convergence of the direct sum of the series is too limited [28]. Moreover,
in this case, the DTM is truly different from the raw Taylor series method
which, stricto sensu, does not involve any consideration of analytic conti-
nuation [28]. The main advantage of the domain splitting process is that
only a few Taylor series terms are required to construct the solution in a
small time interval Hi, where H =

∑n
i=1Hi. It is important to remark

that, Hi can be chosen arbitrarily small if necessary. Thus, the system of
differential equations can be solved in each subdomain [24]. Considering
the function x(t) in the first sub-domain (0 ≤ t ≤ t1, t0 = 0), the one
dimensional differential transformation is given by

x(t) =
n
∑

k=0

(

t

H0

)k

X0(k) , where X0(0) = x0(0). (10)
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Notice that since the series converges in the domain [ti, ti + 1], its sum
provides the solution in this domain with a sensible accuracy. Moreover, if
this is true for each value ti then one gets, step by step, an approximate
solution in the whole domain [0,H], each initial value x(Hi being (appro-
ximately) provided by the sum of the series at the second boundary of
the preceding sub-domain. Therefore, the differential transformation and
system dynamic equations can be solved for the first subdomain and X0

can be solved entirely in the first subdomain. The end point of function
x(t) in the first subdomain is x1, and the value of t is H0. Thus, x1(t) is
obtained by the differential transformation method as

x1(H0) = x(H0) =

n
∑

k=0

X0(k). (11)

Since that x1(H0) represents the initial condition in the second subdomain,
then X1(0) = x1(H0). And so the function x(t) can be expressed in the
second sub-domain as

x2(H1) = x(H1) =
n
∑

k=0

X1(k). (12)

In general, in each i− 1 subdomain one gets,

xi(Hi) = xi−1(Hi−1)+

n
∑

k=1

Xi−1(k) = Xi−1(0)+

n
∑

k=1

Xi−1(k), i = 1, 2, ..., n.

(13)
Using the D spectra method described above, the function x(t) can be
obtained throughout the entire domain.

4 Construction of the hybrid scheme using DTM and finite

differences for reaction-diffusion PDE

Our goal in this section is to construct a hybrid scheme for Eq. (1i) com-
bining the DTM and finite differences as follows: we begin taking the
differential transforms of both sides of the governing equations from the
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time domain into the spectrum domain, i.e., taking the differential trans-
formation with respect to the time variable t only. Thus, from Eq. (1) one
gets the following spectrum:

(k + 1)U(x, k)

Hi

=
∂

∂x

( k
∑

l=0

P(x, k)
∂U(x, k − l)

∂x

)

+F(x, k), 0 < x < 1, k ≥ 0, (14i)

U(0, k) = G1(k), k ≥ 0, (14ii)

U(1, k) = G2(k), k ≥ 0, (14iii)

U(x, 0) = g(x), 0 ≤ x ≤ 1, (14iv)

where U(x, k), G1(k), G2(k) are the differential transform of u(x, t), g1(t),
and g2(t), respectively.

The finite difference method is then applied to Eq. (14), which contains
only derivatives with respect to the space coordinates x. The whole domain
is divided into M equal subintervals of length ∆x of the interval 0 ≤ x ≤ 1.
The x coordinates of the grid points are given by xj = j∆x, for j = 0, ...,M .
Using the central difference formula on the first and second derivatives, and
the convolution of transformation in Eq. (14), the corresponding difference
equation is given by

(k + 1)Uj(k)

Hi

=

k
∑

l=0

P
j+ 1

2

(k)Uj+1(k − l)

∆x2
+

k
∑

l=0

(

P
j+ 1

2

(k) +P
j− 1

2

(k)

)

Uj(k − l)

∆x2

+

k
∑

l=0

P
j− 1

2

(k)Uj−1(k − l)

∆x2
+Fj(k), k ≥ 0.

Thus, we obtain a numerical scheme to compute the coefficients of the
power series to obtain the solution in the respective subinterval, which is
given by:

Uj(k) =
Hi

k + 1

{

k
∑

l=0

P
j+ 1

2

(k)Uj+1(k − l)

(∆x)2
+

k
∑

l=0

(

P
j+ 1

2

(k) +P
j− 1

2

(k)

)

Uj(k − l)

(∆x)2

+

k
∑

l=0

P
j− 1

2

(k)Uj−1(k − l)

(∆x)2
+ Fj(k)

}

k ≥ 0, (15i)
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U0(k) =G1(k), k ≥ 0, (15ii)

UM (k) =G2(k), k ≥ 0, (15iii)

Uj(0) =gj , For j = 0, ...,M , (15iv)

where bold uppercase letters are for the transformed functions. Thus, from
a process of inverse differential transformation, the solutions on each sub-
domain can be obtained using n+ 1 terms for the power series, i.e.,

uj(t) =
n
∑

k=0

(

t

Hi

)k

Uj(k), 0 ≤ t ≤ Hi, (16)

and then the solution is given by:

u(x, t) =

M−1
∑

j=1

uj(t), for 0 < x < 1. (17)

5 Numerical results

In this section, numerical comparisons between the hybrid method and the
analytical solution are presented in order to show the accuracy of the hybrid
method for solving the diffusion PDE. In addition, combining the hybrid
method with the Monte Carlo simulations we investigate the effect of in-
troducing randomness on the diffusion coefficient, source term, boundary
and initial conditions. Numerical simulations are performed with different
realizations, time step sizes and parameters of the probabilistic distribu-
tions. The expected solution is computed as the average of several random
solutions. The numerical results are presented mostly at the value x = 0.5,
since this is the middle point of the interval of interest and generally is the
point where the numerical methods give less accurate results. Graphical
results corroborate this last fact. The randomness is included assuming a
uniform probabilistic distribution. However, the methodology it is easily
extendable to other probabilistic distributions. It is important to mention
that the methodology proposed here is three-folded. The first step is to
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obtain the numerical scheme to compute the coefficients of the power se-
ries. This step includes to obtain the spectra of the equation considered
and its discretization. In the second step, the numerical solution for each
realization is computed. Finally, based on the Monte Carlo method many
realizations are obtained and some statistics regarding the ensemble are
computed. Therefore, the computation time of the whole process depends
on many variables such as, the spectra, time step (for DTM and the finite
difference scheme) and number of realizations. However, it has been men-
tioned in other works that the DTM is faster than the multistage Adomian
method, but the Runke-Kutta methods require less computation time in
comparison with DTM and multistage Adomian [12].

Example 5.1. We consider the following deterministic problem

ut(x, t) = [p(x, t)ux(x, t)]x + f(x, t),

u(0, t) = et, 0 < t ≤ 1,

u(1, t) = e1+t, 0 < t ≤ 1,

u(x, 0) = ex, 0 < x < 1,

where u(x, t) is unknowns in (0, 1)×(0, 1], and the terms f(x, t) = ex+t(1−
(1 + 0.1xt) − 0.1t) and p(x, t) = 1 + 0.1xt are given. The exact solution is
given by u(x, t) = ex+t, [30].

We also consider the random version of Example (5.1), by introducing
the following perturbations:

u(x, 0, γ) =ex + γ, (18i)

u(0, t, γ) =et + γ, u(1, t, γ) = e1+t + γ, (18ii)

p(x, t, γ) =1 + 0.1xt + γ, and (18iii)

f(x, t, γ) =− 0.1ex(1 + x)tet + γ, (18iv)

where the unknown u(x, t, γ) as well as u(x, 0, γ), u(0, t, γ), u(1, t, γ), p(x, t, γ),
f(x, t, γ), are stochastic processes (s.p.) defined on a common probability
space (Ω,F ,P) and γ is the random variable (r.v.), which consists of three
components:
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1. The sample space Ω which is a non-empty set that collects all the
elementary events or states ω.

2. A collection of subsets of Ω called σ-algebra F ( or Borel field) that
satisfies: the empty set is an element of F , F is closed under com-
plementation and under countable unions.

3. A probability function P with domain F , and γ is a random varia-
ble (r.v.) defined on the original sample space Ω with probability
function.

A solution of Example (5.1) with randomness means that for each γ ∈ Ω,
u(x, t, γ) is a solution of the deterministic problem obtained from Example
(5.1) taking realizations of the involved r.v, and where derivatives and
limits are regarded in the mean square sense, see [4] for details. Since
the solutions are stochastic processes, we can rely on the Monte Carlo
method to compute them. It is important to remark that here we consider
randomness on the initial conditions, diffusion coefficient, source term and
boundary conditions separately.

The Monte Carlo method (with Simple Random Sampling) for uncer-
tainty analysis is quite simple. At first, the more important inputs have to
be identified as shown in (18). Next, uncertainty ranges and shapes of their
probability density functions need to be chosen. Here, we choose as a first
approach to test the methodology with uniform probability density func-
tions for each r.v.. Thus, Example (5.1) is solved for each value assigned to
the random variables to obtain results using the probability density func-
tion prescribed. The process is repeated many times, with the values of
the input random parameters chosen from the corresponding distributions,
in order to obtain a large ensemble of solutions [19]. In other words, we
sample from the probability density function in order to assign that value
to the random variable considered, and solve the Example (5.1) using the
DTM for each number sampled. It is important to emphasize that the
method can be used with the input parameters having an arbitrary shape
of probability density function.

In order to compute the coefficients of the power series of the random
solution in the algebraic system (15) the following spectra are introduced:
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Uj(k, γ) =ej∆x + δ(k)γ, (19i)

U0(k, γ) =
Hk

i e
iHi

k!
+ δ(k)γ, UM (k, γ) = eM∆xHk

i e
iHi

k!
+ δ(k)γ, (19ii)

P
j± 1

2

(k, γ) =δ(k) + 0.1(j ±
1

2
)∆xδ(k − 1) + δ(k)γ, and (19iii)

Fj(k, γ) =− 0.1(1 + j∆x)ej∆x

k
∑

l=0

Hk+1−l
i eiHi

(k − l)!
δ(k − 1) + δ(k)γ, (19iv)

where i denotes the i-th split domain.

5.1 Numerical comparisons in accuracy

In Table 1 we present the absolute errors at x = 0.5 comparing the hy-
brid method and the analytical solutions of the deterministic problem of
Example (5.1) when a space step size ∆x = 0.05 is used. The accuracy of
the DTM hybrid method is improved by using the h-refinement approach
(reducing the time step size).

In Table 2 we present the absolute errors at x = 0.5 comparing the
hybrid method and the analytical solutions of the deterministic problem of
Example (5.1) using different space step sizes ∆x and a fixed time step size
∆t = 0.0001. The accuracy of the DTM hybrid method is improved in this
case by using the h-refinement approach in the space variable x. However,
as it is remarked in [31] high space segmentation may cause divergence
phenomenon. On the other hand, the p-refinement approach (increasing
the number of terms) does not increase the accuracy of the hybrid method
for this specific reaction-diffusion PDE due to its structure.

On the left hand side of Figure 1 it can be seen that the hybrid method
reproduces the correct behavior of the solution for the diffusion PDE. In
addition, on the right hand side of Figure 1 it can be observed that the
absolute value of the error of the hybrid method increases with time and
the maximum values are around the middle of the interval [0, 1]. Thus, the
study of the error at x = 0.5 is justified. These results show the numerical
consistency of the hybrid method.
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Table 1: Numerical absolute errors using the hybrid method with 3-terms, diffe-
rent time step sizes and a space step size ∆x = 0.05 for the deterministic version
of Example (5.1) at x = 0.5

T ime h = 0.001 h = 0.0005

0.1 0.39E − 4 0.52E-5
0.2 0.58E − 4 0.70E-5
0.5 0.82E − 4 0.61E-5
1.0 0.12E − 3 0.31E-5
2.0 0.24E − 3 0.76E-4

Table 2: Numerical absolute errors using the hybrid method with 3-terms, di-
fferent space step sizes and a fixed time step size h = 0.0001 for the deterministic
version of Example (5.1) at x = 0.5

T ime ∆x = 0.05 ∆x = 0.04 ∆x = 0.033

0.1 0.39E − 4 0.11E-4 0.59E-5
0.2 0.58E − 4 0.17E-4 0.93E-5
0.5 0.82E − 4 0.29E-4 0.16E-4
1.0 0.12E − 3 0.56E-4 0.31E-4
2.0 0.24E − 3 0.18E-3 0.11E-3

Figure 1: Numerical solution for the deterministic version of Example (5.1) using 5 terms

for the DTM with h = 0.001 and ∆x = 0.1 for the finite difference (left). Plotting of the error

for different times and values of the space variable x. (right)
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5.2 Randomness on the initial condition

Graphical results of Monte Carlo simulations using 50 realizations for the
random version of Example (5.1) presented in and assuming a uniform
probabilistic distribution for the initial conditions are shown on the left
hand side of Figure 2. It can be observed that the expected solution (i.e.
average of the ensemble of the realizations) does not agree with the solution
of the deterministic version Example (5.1). However, it can be seen on the
right hand side that when the number of realizations is increased to 200
the expected solution agrees very well with the solution of the deterministic
version of Example (5.1).

In addition, it can be seen in Figures 2 and 3 that the amplitude of the
confidence intervals decreases and converges to the expected solution, as we
increase the number of realizations. This fact is of paramount importance
from a physical point of view since it means that no matter how large is
the error of the initial conditions measure, the solution will approximate
asymptotically to the deterministic solution. The right hand side of Figure
3 shows the expected solution and confidence intervals when it is assumed
normal probabilistic distribution for the initial conditions. Notice that
the numerical results are similar to the ones with uniform probabilistic
distribution but with less dispersion as was expected from the Gaussian
form of the normal distribution.
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Figure 2: Numerical solution for the random version of Example (5.1) at x = 0.5 assuming

that initial conditions are perturbed by a term that follows a uniform distribution [−1.0, 1.0]

with 50 (left) and 200 (right) realizations. Solutions are computed using 5 terms in the DTM ,

h = 0.0001 and ∆x = 0.1 for the finite difference.
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Figure 3: Numerical solution for the random version of Example (5.1) at x = 0.5 assuming

that initial conditions are perturbed by a term that follows a uniform distribution [−1.0, 1.0](left)

and a normal distribution [0, 1/1.96] (right) with 150 and 200 realizations respectively. Solutions

are computed using 5 terms in the DTM , h = 0.0001 and ∆x = 0.1 for the finite difference.

5.3 Randomness on the boundary condition

In this subsection some Monte Carlo simulations are performed in order to
observe the impact of boundary conditions uncertainties on the solution of
the random version of Example (5.1).
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Figure 4: Numerical solution for the random version of Example (5.1) at x = 0.5 assuming

that boundary conditions are perturbed by a term that follows a uniform distribution [−0.1, 0.1]

with 100(left) and 20(right) realizations. Solutions are computed using 5 terms in the DTM ,

h = 0.0001 and ∆x = 0.1 for the finite difference.
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In Figure 4 it can be seen that the expected solution has a similar
behavior as the deterministic solution when a uniform probabilistic distri-
bution is used for the boundary conditions. The right hand side of Figure 4
shows that the amplitude of the confidence interval does not increase with
time since the variance of the solution is exactly the variance of γ. This is
due to the fact that perturbing the boundary conditions leads to an exact
solution u(x, t) = ex+t + γ.

5.4 Randomness on the source term

In Figure 5 it can be seen that the expected solution agrees with the de-
terministic solution when a uniform probabilistic distribution is used for
the source term. Notice that the amplitude of the 95% confidence interval
(i.e. he range in which 95% of the realizations are found) increases with
time. Therefore, the uncertainty on the source term is propagated over the
time, giving rise with large probability to unpredictable feasible solutions.
This fact is important from the physical point of view since it means that
careful attention must be paid to the measure or estimation of the source
term in order to have realistic solutions.
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Figure 5: Numerical solution for the random version of Example (5.1) at x = 0.5 assuming

that the source term has in addition an uncertainty term that follows an uniform distribution

[−1.0, 1.0] and performing 100 realizations. It is computed using 5-term in the DTM , h = 0.0001

and ∆x = 0.1 for the finite difference.
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5.5 Randomness on the diffusion coefficient

In this subsection some Monte Carlo simulations are performed in order
to observe the impact of randomness of the diffusion coefficient on the
solution of the random version of Example (5.1). In Figure 6 it can be seen
that the expected solutions agree with the deterministic solution when
an uniform probabilistic distribution is used for the diffusion coefficient.
Notice that the amplitude of the 95% confidence intervals increase with
time. Therefore, the uncertainty on the diffusion coefficient is propagated
over the time, giving rise with large probability to unpredictable feasible
solutions.
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Figure 6: Numerical solution for the random version of Example (5.1) at x = 0.5 assuming

that the diffusion coefficient has in addition an uncertainty term that follows an uniform distri-

bution [−1.0, 1.0] with 50(left) and uniform distribution [−0.1, 0.1] with 150(right) realizations.

Solutions are computed using 5-term in the DTM , h = 0.0001 and ∆x = 0.1 for the finite

difference.

6 Conclusions

In this paper we apply a hybrid numerical method to solve random gene-
ral linear diffusion equations where the diffusion coefficient, source term,
boundary and initial conditions include uncertainty. The hybrid method
combines the finite difference schemes for the discretization in space and
the differential transformation method for the time discretization. In order
to obtain accurate numerical solutions it is necessary to consider three
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issues: the first is the time step size used in the differential transformation
method. The second one is the step size in the space for the finite difference
scheme and the last is the order of the differential method. The accuracy
of the DTM hybrid method can be improved by using the h-refinement
approach in time and space variables. In addition due to the structure
of the considered PDE the p-refinement approach does not improve the
accuracy of the solutions for more than 3-terms. Nevertheless, in general
increasing the differential transform order gives more accurate solutions at
the expense of more computation time.

The diffusion PDE has been selected due to the fact that reaction-
diffusion equations arise in many fields of science and engineering, and, in
many cases, there are uncertainties due to data that cannot be known, or
due to errors in measurements and intrinsic variability. In order to model
these uncertainties some probability distributions functions are assumed
for the diffusion coefficient, source term, boundary and initial conditions.

The effect of introducing randomness in the diffusion PDE is justified
by the fact that the diffusion coefficient, source term, boundary and ini-
tial conditions have some degree of uncertainty. Therefore, the random
diffusion PDE is investigated by means of the well known Monte Carlo
method. Based on the numerical results, confidence intervals and expected
mean values for the solution are obtained. These confidence intervals are
proportional to the variance of the probabilistic distributions of the ran-
dom variable assumed for the diffusion coefficient, source term, boundary
and initial conditions. This means that the dynamics behavior of the di-
ffusion physical process can be predicted with some probability despite the
uncertainty of the diffusion coefficient, source term, boundary and initial
conditions. Finally it is important to mention that Monte Carlo simula-
tions give realistic values which are consistent with the results obtained for
the deterministic diffusion PDE. Future works can be developed for more
complex cases such a nonlinear system with two interacting scalar fields.
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