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Abstract. A linear algebraic approach can be heipful in
the computation, interpretation, teaching and
understanding of statistics at all levels. Although the
reference space has a dimension equal to the sample size, it
is not necessary to consider more than 2 or 3 dimensions at
a time, for most applications.

A sample becomes a vector which has an orthogonal
decomposition into mean and standard deviation
projections. The correlation between two samples is
essentially measured by the angle between the vectors. Even
linear regression has an interpretation «duab to the usual
scatter diagram: the regression coefficients are scalar
projections between the sample vectors. Orthogonal
regression, somewhat neglected in the literature, is easily
treated here.

This wcartesians approach can be extended to other
branches of statistics, separating, in true object-oriented
Jashion, the basic deterministic notions from the
probabilistic and computational aspects. However, a brief
excamination of some references indicates only sporadic nse
of the cartesian approach in the learning and use of
statistics.

mathematics professor who teaches a
statistical course for the first time in
years (or ever), soon remembers (or re-
alizes) that many areas of statistics can be taught
from a «pure» (analytic and/or algebraic)
standpoint, rather than an «applied» (probabi-

God ever geometrizes.
Plato

ted by «pure» linear algebraic concepts.

The «extreme» linear algebraic approach pre-
sented here is not claimed to be the only, or even
the best, way of looking at statistics. There are
many statistical subjects (hypothesis testing, sam-
pling theory, the definition of the common distri-
butions, etc.) that are not easily seen through lin-
ear algebraic spectacles. However, a linear alge-
braic standpoint in statistics has its advantages
(sometimes in common with other standpoints,
such as a «pure» mathematically analytic one):

1) Visualization. As we shall see, many con-
cepts of statistics are modelled by linear algebra,
which in turn is essentially «seen» as analytic ge-
ometry. The vectors of linear algebra are points or
vectors in #-space. Linear algebra does not have
human visual and conceptual limitations con-
ceming dimensions, and sometimes an /-
dimensional «dual space» is easier to work in than
is the planc or ordinary 3-space. In any case, a re-
lationship between two or three vectors at a time,
in #-space, only involves two or three dimensions,
which can be easily visualized on a plane or in or-
dinary space. Linear transformations, represented
numerically by matrices, are transformations of
space (like expansions, contractions, projections,
etc) that preserve vector addition triangles and
scalar multiplication. Inner products and the
Cauchy-Schwarz inequality are related to the angle

listic, computational, or even applications- and the projections between two vectors, and

norms are essentially lengths of vectors.

oriented) one. The author was in such a situa-
tion recently, and he became curious about

2) Understanding. Many, probably(l) most, of

@e the deterministic concepts of statistics can be mod-

how much statistics could (should?) be presen-

elled by linear algebra. This helps to separate the

o deterministic concepts from the probabilistic
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ones, enabling a student or user of statistics to
concentrate on one aspect at a time.
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3) Computation. A linear algebraic approach is
an object-oriented approach, separating the global
parallel aspects of numerical processing from the
sequential details of loops and component-by-
component operations. Many efficient algorithms
and robust programs (EISPACK, IMSL, LIN-
PACK) have been developed for «industrial» use
in the solution of systems of linear equations and
the search for eigenvalues and eigenvectors,
among other things (see, eg.. Johnson). The im-
plementation of a matrix product AB, where A
and B are 100 by 100 matrices, may involve more
than one «Mflop» (milion floating point opera-
tions). Now that’s power! It 1s interesting to note
that manuals devoted to computational aspects of
statistics (e.g. Jambu and also Thisted) as well
as statistical packages (eg., SAS, SPSS, STAT-
PACK) use linear algebra extensively.

4) Teaching. A similar object-oriented ap-
proach could be used in the teaching of statistics.
Students or users who have the linear algebraic
prerequisites (or possibly corequisites) could
master large areas of statistics very quickly. It is
hoped that this paper will help identify the linear
algebra necessary for a «fast track» acquisition of
statistics (especially regression, correlation, analy-
sis of variance, and more advanced rtopics like
principal component and factorial analysis; see
Christensen and also Bouroche).

5) Notation. Lincar algebraic notation is very
compact, as we saw n (3) above. The student and
user can concentrate on the notions rather than
on the details of dimension and vector compo-
nents (It’s easier for word processing also).

The intermingling of sratistical and linear alge-
braic notions and notations is advantageous for
linear algebra as well, by showing which notions
of linear algebra are useful, because statistics is a
very important application.

Of course, the disadvantage of a linear algebraic
approach to statistics, 1s that it is necessary for a
statistics student or user to know some linear al-
gebra. Is that a disadvantage? Some might con-
sider it necessary to have a certain «mathematical
maturity» to learn or use this approach. In general,
a vectonal point of view would help many people,
not only statisticians, in approaching problems
from a functional or even object-oriented stand-
point. The functional approach seems difficult in
both mathematics and computing science, but
there also scems to be litde formal research on
this difficulty.
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This paper begins mathematically in Section 1
below, by casting the basic statistical ideas of
sample and mean in a linear algebraic light, elimi-
nating the need to mention the dimension and in-
dividual sample observations. Then, in Section 2,
the light is shone upon variance and its generali-
zation to covariance and correlation, presenting
(among other things) the orthogonal decomposi-
tion of the sample vector into its mean and stan-
dard deviation. In Section 3, regression comes
under the light, before the conclusion in Section 4
analyzes several statistical textbooks and manuals
for dlinear content.

Statistical terms (which are in bold face) are de-
fined and studied with respect to linear algebra,
whose own terms (in /akics) and theorems are
given informally. Several references are given, be-
cause most of the results are not original, in the
sense that they are just applications of well-
known linear algebraic ideas (or perhaps just part
of the «folklore» of statistics). However, the
«extremen lincar algebraic viewpoint appears to be
unusual in the literature.

It 1s hoped that this paper will be of some inter-
est to users as well as teachers of statistics, irre-
spective of applications. Some knowledge of de-
scriptive statistics, at least at the «usem level (see
eg. the first four chapters of Spiegel, 1961), and of
linear algebra, at least at the analytic geometry
level (see, e.g., the first five chapters of Lipschutz),
is necessary on the part of the reader (The previ-
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ous two references are from the well-known and
well-used «Schaum’s Outline Series of Theory
and Problems». A concise summary of dlinear al-
gebra for statisticians» can be found in Chris-
tensen, App. A, B.)

I. Sample and Mean

1.1 An ordered sample of # numerical observa-
tions x,,x,,...x, can be modelled by a sewor x in
real n-space R, where R, as is usual in mathemat-
ics, denotes the set of real numbers (sealars, num-
bers like 2 or V42 or -7 or % that can be repre-
sented decimally to any precision desired). It is
not necessary to visualize # dimensions, because
we only study two or three vectors at a time; two
(linearly independent) vectors, even in #-space,
determine a two-dimensional plane, and three such
vectors determnine ordinary three-dimensional space.

The statistical distinction between sample and
population will not be treated here; there seems to
be no distinction from a linear algebraic stand-
point. It is possible to «vectorialize» any fre-
quency distribution, discrete (function from R to
the natural numbers N) or continuous (R to R),
enabling us to study concepts like the median and
the interquartile range, but this will not be done
here; we shall concentrate on samples of the same
size » in this paper.

1.2 The usual operations of vector spaces are
of interest to statistics. It may be necessary to add
or subtract two vectors (because there may be two
measurements made in each of # trials, giving
two samples in the same space), or even making a
scalar multiplication of a sample/vector (because of
scaling, precisely). These vector operations are
immediatcly visualizable. We can also multiply
vectors component by component to form a sector
prodnct (not often referred to directly in linear al-
gebra, and different from the cross product seen
in 3-space) defined by xy = (x,9,.%,0;....X,,)- In

particular, x> = xx, x* = xxx and so on. Any

”
vector can be summed: Zx = Zx,- =X X, 4.,
i=1

Finally, another useful multiplication of vectors is
the scalar-valued dof product. x-y = Zxy.

13 The constant unit vector u = (7,7....7)
€ R" will be used extensively hereafter; it is more
important in statistics than the canonical unit
vectors of euclidean #-space. Notice, for example,
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that xu = x (u is 2 unit for the vector product), u?
= u, Zu = vu =z, xu = Ix, and xy-u = xy.
We can even define x° = u. It will no longer be
necessary to refer to vector components or to use
the full «sigmar notation in this paper.

1.4 The mean of 2 sample x is just X = x-u/»
(= Zx/n ; this last equality is not needed, but it is
closer to the original definition). The linearity of
the dot product ((x + cy)-u = x-u + c(y-u)) guar-
antees that of the mean (;?y =;+c;), and the
mean of u is 1. We also need the mean vector Mx =
x u, which is the (orthogonal) pryjection of x on u
(Think of x as a straight pole stuck in the ground
and leaning toward the sun which is on the hori-
zon, without the effects of refraction; Mx is the
shadow of x on a vertical screen behind the pole.
Only two dimensions are involved).

15 In fact, M is a knear transformation from R"
onto the one-dimensional subspace U of scalar
multiples of u, and the &erne/ of M (subspace of
vectors y such that My = 0) is the zero sum hy-
perplane Z, /.. the subspace of dimension #-7 (of
vectors y that are) orthogonal to u (y-u = 0) (Think
of u as a vertical pole, and think of Z as the
ground (the flat surface perpendicular to the pole);
a point in Z (other than the origin) corresponds
to a sample with positive and negative numbers,
whose sum (and mean) is 0). Other examples of
linear transformations include the identity transfor-
mation I and the sum £ = sM: Ix = x and Zx =
#Mx = (x-u)u.

Linear transformations from R" into R" are
uniquely represented as # by # matrices. For exam-
ple, I is represented by the identity matrix 1 (1 on
the main diagonal, 0 elsewhere), M by wu’/» and
Z by uw’, where u is seen as a column vector ( n by 1
matrix) with transpose w’, a row vector (1 by » ma-
trix). Note that MM = M = M’ (matrix transpose);
these equalities imply that M = M’M and char-
acterize a projection (Christensen: 335). Thus, I is
also a projection, but Z is not.

L6 Normalization (in the sense of independ-
ence from #) is achieved by the mean; we no
longer need to mention # in this paper, although
we do so from time to time to recall the
«classical» approach, or if there are several sam-
ples, necessitating matrix multiplication; see, eg.,
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paragraph 2.8 below. We note that 3y, just like
x-y, defines an iuwer product, Ze. a symmetric (33 =
7x) positive (E > 0 except when x = 0) bilinear
e M R e W W

Jorm. The worm defined by this inner product 1s

Il = \/E (= |x|/J;, where |x|? = x-x de-
fines the ordinary fxerh of x).

Geometrically, the dot product of two vectors x
and y is related to the angl @ between them, and

50 is xy, in exactly the same way: cs@ = xy/(| |

ly]) = E/( “X” H}’”) The Cauchy-Schwary ine-

gualty 1s still valid, as it 1s for any inner product:
lxy] < ||x|| ”JH (de. |eosB| < 1), and there is

equality precisely when x, y are fwearly dependent,
Ze. when x is a scalar multiple of y and/or zice
versa (one of x, y might be 0).

1.7 The word «normw» and its linguistic deriva-
tives are overworked in both linear algebra and
statistics. In linear algebra, the «norm» is a length
defined (as in the above paragraph) by an inner
product in a real vector space, but a vector might
be «normal» in the sense of «perpendicular, or-
thogonal» to a (hyper) surface, at a given point, in
a real vector space. In statistics, the «normal» dis-
tribution 1s the gaussian one, represented by the
«bell curve», and «normalize» might mean
«emove the dependence on m» (as above) or
«centralize» (as below). In this paper we do not
use the word «normal», although we do use
«norrmy» and «normalizer.

I1. (Co)variance and Correlation

2.1 The variance of a sample x is defined as si =

(x-x)° and the standard deviation s, is the
square root of the variance. Note that since we do
not distinguish between sample and population,
there is no question here of (un)biased estimators;
we don’t need Greek letters here. We can define
the standard deviation vector Sx = x - Mx (see Fig.
1). (If x 1s a straight pole stuck in the ground
(paragraph 1.4), then Sx is the shadow of x on the
ground, with the sun directly overhead.)

In fact, S = I - M is a vector projection orthggo-
nal to uw (a linear transformation onto Z whose
kernel 1s &, such that 8§ = § = & = §5), repre-

sented by the matrix I-wu’/#. This projection pre-
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serves neither distances nor angles (orthogona-
lity). Note, however, that two samples having the
same projection differ by a constant vector: if $x
= Sy then y-x = (y—x)u. Also, £ = x gives the
constant vector «closest» to x in the sense that

”x—fzr” 1s minimized (at s.) (Morlat).

2.2 Note that s = 5] . Higher-order cen-
tralized moments are often defined by m,

1l

(Sx)* (see eg. Spiegel, 1980: 85; note that m,
sh); thus  m, /s measures skewness (x has a sym-

§ i . . 4
metric distrbution if my = 0) and m, /s, measures

#urtosis (a gaussian distribution has a kurtosis of 3).

23 Tt is easy to prove the computational for-

2

2 =2
mula §. = X —Xx . The consequences are not

only computational. Note that 5]z + “MX” 2=

dard deviation of x 1s the scalar projection of x on
Z, orthogonal to u. The illustration of the right
angle triangle 1n Fig. 1 is two-dimensional, irre-
spective of #, This central decomposition of x

x| % Visually, this formula shows that the stan-

into its mean and standard deviation is important
for what follows, but is seldom directly men-
tioned in the literature. When the mean is calcu-
lated, we can centralize a sample and continue our
analysts (algebra?) on the zero sum hyperplane Z,
thus elimmating a dimension (that of u). Even
though Z has dimension #-7, we need only two
dimensions for two won-parallel (ie. lineady inde-
pendent) vectors.

2.4 The covariance between two samples x and

y is defined by [x, y] = (x—;)(_v—;) = SxSy

and can be evaluated by xy—-xy. We cannot use
the notation s,, because that already means the
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standard deviation of xy, but it is obvious that the

variance is a special case of the covariance: s° =
5. = [x, x]. In fact, the covariance is a bilinear
symmetric non-negative form in R” (and even a
scalar product in Z whose notm is the standard
deviation s1). We can say that x, y are centrally or-
thogonal if [x, y] = 0; this means that there is a
right angle in Z between Sx and Sy (but not nec-
essarily between x and y; orthogonality is not pre-
served by S, in general). Remember also that s and

even s are not linear: s> = s° - 2[x,y] + sﬁ

x—y x
(cosine law in Z) and s,,, <5, + s, (triangular

inequality).

2.5 The Cauchy-Schwarz inequality (valid in
general for non-negative forms) gives us |[x, y]|
< s,5, except when X, y, u are Lnearly dependent

(d.e. there exist scalars 4, b, ¢ such that ax+by+a
= 0; this 1s true because it is equivalent to the lin-
ear dependence of Sx, Sy, 7. the existence of 4, &
such that aSx+4Sy = S(ax+by) = 0). This linear
algebraic dependence puts x, y, u in the same
(two-dimensional) plane and is equivalent to a
perfect linear statistical dependence between
xandy.

2.6 From a linear algebraic standpoint, the co-
variance is an example of «deflation: if <, > is
an inner product represented by the positive defi-
nite matrix A, then <x, y>-<x, v><y, v> is a bi-
linear symmetric non-negative form represented
by the positive semidefinite (non-negative defi-

nite) matrix A - vv’ and an inner product on the
subspace orthogonal to v, for any unit vector v
(<v, v> = 1). This «deflation» is not often seen in
elementary manuals of linear algebra, but it is as-
sociated with Howuseholder transformations in numeri-
cal analysis (see, eg. Johnson: 118), and even Gram-
Schmidt orthogonalization (see, eg. Auer: 387), which
1s carried out, in fact, by projections).

2.7 The correlation (coefficient) between x and
y is defined by 7= [x, y]/(s, 5,), which is geomet-

rically the cosine of the angle ¢ between Sx and
Sy, the projections on Z (If x and y are straight
poles stuck into the ground at the same place,
with an angle & between them, then ¢ is the
shadow of @ on the ground, with the sun directly
overhead. See Fig. 2 below). We see that |r| <1
by Cauchy-Schwarz, that || = 1 when x, y, u are
linearly dependent, and that » = 0 when x, y are
centrally orthogonal.

2.8 More generally, if x,,x,,...x, are samples
of the same size #, then they can be viewed as the
columns of an n by & matrix X. The (tow) vector of
means is X = v’ X /n and the covariance matrix
sPGX] =Xy SX/n=X S SX/n=X"SX/x
=X0-uw’/) X/n =X X/n - X wd’ X/n? =
X'X - X’ X, of dimension £ by £ (To eliminate
n from the discussion, 1t would be necessary to
redefine matrix multiplication by dividing by #
when 7 is the «internal» dimension of the mult-
plication).

FIGURE 2. PROJEGTIONS ON 2 OF SAMPLE VECTORS X, ¥ AND REGRESSION BETWEEN THEM. THE VECTORS SX AND S

ARE N/ THE ZERO SUM HYPERPLANE Z. THE DISTANCE 0B/15 85,

AND DB' iS5 B'S,.

...............................................
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Note that [X, X] s a non-negative defrnite matrix
representing a symmetric non-negative bilinear
form: B[X, X]b = (SXb)’ (SXb)/» = |5X4]2 >
0 for any A-dimensional vector b. Also, b = X is
the point in £-space «closest» to the points in £&-
space that are mws of X, in the sense that

”X —z/b'” 1s mumimized. The covariance matrix

gives an idea of the orthogonality (in Z) of the
column vectors of SX: if the main diagonal is
dominant (variances much larger than covariances),
then the vectors are more orthogonal linearly and
more independent statistically.

IT1. Regression

3.1 The two-dimensional visualization of regres-
sion 1s well known: find a curve of a certain type
(we usually begin with a straight line) that best fits
a scatter diagram of points in a plane, in the sense
of minimizing the sum of the squares of distances
from the points to the curve. This visualization
can be extended to three dimensions and even be-
yond (best (hyper) plane or best (hyper) surface).
In fact, the linear model of regression is the best-
known application of linear algebra in statistics.
We suggest a «dual» or «transposed» version below.

3.2 The remarks in paragraphs 2.5 and 2.7
above can be collected in order to state the fol-
lowing equivalences: x, y, u are linearly depend-
ent, iff (if and only if) x, y, u are in the same two-
dimensional plane, iff | [x, y]| = s.s,,iff |r| = 1,
iff Sx, Sy are linearly dependent, iff Sx, Sy are in
the same one-dimensional line on Z. In linear
regression, we find the coefficients for x, y, u
that come «closest» (in the least-squares sense) to
linear dependence. (In classical linear algebra, a
set of vectors is linearly dependent or it is not;
however, in numerical linear algebra, we are
aware of z/-conditioned situations that are «close» to
linear dependence, in the sense that a determinant
1s «close» to 0, or that some matrix norm or con-
dition index is «fam from 1 (see, eg. Johnson: 45-
49). Linear regression gives us another way of
measuring the tendency toward linear dependence).

3.3 To «regress» y on x, we calculate scalars 4,
b such that ”au +bx — y” 1s minimized; this hap-
pens when b = [x, y)/[x, x] = rs, /s, and a = y-

b5 . In fact, bs, is the scalar projection of y on Sx,
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and, not surprisingly for an analytic geometer, the
minimal (normalized) distance, often called the
standard error of estimate s yx (Spiegel: 262), is
the orthogonal distance from the point y to the
plane determined by u and Sx, Z.e. the orthogonal
distance from the point Sy to the line determined
by Sx, in Z (See Fig. 2). This distance is the
square root of the error sum of squares SSE
(Neter: 602), which is equal to [y, y]-#[x, y] = [y-
bx, y). The regression of x on y is the same, muta-
tis mutandss; if & = rs_/s, is the corresponding
coefficient of y, then ~# = bb’ (Kenney: 259;
Spiegel, 1980: 20l).

3.4. One can also perform linear orthogonal
regression: find ¢, ¢ such that the (orthogonal)

distance ”m cosQ +xs§inQ@ — ycos a” from «x,

y» to the «straight line» y cos @ = x sin @ + cu is
minimized. The solution is given by fan 2a = 2[x,
Y1/((% xJ-ly, y]) and ¢ = y o5 @ - x sin a; all three
regression lines pass through (x,y), and |6 <
|tan a| < s,/s, < |1/8’]. This solution is not
easy to find in the statistical literature, because it
i1s claimed to be of little use for experimental rea-
sons (Kenney: 279), but x and y are in the same

space, and orthogonal regression is «legitimate»
from the linear algebraic point of view.

3.5 In general linear regression, the «best»
least-squares linear fit qu+ % + ... ax« for y is
the (hyper) plane whose coefficients are given by
X’ Xe = X’ y, where X is an » by £&+7 matrix
whose first column is x, = u. We shall prove this,
in order to illustrate that derivatives can be easily

handled vectorially. To minimize ” _y—Xc” we

=y y-2yXc+ X Xc
by (partially) differentiating it by ¢, remembering
that X and y are constant; this gives 0 = -2y ’X +
2X? Xc , whence ¢ = (X'X)_IX’y. More over, if
P =X (X'X)"' X’ then PP = P = P’ and PX =
X, making P a projection onto the subspace gen-
erated by (the columns of) X; hence the standard
error of estimate, e

minimize n” y—Xc

the minimal distance

||)’ _Xf” = ” J—Pyﬂ 1s the (orthogonal) distance
from y to this subspace, ‘e the (orthogonal) dis-

tance (in Z) from Sy to the subspace generated by
(the columns of) SX.

CIENCIA ERGO suM 91



In the above analysis, it is necessary that

(X'X) ™" exists; this existence is equivalent to the
linear independence of the columns of X
(including w), or the linear independence of the
columns of SX (excluding Su = 0) (see Chris-
tensen: 84). Another way of calculating the coeffi-
cient vector ¢ is to orthogonalize the columns of
SX in Z, use the covariances with y, then «de-
orthogonalize». The least-squares polynomials
are special cases of general linear regression, using
%S U X=X X, =x* It is well known that in

this case X°X is invertible if x is not constant.

3.6 One can also do general orthogonal re-
gression by minimizing the sum of the squares
of the (orthogonal) distances between the rows of

X and a (hyper) plane qu = Yb where b-b = 1. To
2= g*- 2aXb + B’X'Xb

minimize nau—Xé
using Lagrange multipliers, we add the term A(1-
b-b) before differentiating, to get 0 = 2a - 2Xb
(and therefore g = X b, not surprisingly: the hy-
perplane passes through X) and 0 = -2aX° +
2X'Xb - 2Ab = -2X’Xb + 2X'Xb - 2Ab =
2[X,X]b - 2Ab = 2([X, X] - AI) b, making 4 an ei-
genvalue of the covariance matrix and b its corre-
sponding unit-length eigenvector. In fact, 4 =
Ab.b = b’Ab = B’[X, X]b = [Xb, Xb] = s3,. If
the covariance matrix [X, X] is diagonally domu-
nant, the eigenvalues will be reasonably close to
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the diagonal values, z.e. the variances.

3.7 More specialized topics such as analysis
of variance and covariance, multicollinearity, fac-
tor analysis, principal component analysis, can be
treated dinearly». See, e.g., Bouroche and Christensen.

(Temporary) Conclusion

L. There is no agreement concerning the linear al-
gebraic level to be used to present statistics in
teaching and in actual professional use. This is il-
lustrated by the great difference in the linear alge-
braic levels used mn statistical textbooks and arti-
cles. Part of the explanation comes from the var-
ted mathematical background of students and us-
ers of statistics. There have been changes in
mathematical education. It took a century for lin-
ear algebra to be generally understood as the
theoretical foundation of «elementary» analytic
geometry. During the last half-century, geometry
in general (and analytic geometry in particular) has
undergone neglect in many curricula, although a
recent rise in importance of computer graphics
and robotics may turn the tide.

2. The variety of approaches may be part of a
wider educational tradition. It appears generally
that a European (eg. French; see Morlat) presen-
tation of statistics has more linear algebra than an
American (U.S.A; see, eg., Neter or Spiegel 1980)
approach, as part of a wider trend in Europe to
present «applied» science with a solid «pure»
foundation. European students in engineering and
even social sciences have had more exposure to
pure mathematics than their American counter-
parts. (The author received most of his mathe-
matical education in the American tradition, mn
English Canada, but has taught for almost twenty
years, en franpais, in Québec, where (as in many
parts of Latin America) both traditions are in-
fluential).

3. Among the references below, that which has
the most «extreme» linear algebraic approach is by
Christensen, who extensively uses orthogonality,
projections and even generalized matrices in the
analysis of linear models of estimation, hypothests
testing, regression, variance, covariance, and so
on. Even Christensen draws back from a
«coordinate free approach» because «too many
people never make the jump from coordinate free
theory back to practical applications» (p. vir). His
book therefore has sigma notation and references
to # and vector components —but no diagrams.
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4. The «French School» has an approach al-
most as algebraic and more geometric than
Christensen. The encyclopedia article by Morlat
refers to #-space, &-space and some orthogonal
distances. This is extended by Bouroche (in the
popular series «Que sais-je?» to direct (illustrated)
geometrical (pp. 19, 26 et passim) and linear alge-
braic (pp. 23, 25 et passim) references. But these
authors still use sigma notation and a coordinate
approach.

5. Other books do not use much analytic ge-
ometry beyond that necessary to visually present
regression. This includes applications-oriented
books from France (e.g. Mialaret) and most statts-
tical books from North America (e.g. Brase, Neter,
Spiegel), including Québec (eg. Bertaud). More
advanced books develop matrices to present mul-
tiple regression (e.g. Gunst), multivariate normal
distributions (egHogg, Cramér), and advanced
computation techniques (Thisted). Kenney gives a
geometrical interpretation of the correlation coef-
ficient (p. 260). This «survey» 1s far from com-

plete, but this author has found little evidence of any:

approach more «extreme» than that of Christensen.

6. It may be noted that the creators
(discoverers?) of modern statistical theory seem
to have been well aware of the geometrical as-
pects at least. Witness the title of a seminal article
in 1901 on regression: «On lines and planes of
closest fit to systems of points in space» (Pearson,
cited in Bouroche: 3). It should be added that
least-squares analysis (the technique used in re-
gression) goes back to work by Legendre and es-
pecially Gauss at the beginning of the 19th cen-
tury, before the development of linear algebra by
Cayley, Sylvester and others (see, eg. Bell: 259,
379 et passim).

7. The author would appreciate hearing about
teaching or professional experiences, or other ref-
erences, using a cartesian approach (from a li-
near algebraic and/or analytic geometric stand-
point) to statistics. This paper is part of a larger
project to «algebrize» probability and statistics. In
the quadricentennial year (1996) of the birth of
Rene Descartes (1596-1648), the author makes this
humble addition to the cartesian contribution to
mathematics (analytic geometry) and philosophy
(«Cogito (Mathematizo?) ergo sum») (Bell: 38). @
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