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SUPPORT VECTOR REGRESSION FOR TONGUE POSITION INFERENCE

Alexander Sepulveda1 and G. Castellanos-Dominguez

ABSTRACT

The articulatory inversion task consists on recovering the 

articulators’ position or  the vocal tract shape from the acoustic 

speech signal. The availability of large corpora of parallel 

acoustic and articulatory data has made possible the use of 

data-driven methods as an alternative for the solution of the 

speech inversion problem. This paper presents a method for the 

inference of tongue positions based on support vector regression 

techniques. The acoustic speech signal is parametrized by using 

 !"#! $%&'(')*!&"( "!+)#$),*(#,!-#)!*$.(/01023($4!*5(&(*,*')*!&"(

transformation function is applied to the regressors. Model 

assessment is performed by measuring the similarity between 

the estimated and the reference signals and by measuring the 

correlation between inputs and residuals. The proposed method 

shows to be promising. 

Keywords: acoustic-to-articulatory mapping, transformation 

of regressors, support vector regression, perceptual linear 
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Support vector regression for tongue position inference

INTRODUCTION

An adequate system for recovering the 

articulators’ position from the acoustic 

speech signal is useful for several tasks: 

applications based on computer animated 

talking heads [1] (for example, computer 

guided second language learning programs 

and visual aids for articulatory training 

tasks in hearing for speech impaired 

children); low-bit rate coding due to the 

relatively slow movement of articulators 

[2] and; complementing representation 

in speech recognition systems to improve 

their performance because of its ability to 

represent in a better way co-articulatory 

related phenomena [3]. Even though 

&#,%.$)#7$,7&"$)#%'&$,"8( )*9!".),*( ,:!".(

a wide range of potential applications, 

its development still remains an open 

challenge [4]. In this line, several data-

driven based methods for the acoustic-to-

articulatory inversion mapping have been 

proposed. In [5], an inversion mapping 

using an acoustic-to-articulatory codebook 

is discussed. In [6] mapping models based 

on neural networks are suggested. The use 

of models based on HMMs (Hidden Markov 

Models) is proposed in [7], where, not 

only the acoustic features and articulatory 

parameters are used, but also the phonetic 

information. Support vector regression 

(SVR) techniques have been used in [8, 18]. 

Gaussian mixture models (GMM) with 

maximum likelihood estimation (MLE) are 

applied in [9] to determine the articulatory 

trajectories. They use static as well as 

dynamic features in order to reduce the 

presence of unnatural movements in the 

estimated trajectory. In the above related 

works the major part of error was obtained 

on tongue modelling.

METHOD

1. Database

TIMIT sentences are designed to provide 

phonetically diverse material in order to 

maximize the usefulness of the data for 

speech technology and speech science 

research purposes. The MOCHA-TIMIT 

database is composed by two speakers; 

however, in this work only the female 

speaker (fsew0) is used. It is composed 

,;( <=>( .4,"$(  4"&.!.( ;",?(@4)#4( A=B( C'!.(

are included in the training set. The rest 

(recordings that end in 2 and 6) are used for 

testing. 

The MOCHA database includes four 

data streams recorded concurrently: the 

acoustic waveform (16 kHz sample rate, 

with 16 bit precision), laryngograph, 

electropalatograph and electromagnetic 

articulograph (EMA) data. Movements of 

receiver coils attached to the articulators 

are sampled by the electromagnetic 

&"$)#%',D"& 4(&$(E>>(FG6(H,)'.(@!"!(&-I!+(

to the lower incisors (li), upper lip (ul), 

lower lip(ll), tongue tip (tt), tongue blade 

(tb), tongue dorsum (td) and velum (v), see 

Fig. (1). The two coils at the bridge of the 

nose and upper incisors are used to provide 

reference points in order to correct errors 

produced by head movements.
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Figure 1. Positions of the EMA contacts.

1&J!'(C'!.(,;(KLHFM(+&$&J&.!(@!"!(%.!+(

to discard silent segments at the beginning 

and end of the utterances. The EMA 

trajectories are then re-sampled from 500 

Hz to 100 Hz. Since the articulators move 

relatively slowly, crucial information is 

not lost. Present study is fucoused on the 

voiced segments of speech. The algorithm 

for the voiced/unvoiced segmentation is 

the one explained in [12].

2. REPRESENTATION OF ACOUSTIC 

SPEECH SIGNAL

Since the EMA data used in this work 

is sampled at 100 Hz, the speech 

parametrization is done at a rate of 10 

ms. Parameters are calculated on 16 ms 

@)+$46( N4!( &"$)#%'&$,"8( #,*CD%"&$),*( &$(

the current time depends on the context, 

thus it is desirable to use additional frames 

such that the regression system takes into 

account the adjacent information.

For the selection of the size of the context-

window the results obtained in [13] are 

used. Results revealed that along the time 

axis, individual features of more than 

100 ms in the past or in the future are not 

very relevant for the phoneme category 

#'&..)C#&$),*(&$($4!(#%""!*$($)?!6(O*(&++)$),*5(

the authors of the mentioned work showed 

that the major part of the information is 

contained in the range [-80ms; +80ms] 

around the current time. However, the 

use of all frames generates a large number 

,;( )* %$.3( &*+5( '&"D!( )* %$( .!$.( &:!#$ 

the variance of the output estimation 

[11]. The input feature set is formed by a 

',D7!*!"D8( 9&'%!( &*+( PQ( 010( #,!-#)!*$.(

measured for every frame colored gray in 

R)D%"!(Q6(010(#,!-#)!*$.(&"!(!.$)?&$!+(J8(

using HTK Toolkit.

R)D%"!( Q6( H,*CD%"&$),*( ,;( $4!( )* %$( ;!&$%"!( .!$6(

Shaded regions indicate the frames in which the log-

energy and 12th order PLP features are calculated

3. DATA PREPROCESSING.

A nonlinear transformation is applied to 

input variables for the sake of alleviating 

$4!()*S%!*#!(,;(,%$')!".6(O*(,"+!"($,(,J$&)*(

a measure of the portion of outliers the 

kurtosis function may be used. A value of K 

= 3 is the value for the Gaussian probability 

density function and values of kurtosis 

greater than K = 3 implies a greater degree 

of outliers. Those inputs that have a kurtosis 

value greater than the threshold K > 6 are 

transformed by the tangent sigmoidal 

function,
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 (1)

where the values of a = 1.716 and b = 1.5 

are selected such that kurtosis values from 

15 and 8 are shifted into the interval [4.7, 

2.56]. The input transformation is applied 

in those cases where K > 6 and a skewness 

S < 0:5.

4. SUPPORT VECTOR REGRESSION

Support vector regression (SVR) is a 

supervised linear regression method (from 

the perspective of regression analysis) that 

can be used to model nonlinear functions. 

Similar to neural networks, SVR attempts 

to map the inputs to the outputs of the 

training data. Estimating the unknown 

parameters involves the optimization of a 

convex cost function.

SVR training is carried out by using the 

SVM-Light software [14]. The radial basis 

kernel was used throughout. The parameter 

corresponding to generalization capacity is 

.!'!#$!+(!T%&'($,(P6(N4).().(&($"&+!,:(J!$@!!*(

the empirical error and the prediction error. 

It tends to give the same importance to the 

training error and the prediction error. In the 

other hand, the parameter corresponding 

to the insensitive width is adjusted by using 

the approximations given in [15]. Finally, in 

order to adjust the parameter of the RBF 

kernel, the methodology explained in [16] 

is used.

5. MODEL ASSESSMENT

The results are organized depending on 

the kind of behavior of the model we are 

assessing. First, it is expected the estimated 

trajectories be similar to reference signals, 

in this case we use measures of similarity; 

second, the residual signals should not be 

correlated with the inputs.

Mean square error and correlation 

measure are the most common measures 

used for assessing articulatory inversion 

 !";,"?&*#!6(N4!( ;,"?!"( 9&'%!( ).( +!C*!+(

as follows,

 (2)

where N is the number of input-output 

vector pairs. Nonparametric correlation 

measures are more robust than linear 

correlation measures; and, they are more 

resistant to unplanned defects in the data 

[17]. Spearman correlation measure is used 

in this work.

The ideal situation is when the predicted 

values ŷ  are capable of explaining a major 

part of the actual output. The ratio

 (3)

Support vector regression for tongue position inference
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measures the proportion of the total 

variation of y that is explained by the 

regression model.

It is expected that the residual error be 

statistically independent from inputs. If 

the correlation function has high values for 

+):!"!*$( $)?!( '&D.5( $4!*( )$(?!&*.( $4&$( 4!(

model does not completely represent the 

behavior of the system [19].

RESULTS

For the six tongue channels the following 

variables are measured: mean square error 

in mm, the correlation value between 

estimated and measured output, the 

?%'$) '!( "!D"!..),*( #,!-#)!*$( &*+(

the maximum value among the set of 

correlation values between the error and 

the input regressors. The results are shown 

in table (1). An example of the predicted 

trajectories are shown in Figure 3.

Table (1) shows that exists some level 

of correlation between inputs and the 

residuals resulting from the regression 

 ",#!..6( N4).( &-"?&$),*( ).( #,*C"?!+( J8(

using the Brown-Forsythe test, where the 

variance of the residual error signal varies 

some input variables. Same table shows 

that about 1.3 MSE (Emm) is obtained when 

estimating articulators position; which, 

is less than the values reported in recent 

works like [6] and [9].

Figure 3. EMA positions for the chanels ttx, ttx, tbx, 

tby, tdx, tdy. The estimated one correspond to the 

dashed lines. The acoustic signal correspond to the 

south british utterance of the phrase Is this seesaw 

safe?5($4!(C".$( 4"&.!()*($4!($!.$)*D(.!$6

CONCLUSIONS

Present work shows a promising method for 

the inference of articulators position, which is 

based on the combination of support vector 

regression and the adequate selection of 

regressors. However, the residual error signals 

are correlated to the inputs; thus, there is a part 

of the input-output relation that has not been 

explained yet. That is, further improvements 

could be carried out.

channel Emm R2y corr. max. Corr.

ttx 1.32 0.61 0.79 0.15

tty 1.21 0.83 0.83 0.19

tbx 1.26 0.81 0.81 0.17

tby 1.04 0.86 0.86 0.18

tdx 1.28 0.80 0.80 0.16

tdy 1.20 0.79 0.79 0.09

Table 1. Results for the PLP feature set.
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Support vector regression for tongue position inference
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