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Abstract. A limar algébrale approach can be helpfrd in
the computation, interpretation, teaching and
understanáing ojslaüstics al all ievels. Allhougb the
rrference spact has a dimensión equal to llx sample sís^, it
is nol necessay to consider more tíion 2 or3 dimensions at
a time, for most epplications.
A sample becomes a vector which has an orthogonal
decomposition into mean andstandard deviación
projections. The comlation between Im sampks is
essentialfy measnred fy the angie betnxen ¡be vectors. Em
linear regression has an interpretation «dnab to tiu usual
scatter diagram: the regression coejjicients are scalar
projections betivecn the sample vectors. Orthogonal
regression, sometvhat neglected in the literattm, iseasily
treated hete.

This «cartesian» e^roach can be extended to other
brandKS ojstatistics, separating, in true ohject-oriented
fashion, tlx basic deterministic notionsfrom tix
probabilistic and computational aspects. Hoivever, a brief
examinalinn ofsome references indicates on^ sporadic use
ofthe cartesian approach in the leaming and use of
statistics.

Amathematics ptofessor who teaclies a
statisticai coufse for clie firsc time in

years (or evet), soon remembers (or ce-
alizes) that many areas of statistics can be tauglit
from a «puré» (analytic and/or algebraic)
standpoint, rather than an «applied» (probabi
listic, computational, or even applications-
orieiited) one. Tlie author was in such a situa-
tion recently, and he became curious about
how much statistics could (should?) be presen-
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ted by «puré» linear algebraic concepts.
The «extreme» linear algebraic approach pre

sentad hete is not claimed to be the only, or even

the best, way of looking at statistics. There are
many statisticai subjects 0iypothesis testing, sam-
pling theoty, the defmition of the common distri-
butions, etc.) that are not easily seen through lin
ear algebraic spectacles. However, a linear alge
braic standpoint in statistics has its advantages
(sometimes in common with other standpoints,
such as a «puré» mathematically analytic one):

1) VisuflUzatíon. As we shall sea, many con
cepts of statistics are modelled by linear algebra,
which in turn is essentially «seen» as analytic ge
ometry. Tlievectors of linear algebra are points or
vectors in /^space. Linear algebra does not have
human visual and conceptual limitations con-
ceming dimensions, and sometimes an n-
dimensional «dual space» is easiet to work in than
is tlie plañe or ordinary 3-space. In any case, a re-
latdonship between two or three vectors at a time,
in H-space, only involves two or three dimensions,
whichcan be easilyvisualizad on a plañe or in or
dinary space. Linear tcansfocmations, representad
numerically by matrices, are transformations of
space (like expansions, contractions, projections,
etc.) tliat preserve vector addition triangles and
scalar multiplication. Inner products and tlie
Caudiy-Scliwarz inequality are related to the an^e
and the projections between two vectors, and
norms are essentially lengtlis of vectors.

2) Uoderstandiog. Many, probably(l) most, of
the determinisík concepts of statistics can be mod
elled by linear algebra. This helps to separata tlie
deterministic concepts from the probabilistic
ones, enabling a student or user of statistics bd
concéntrate on one aspect at a time-
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3) Computatíon. A linear algebraic approach is
an object-oriented approach, separating tlie global
parallel aspects of numérica] processing from the
sequential details of loops and component-by-
component operations. Many efficient algorithms
and robust programs (EISPACK, IMSL, LIN-
PACK) have been developed for «industrial» use

in the solution of systems of linear equations and

tire search for eigenvalues and eigenvectors,
among other tliings (see, e.g.. Johnson). Tire im-
plementation of a matrix product AB, where A
and B are 100 by 100 matrices, may involve more
than one «Mflop» {million floating point opera

tions). Now tirat's power! It is interesting to note
tliat manuals devoted to computational aspects of
statistics {c.g. Jambu and also Thisted) as well

as statistical packages {e.g., SAS, SPSS, STAT-
PACK) use linear algebra exfensively.

4) Teaching. A similar object-oriented ap
proach could be used in tlie teaching of statistics.
Students or users who have tlie linear algebraic
prerequisites (or possibly corequisites) could
master large areas of statistics ver)' quickly. It is
hoped tliat tliis paper will help identify tire linear
algebra necessary for a «fast tracb> acquisition of
statistics (especially regression, correlation, analy
sis of variance, and more advanced topics like
principal component imd factorial analysis; see
Christensen and also Bouroche).

5) Notation. Linear algebraic notation is veiy
compact, as vve saw in (3) above. The student and
user can concéntrate on tíie notions rather than

on the details of dimensión and vector compo-
nents (It's easier for word processing also).

Tlie intermingling of statistical and linear alge
braic notions and notations is advantageous for
linear algebra as vvell, by showing which notions
of linear algebra are useful, because statistics is a
\'eiy important application.

Of course, tlie disadvantage of a linear algebraic
approach to statistics, is tliat it is necessar)' for a
statistics student or user to know some linear al

gebra. Is tliat a disadvantage? Some might con-
sider it necessary to have a certain «matliematical
maturity» to learn or use diis approach. In general,
a vectorial point of view would help many people,
not only statisticians, in approaching problems
from a functional or even object-oriented stand-
point. The functional approach seems difficult in
botli matliematics and computing science, but
tlaere also seems to be little formal research on

tliis difficulty.

. Mario 1 d97

Tliis paper begins matliematically in Section 1
below, by casting the basic statistical ideas of
sample and mean in a linear algebraic light, elimi-
nating the need to mention tlie dimensión and in

dividual sample observations. Then, in Section 2,
tlie light is shone upon variance and its generali-
zation to covariance and correlation, presenting
(among otlier things) the ortliogonal decomposi-
tion of tlie sample vector into its mean and stan
dard deviation. In Section 3, regression comes
under the liglit, before tlie conclusión in Section 4

analyzes several statistical textbooks and manuals
for «linean) content.

Statistical terms (which are in boid face) are de-
fined and studied with respect to linear algebra,
whose own terms (in italicí) and tlieorems are
given informally. Several references are given, be-
cause most of the results are not origintil, in the
scnse tliat they are just applications of well-
known linear ¡ilgebraic ideas (or perhaps just part
ot the «folklore» of statistics). However, the
«extreme» linear algebraic viewpoint appears to be
unusual in the literature.

It is hoped that this paper will be of some inter-
est to users as well as teachers of statistics, irre-

spective of applications. Some knowledge of de-
scriptive statistics, at least at tlie «user» level (see
eg. the first four chapters of Spiegel, 1961), and of
linear algebra, at least at the tinalytic geometr)'
level (see, eg, the first five chapters of Lipschutz),
is nccessaty on the part of tlie reader (Tlie previ-
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ous two refcrcnces are from the well-known and

well-used «Schaum's Outline Series of Theory
and Problems». A concise summary of «linear al
gebra for statísticians» can be found in Qiris-
tensen, App. A, B.)

I. Sample and Mean

1.1 An ordered sample of n numerical observa-
tions Xj,X2,..jic„ can be modelled by a vector x. in

realn-space R", where R, as is usual in madiemat-
ics, denotes the set of real numbers {scaiars, num-

bers like 2or 4^ or -nor y4 that can be repre-
sented decimally to any precisión desired). It is
not necessary to visualize n dimensions, because
we only study two or three vectors at a time; two
(linearly independent) vectors, even in «-space,
determine a two-dimensional plañe, and threesuch
vectors determine ordinary three-dimensional space.

The statístical distinction between sample and
population will not be treated here; tliere seems to
be no distinction from a linear algébrale stand-
point It is possible to «vectorialize» any fre-
quency distribution, discrete (fiinction from R to
the natural numbers N) or continuous (/? to R),
enabling us to study concepts like tlie median and
the interquartile range, but tliis will not be done
here; we shall concéntrate on samples of tlie same
size n in tliis paper.

1.2 The usual operations of vector spaces are
of interest to statistics. It may be necessary to add
or subtract two vectors (because there maybe two
measurements made in each of n triáis, giving
two samples in tlie same space),or even makinga
scalar mnitipiication of a sample/vector (because of
scaling, precisely). These vector operations are
immediately visualizable. We can also multiply
vectors component by component to form a vector
product (not often referred to direcdy in linear al
gebra, and different from die cross product seen
in 3-space) defined by xy = (jc,y,,j:2l'2'-

particular, = xx, x? = xxx and so on. Any
tt

vector can be summed: Lx = = x, -i-X2-i-...x„.
i=l

Finally, anodier useful multiplication of vectors is

die scalar-valued dotproduct, x-y = Zxy.

1.3 The constant unit vector u = (/,/,.../)

e R" will be used extensivclyhcrcafter; it is more
important in statistics than die canonical unit
vectors of euclidean //-space. Notice, for example,
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diat xu = X(u is a unit for the vector product),

= u, Zu = u-u = n, x-u = Zx, and xy-u = x*y.

We can even define x" = u. It will no ionger be
necessary to refer to vector components or to use
die full «sigma» notation in this paper.

1.4The mean of a sample x is just x = x-u///

(= Zx/h ; this last equality is not needed, but it is
closer to the original defínition). The linearity of

the dot product ((x + cy)*u = x-u -I- c(y-u)) guar-

antees that of die mean (jc + cv =x+ «>»), and the

mean of u is 1. We also need the mean vector"Híx —

Xu, which is the (orthogonal) projecüon of x on u
(Think of Xas a straight pole stuck in the ground
and leaning toward the sun which is on the hori-
zon, widiout the effects of refraction; Mx is the

shadow of Xon a vertical screen behind the pole.
Only two dimensions are involved).

1.5 In fact, M is a Unear transformation from R"
onto the one-dimensional subspace U of scalar
múltiples of u, and the kemel of M (subspace of
vectors y such diat My = 0) is the zero sum hy-
perplane Z, Le. the subspace of dimensión n-1 (of

vectors y that are) ortho^naí to u (y-u = 0) (Think
of u as a vertical pole, and think of Z as the
ground (the fíatsurface perpendicularto tlie pole);
a point in Z (otlier than the origin) corresponds
to a sample with positive and negative numbers,
whose sum (and mean) is 0). Other examples of
linear transformations include the identity transfor

mation I and tlie sum Z = //M: Ix = x and Zx =

hMx = (x*u)u.

Linear transformations from R" into R" are

uniquely represented as n by n matrices. For exam
ple, I is represented by die ¿deniity maírix I (1 on
tlie main diagonal, Oelsewhere), M by uuV'/ and

Z by uu', where u is seen as a column vector {nhy 1
matrix) with transpose u', a row vector (/ by n ma-
tri.x). Note tiiat MM = M = M' (matrix transposi}-,
these equalities imply diat M = M'M and char-
acterize a projection (Qiristensen: 335). Thus, I is

also a projection, but Z is not.

1.6 Normalization (in tiie sense of independ-
ence from ti) is achieved by tiie mean; we no
Ionger need to mention // in diis paper, although
we do so from time to time to recall the

«classical» approach, or if there are several sam
ples, necessitating matrix multiplication; see, e.g..
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paragraph 2.8 beíow. We note that 3^, just like

x-y, defines an imisrproduct, i.e. a ^mmetnc =

y*) posílive (xe > O except when x = 0) bUitiear

{(x+ cy)z = xz + cyz and x{y + «) = xy + cxz)

form. The iiorm defmed by this inner product is

||>r|| = (=• |x|/Vñ", where |x|^ =x-x de
fines the ordmary kngth of x).

Geometrically, the dot product of two vectors x

and y is related to the angk 6 between them, and

so is .jg», in exactly the same way: cosO = x-y/(|x|

|y|) = •*?'/{ Il^ll IIj*!)- Tlie Cauchj-Schmni ine-
quality is still valid, as it is for any inner product:

|xy] < ||x|| IIjI {i.e. \cos9\ < 1), and there is
equality precisely when x, y are linearly dependent,
i.e. when x is a scalar múltiple of y and/or vice
versa (one of x, y might be 0).

1.7 The word «norm» and its linguistic deriva-
tives are overu'orked in both linear algebra and
statistics. In linear algebra, the «norm» ís a lengtli
defmed (as in tlie above paragraph) by an inner
product in a real vector space, but a vector might
be «normal» in the sense of «perpendicular, or-
tliogonal» to a (hyper) surface, at a given point, in
a real vector space. In statistics, the <mormal» dis-
tribution is the gaussian one, represented by the
«bell curve», and «normalize» might mean
«remove the dependence on m> (as above) or
«centralize» (as below). In this paper we do not
use tlie word «normal», although we do use
«noLTn» and «normalize».

II. (Co)variance and Correlation

2.1 The vartance of a sample x is defmed as =

(x-x)^ and the standard deviatíon 5^ is the
square root of die variance. Note that since we do

not distinguish between sample and population,
tliere is no question here of (un)biased estimators;
we don't need Greek letters here. We can define

the standard deviatíon vector Sx = x - Mx (see Fig.
1). (If x is a straight pole stuck in the ground
(paragraph 1.4), then Sx is the shadow of x on tlie
gi:ound, witli the sun directly overhead.)

In fact, S = I - M is a vector projection orthogo-
nal to u (a linear transformation onto Z whose

kemei is U, such tliat SS = S = S' = S'S), repre
sented by tlie matrix I-uu'/«. This projection pre
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serves neither distances ñor angles (orthogona-
lity). Note, however, tliat two samples having tlie
same projection differ by a constant vector: if Sx

= Sy then y-x = (j'-a:)u. Also, t = x gives the

constant vector «closest» to x in tiie sense that

||.>r-¿/<|| is minimizad (at sp) (Morlat).

2.2 Note that s^= ¡T^rf. Higher-order cen-
tralized moments are often defined by m,. =

{Sx)' (see e.g. Spiegel, 1980: 85; note diat =

si)-, thus m, /5^ measures skemess (x has a sym-
zví/hrdistribudon if = 0) and ">4/measures

kurtosis (agaussian distribution has a kurtosis of 3).

2.3 It is easy to prove the computational for

mula si = x^ -x^. The consequences are not
only computational. Note that +

m^. Visually, this formula shows that the stan
dard deviation of x is the scalarprojection of x on
Z, ordiogonal to u. The illustiation of the right
angle triangle in Fig. 1 is two-dimensional, irre-

specdve of n. This central decomposition of x
inte its mean and standard deviation is important
for what follows, but is seldom direcdy men-
tioned in the literature. When die mean is calcu-

lated, we can centralice a sample and continué our
analysis (algebra?) on die zero sum hyperplane Z,
dius eliminating a dimensión (diat of u). Even
though Z has dimensión n-1, we need only two
dimensions for two nonparalkl {i.e. linearly inde-
pendent) vectors.

2.4Thecovariance between two samples x and

y is defined by [x, y] = (x - x){y- y) = SxSy

and can be evaluated by We cannot use
the notation because that already means the

s I Mv
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standard deviation of xy, but ít is obvious diat the

variance is a special case of the covariance: 5^ =
= [x, x], In fact, the covariance is a bilinear

symmetric non-negatáve form in 11° (and even a

scalar product in Z wliose norm is tlie standard
deviation s I). We can say that x, y are cenlralt^ or-
tho^nal if [x, y] = 0; this means that thece is a
right an^e in Z'between Sx and Sy (but not nec-
essarily between x and y; ortliogonality is not pre-

served by S, in general). Remember also that s and

even s' are not linear; - 2[x,y] +

(cosine law in Z) and + Sy (uiangular

inequality).

2.5 The Cauchy-Schwarz inequality (valid ín

general fot non-negative fonns) gives us | [x, y] |
< Sy except when x, y, u are limarly dspendent

{i.e. there exist scalars a, b, c such that ax+by-i-cu
—0; this is true because it is equivalent to the lin

ear dependence of Sx, Sy, i.e. tlie existence of a, b
such that aSx+bSy = S{ax+ty) = 0). This linear
algébrale dependence puts x, y, u in the same
(two-dimensional) plañe and is equivalent to a
perfect linear statistlcal dependence between
x and y.

2.6 From a linear algebraic standpoint, tlie co
variance is an example of «deflation»: if <, > is

an inner product representad by tlie positive defi-
nite matrix A, then <x, y>-<x, v><y, v> is a bi
linear symmetric non-negative form represented
by the positive semidefinite (non-negative defi-
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nite) matrix A - w' and an inner product on the
subspace orthogonal to v, for any unit vector v
(<v, v> = 1). This «deñation» is not often seen in

elementaty manuals of linear al^bra, but it is as-
sociated with Hoiaeholder transformations in numéri
ca] analysis (see, Johnson: 118), and even Gram-
SAmiát OTlho^naíe^on (see, e.g, Auer: 387), which
is carried out, in fact, by projections).

2.7 The correlatíon (coefficient) between x and

y is defined byr= (x, y]/(í_(í_,,), which is ^omet-

rically the cosine of the angje (p between Sx and

Sy, the projections on (If x and y are straight
poles stuck into the ground at the same place,

with an angle 9 between thein, then (p is the
shadow of ^on die ground, with the sun directly

overhead. See Fig. 2 below). We see tiiat | r] £ 1

by Cauchy-Schwarz, that 1r| = 1 when x, y, u are
linearly dependent, and that r = Owhen x, y are
centrally orthogonal.

2.8 Mote generally, if x,,X2. --*k ^ samples

of the same size «, then they can be viewed as the
cohmns of an « by -é matrix X. The (row) vector of

means is X = u' X/« and the covariance matrix

is [X, X] = (SX)' SX/« = X' S' SX/« = X' SX/«
= X'(I • uuV«) X/« = X' X/« - X' uu' X/n' =
X'X - X' X, oí dimensión kby k (To eliminate
« from die discussion, it would be necessary to

redefine matrix multiplicaüon by dividing by n
when n ts the «intemal» dimensión of the multi-

piication).
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Note that IX, X] is a non-negalive dejinite matrix
representing a symmetric non-negative bilinear

fotm: b'[X, X]b = (SXb)' (SXb)/» = \\SXl?t >
Ofor any ^-dimensional vector b. Also, b = X is

tile point in ^-space «closest» to the points in k-
space that are rvm of X, in tlie sense tiiat

||X-«¿'|| is minimized. The covariance matrix
gives an idea of the orthogonality (in Z) of the
column vectors of SX: if the main diagonal is
dominant (variances much larger than covariances),
then the vectors are more orthogpnal linearly and

more independent statistically.

III. Regression

3.1 The two-dimensional visualization of regres
sion is well known: find a curve of a certain type
(weusuallybegin with a straight line) that best fits
a scatter diagram of points in a plañe, in the sense
of minimizing the sum of the squares of distances
from the points to the curve. This visualization
can be extended to three dimensions and even be-

yond (best (liyper) plañe or best O^yper) surface).
In fact, the linear model of regression is the best-
known application of linear algebra in statistics.
We su^est a «dual» or «transposed» versión below.

3.2 The remarks in paragraphs 2.5 and 2.7
above can be collected in order to state the fol-

lowing equivalences: x, y, u are linearly depend-
ent, iff (if and only if) x, y, u are in the same two-
dimensional plañe, iff | [x, y] | = s^Sy, iff | r| =1,
iff Sx, Sy are linearly dependent, iff Sx, Sy are in
the same one-dimensional line on Z. In linear

regression, we find the coefficients for x, y, u
that come «closest» (in tlie least-squares sense) to
linear dependence. (In classical linear algebra, a
set of vectors is linearly dependent or it is not;
however, in numerical linear algebra, we are
aware of ill-conditioned situations that are «cióse» to

lineardependence, in the sense tliat a determinant
is «cióse» to O, or tliat some matrix norm or con-

dition Índex is «faD> from 1 (see, eg. Johnson; 45-
49). Linear regression gives us another way of
measuring the tendency toward linear dependence).

3.3 To «regress» y on x, we calcúlate scalars a,

bsuch that ^au +bx —j'l is minimized; this hap-
pens when b= [x, y]/[x, x] = rSy/s^ and a= y-
bx .In fact, bs^ is the scalar projection of y on Sx,
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and, not surprisingly for an analytic geometer, the
minimal (normalized) distance, often called the
standarderrorof estímate Sy^ (Spiegel: 262), is

the orthogonal distance from tlie point y to the
plañe determined by u and Sx, ¿.e. the ortliogonal
distance from the point Sy to the line determined
by Sx, in Z. (See Fig. 2). This distance is the
square root of tlie error sum of squares SSE
(Neter: 602), which is equal to [y, y]-¿[x, y] = [y-
bx, y]. Tlie regression of x on y is tlie same, muta-

tis mutandir, if ¿' = rs^/Sy is the corresponding

coefficient of y, then E - bb' (Kenney: 259;
Spiegel, 1980: 261).

3.4. One can also perform linear orthogonal

regression: find a, c such diat the (ortliogonal)

distance ||í7/ eos a +xsin cc— j eos q:|| from «x,
y» to the «straight line» y eos a —x sin a + ru is

minimized. The solution is given by tan 2a = 2\x,

y]/([x, x]-|y, y]) and c = y cas a - x sin a; all tliree

regression lines pass through (x,y), and \b\ <

\tan a\ < Sy/s^ < \\/b'\. Tliis solution is not

easy to find in tlie statistical literature, because it

is claimed to be of little use for experimental rea-
sons (Kenney: 279), but x and y are in the same
space, and ortliogonal regression is «legitímate»
from the linearalgebraic point of view.

3.5 In general linear regression, tlie «best»
least-squares linear fit cou+ ctx\ + ... ftXk for y is
the O^yper) plañe whose coefficients are given by
X' Xc = X' y, where X is an « by /é+/ matrix
whose first column is Xo = u. We shall prove tliis,
in order to illustrate tliat derivativos can be easily

handled vectorially. To minimize Ij'-Xí'I we
minimizo = y' y - 2y'Xc + c' X' Xc

by (partially) differentiating it by c, remembering
thatX and y are constant; tliis gives O= -2y 'X +

2X' Xc , whence c = (X'Xy^X'y. More over, if
P = X (XX)-'X', dien PP = P = P' and PX =
X, making P a projection onto die subspace gen-
erated by (the columns of) X; henee die standard
error of estímate, i.e. die minimal distance

||j~Xí|| = is the (orthogonal) distance
from y to this subspace, i.e. the (ordiogonal) dis
tance (in Z) from Syto die subspace generated by
(die columns of) SX.
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In the above analysis, it is necessaty that

exists; this existence is equivalent to the

linear independence of the colunins of X
(including u), or the linear independence of the
columns of SX (excluding Su = 0) (sea Chris-
tensen; 84). Another way of calculating the coeffi-
cient vector c is to orthogonalize tlie columns of
SX in 2) use the covariances witli y, then «de-

ortliogonalize». The least-squares polynomials
are special cases ofgeneral linear regression, using

x,-Ví,xi-x,... x¡, =x''. It is well known tliat in
this case XOC is invertible if x is not constant.

3.6 One can also do general ortbogonal re
gression by minimizing tlie sum of tiie squates
of tlie (orthogonal) distances betvveen the of
X and a (hyper) plañeau —Yb where b-b = 1.To

minimize = a' - 2aXb + b'X'Xb

using iMgrange multipliers, we add the term A(l-
b-b) before differentiatin^ to O = • 2Xb

(and therefore a - Xb, not surprisingly: tlie hy-
perplane passes through X) and O = -2aX' -h
2lCXb - 2Xb - -2X'Xb + 2lcXb - 2Xb =

2|XPC1¿ - 2kb = 2{^, X] - Xl)b, making Áan ei-
genvaJue of tlie covariance matrix and b its cocre-
sponding unit-Iengtli eigenvector. In fact, X =

Xh.h = b'Xb = b'(X, XJb - pCb, Xb] = . If

the covariance matrix pc, X] is diagonally domi-
nant, the eigenvalues will be reasonably cióse to
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tiie diagonal valúes, i.e. the vaciances.
3.7 More speciaiized topics such as analysis

of variance and covariance, multicollinearity, fac
tor analysis, principal component analysis, can be
treated«lineadp. See,e.¿., Boutoche and Chrisrcnsen.

(Temporaiy) Coaclusion

L There is no agreement conceming the linear al
gébrale level to be used to present statistics in
teaching and in actual professional use. This is il-

lustrated by die great difference in the linearalge-
braic levels used in statistical textbooks and arti-

cles. Part of the explanation comes from the var-
ied mathematical background of students and us-
ers of statistics. There have been changes in
mathematical education. It took a century fbr lin
ear algebra to be generally understood as the
theocetical foundation of «elementary» analytic

geometry. Dunng tlie lase half-century, geometry
in general (and analytic geometry in particular) has

undergone ne^ect in many curricula, althou^ a
recent rise in importance of computer graphics

and robotics may tum die tide.
2. The variety of approaches may be part of a

widet educational tradition. It appears ^nerally
tliat a European {e.¿. Freiich; see Morlat) presen-
tation of statistics has more linear al^bra than an
American (L),S.A.; see, e.g., Neter or Spiegel 1980)
approach. as part of a wider trend in Europe to
present «applied» science witii a solid «puré»
foundation. European students in engineering and
even social sciences have had more exposure to

puré mathematics than tlieir American counter-
parts. (The author received most of his mathe
matical education in the American tradition, in

En^ish Ganada, but has taught for almost twenty
years, en franfois, in Québec, where (as in many
parts of Latín América) both traditions are in-
fluential).

3. Among tlte references below, tliat which has
the most «extreme» linear algebraic approach is by
Christensen, who extensively uses orthogonaiity,

projections and even generalizad matrices in the
analysis of linear models of estimation, hypotliesis
testing, regi'ession, variance, covariance, and so
on. Even Qiristensen draws back flcom a

«coordínate free approach» because «too many
people nevet make tlie jump from coordínate free
dieory back to practica] applications» (p. vii), His
bock therefore has signa notation and references
to « and vector components -but no diagrams.
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4. The «French Schook> has an approach al-
most as algebraic and more geometric than
Christensen. The encyclopedia article by Morlat
refers to «-space, -é-space and some ortliogonal
distances. Tliis is extended by Bouroche (in tlie
popular series «Que sais-je?» to direct (illustrated)
geométrica! (pp. 19, 26 etpasúm) and linear alge
braic (pp. 23, 25 et passini) references. But tliese

authors still use sigma notation and a coordinate
approach.

5. Other books do not use much analytic ge
ometry beyond tliat necessary to visually present
regression. This includes applications-oriented
books from France {f.g. Mialaret) and most statis-

tical books from North América [e.g. Brase,Neter,
Spiegel), including Québec (e.¿. Bertaud). More
advanced books develop matrices to present múl
tiple regression {e.g. Gunst), multivariate normal
distributions (f.^.Hogg, Cramér), and advanced
computation techniques (Thisted). Kenney gives a
geometrical interpretation of the correlation coef-
ficient 260). This «survey» is far from com
plete, but tliis author has found little evidence of any
approachmore «extreme» than that of Christensen.

6. It may be noted tliat the creators

(discoverers?) of modera statistical theory seem

to have been well aware of the geometrical as-
pects at least. Witness the title of a seminal article
in 1901 on regression: «On lines and planes of
closest fit to systems of points in space» (Pearson,
cited in Bouroche: 3). It should be added tliat
least-squares analysis (tlie technique used in re
gression) goes back to work by Legendre and es-
pecially Gauss at the beginning of tire 19th cen-
tury, before the development of linear algebra by
Cayley, Sylvester and others (see, e.g. Bell: 259,
379 etpasúm).

7. The author would appreciate hearing about
teaching or professional experiences, or other ref
erences, using a cartesian approach (from a li
near algebraic and/or analytic geometric stand-
point) to statistics. This paper is part of a larger
project to «algebrize» probability and statistics. In
the quadricentennial year (1996) of the birtli of
Rene Descartes (1596-1648), the author makes diis
humble addition to the cartesian contribution to

matliematics (analytic geometry) and philosophy
{^iCogito (páathemati^ó?) ergo sum») (Bell: 38). ♦
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