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Abstract 

 
This paper shows a feature extraction method for electrocardiographic signals (ECG) based on dynamic 

programming algorithms. Specifically, we applied local alignment technique for recognition of template in 

continuous ECG signals. First, we encoded the signal to characters based on the sign and magnitude of first 

derivative, then we applied local alignment algorithm to search for a complex PQRST template in target 

continuous ECG signal. Finally, we arrange the data for direct measurement of morphological features in all 

PQRST segment detected. To validate these algorithms, we contrasted them with conventional analysis by 

measuring QT segments in the Massachusetts Institute of Technology (MIT) data base. We obtained processing 

time at least 100 times lower than those obtained via conventional manual analysis and error rates in QT 

measurement below 5%. The automated massive analysis of ECG presented in this work is suitable for post-

processing methods like data mining, classification, and assisted diagnosis of cardiac pathologies. 
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Resumen 

 
Este trabajo muestra un método de extracción de características de las señales electrocardíacas (ECG) basado en 

algoritmos de programación dinámica. Específicamente, se aplica la técnica de alineamiento local para el 

reconocimiento de una plantilla en la señal de ECG en tiempo continuo. En primer lugar, se codifica la señal a 

caracteres en base al signo y a la primera derivada, luego se aplica el algoritmo de alineamiento local para buscar 

una plantilla con el complejo PQRST en la señal ECG. Finalmente, se dispone de los datos para mediciones 

directas de las características morfológicas de todos los segmentos PQRST detectados. Para validar los algoritmos, 

se hace una comparación con el análisis convencional en mediciones del segmento QT sobre la base de datos del 

Massachusetts Institute of Technology (MIT). En los resultados se obtienen tiempos de procesamiento de al menos 

un centenar de veces más bajos que los obtenidos por el análisis convencional y las tasas de error en la medición 

del intervalo QT se encuentran por debajo del 5%. El análisis automático masivo del ECG que se presenta en este 

trabajo es adecuado para métodos de procesamiento orientados a la minería de datos, clasificación y diagnóstico 

asistido de patologías cardiacas.  

 

Palabras Clave: Alineamiento Local, ECG, Filtrado, Programación dinámica, Clasificación de patrones 

 

1. Introduction 
 

Dynamic programming (DP) [1] is a technique for 

solving complex optimization problems that can be 

decomposed into relatively simpler sub-problems of 

the same nature. The solutions are stored in a table 

or matrix of dynamic programming, which allows 

reusing sub-results to find the total solution, thus, 

avoiding repetitive and redundant calculations. The 

Temporal Dynamic Alignment PD uses algorithms 

to expand or contract a time series to fit another 

reference’s series in order to minimize a distance 

function [2] [3] [4]. 
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The work by Volkan Tuzcu and Selman Nas [5] 

presents a method to classify and identify waves in 

the ECG, using multi-resolution analysis by wavelet 

transform through the approximation of the signal’s 

slope; dynamic programming is used only to 

compare the waves, while in the proposed 

methodology in this work it is also used to segment 

the ECG signal. Based on other studies [6]; wherein, 

the alignment is performed on data from capillary 

electrophoresis, conducted a series of innovations 

proposed algorithms to achieve a time alignment 

(local) of the ECG signal, indexing into an array data 

belonging to each PQRST waveform signal. This 

matrix contains the characteristic points for the 

wave´s segmentation for analysis. Achieving this 

alignment of all ECG waves; allows faster 

quantitative analysis than the signal and indicates 

the result of a data set suitable for further processing 

of automatic classification of diseases. In order to 

eliminate the noise in the ECG signal, wavelet 

transform was used [7] [8] to threshold detail 

coefficients and use the second level of 

decomposition to lower the resolution of the data. 

2. Problem 

Electrocardiography signal analysis is significantly 

important to provide better diagnostics. Due to the 

large amount of data acquired, it becomes a rather 

tedious task for the specialists, leading to possible 

analysis errors. For this reason, it is important to 

implement robust and efficient data analysis 

methods toward possible criteria for a specific 

diagnosis [9] [10]. 

3. Theoretical framework 

Alignment is a way to make an exact or approximate 

correspondence between character subsequence. It 

is mostly used to look for a pattern of characters, 

which are in the same order in the sequences 

involved [11]. The local alignment algorithm by 

Smith & Waterman (Gotoh optimization) [12], 

shows a variant for sequence aligning: 

 
Let two sequences 𝒙 = [𝒙𝟏, 𝒙𝟐, … . 𝒙𝒏] and 𝒚 =
[𝒚𝟏, 𝒚𝟐, … . 𝒚𝒎] a matrix is constructed to store the 

maximum of each alignment 𝑴𝒏+𝟏,𝒎+𝟏 likewise, 

another array is created [12], which is indexed the 

direction from which comes each peak 

called 𝑷𝒕𝒓𝒏+𝟏,𝒎+𝟏. The local alignment algorithm, 

is based on the development of three stages [10]: 

 

3.1 Initialization 

 

The algorithm should be initiated under conditions 

equal to zero in each of the matrices.  

 
𝑃(𝑖, 𝑗) = 0, 𝑄(𝑖, 𝑗) = 0, 𝑅(𝑖, 𝑗) = 0 (3.1) 

𝑀(𝑖, 𝑗) = 0, 𝑃𝑡𝑟(𝑖, 𝑗) = 0 (3.2) 

 

3.2 Filling the matrix M and Ptr  

Each element of the dynamic programming matrix 

M is allocated from all neighboring maxima 

previously generated (3.3) (3.4). 

 

𝑀(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝑃(𝑖, 𝑗)
𝑄(𝑖, 𝑗)
𝑅(𝑖, 𝑗)

 (3.3) 

𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥

{
 

 
𝑃𝑖−1,𝑗−1 + 𝑆𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑦𝑗)

𝑄𝑖−1,𝑗−1 + 𝑆𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑦𝑗)

𝑅𝑖−1,𝑗−1 + 𝑆𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑦𝑗)

0

 (3.4) 

𝑄(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝑃𝑖,𝑗−1 + 𝑑

𝑄𝑖,𝑗−1 + 𝑒

0

  (3.5) 

𝑅(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝑃𝑖−1,𝑗 + 𝑑

𝑄𝑖−1,𝑗 + 𝑒

0

 (3.6) 

 
In (3.4), (3.5), and (3.6) 𝑆𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑦𝑗), e and d refer 

to the scores get from character  align  xi of the signal 

with the yi from the other signal  and penalties 

provided by the user in order to achieve better 

alignment. Matrices P, Q, and R, represent the 

maximum indexing analysis obtained from the 

diagonal, left, and up neighbors. Once each peak is 

found and indexed in M, Ptr must receive the 

provenance of each data (either diagonal, left, or 

up). 

 

𝑃𝑡𝑟(𝑖, 𝑗) = {

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙        𝑖𝑓   𝑐𝑎𝑠𝑒 = 1
𝑙𝑒𝑓𝑡                 𝑖𝑓   𝑐𝑎𝑠𝑒 = 2
𝑎𝑏𝑜𝑣𝑒             𝑖𝑓   𝑐𝑎𝑠𝑒 = 3

   𝑛𝑜𝑛𝑒              𝑖𝑓 𝑀(𝑖, 𝑗) = 0

 (3.7) 

3.3 Reconstruction of the optimal path 

The best alignments will be reconstructed from 

positions (a,b) of M, being those in which the highest 

scores are generated for each alignment. Then by 

tracking Ptr, it will be easy find the optimum paths 

for each alignment. 

 

4. Proposed Method 
 

To implement local alignment algorithm for ECG, 

data analysis raises the following considerations: 

 

A. Coding 

 

It is proposed to encode each sample as the first 

ECG’s derivative. Assuming that Y(n) is the ECG 

signal: 

 
𝑌′(𝑛) = 𝑌(𝑛) − 𝑌(𝑛 − 1) (4.1) 
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Where 𝒀′(𝒏) is the derivative of the EGC trace. 

 

 

 Then, 

𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = {
𝑝   𝑖𝑓   𝑌′(𝑛) ≥ 0

𝑛   𝑖𝑓   𝑌′(𝑛) < 0
 (4.2) 

                                           
B. Alignment:  

 

By using the algorithm developed by Gotoh [12], 

time alignment is done from a template or pattern 

with the ECG signal. The template is an ECG signal 

segment (QRST complex) properly selected from a 

normal or typical signal. 

The robustness of the alignment is reflected in the 

ability to possess the algorithm to generate high or 

low scores in every moment of analysis, (4.3) shows 

the proposed similarity index, taking into account 

the similarity of characters (signs of slope) and the 

value of the slope. 

 
𝑀𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑠𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑦𝑖) + 𝑘 ∗ 𝑚1(𝑖) ∗ 𝑚2(𝑗) (4.3) 

 

Where, 𝑠𝑐𝑜𝑟𝑒(𝒙𝒊, 𝒚𝒊) represents the score given to 

the similarity between the sign of the derivative of 

the sample xi of the pattern and the sign of the 

derivative of the sample yj of the encoded signal. 

𝑚1(𝒊) and 𝑚2(𝒋) represent the value of the slope in 

the sample i of the pattern and in the sample  j of the 

signal under analysis, respectively. k is a constant 

that controls the relationship between the two 

components of the index of similarity, by comparing 

the signs of slopes or their magnitudes. 

 

C. Rearrangement of Alignments:  

 

Upon reconstructing alignments that generate higher 

scores on M, it is necessary to reorganize the waves 

found to build the correspondence between all ECG 

waves. 

 

This process is done by assigning each template 

sample a column number in the matrix and placing 

in each row a PQRST wave found where each 

sample is placed in the column corresponding to its 

pair in the template. 

 

5. Results 
 

The essential basis of the algorithm is the alignment 

of a pattern or template versus a full ECG signal; 

Figure 1 shows the dynamic programming matrix M 

representing its values as gray levels, the lighter gray 

is the magnitude of the matrix element represented. 

 

 
Figure 1. ECG Alignment versus Template 

  

After filling the matrix M, it is necessary to seek the 

maximum get from the profile in the last row of the 

matrix. This consideration is essential, because its 

forced to make a full alignment between the pattern 

and each wave of the ECG signal.  

 

 
Figure 2. Location of the maximum 

 

For the process of finding the maximum was chosen 

to take a threshold that allowed a total reconstruction 

of waves present in the signal, see Figure 2. In 

Figure 3 it is possible see the dynamic programming 

matrix M using the conventional similarity index 

and it is compared with the proposed method, adding 

the similarity among the magnitude of the slopes. 

The proposed methodology provides a better quality 

performance of the alignments. 

 

 
Figure 3. Profile in the last row of the matrix M 

 

Once the maximum coordinates (a,b) have been 

located, the waves are reconstructed through Ptr, 

this is followed by rearrangement of the data 

considering the recesses inserted into each signal 

wave, because the waves in the reconstruction 

process do not show a direct correspondence among 

all the waves found Figure 4. 
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Figure 4. Alignment and rearrangement  

 

After performing the alignment of all waves, points 

were chosen that characterize the beginning and end 

of the QT interval on the template, allowing 

placement of the columns corresponding to these 

critical points and recognizing them in all lined 

waves (Figure 5). To compare the results of each 

measurement method, the proposed algorithm was 

assessed by comparing with manual analysis make 

by a specialist of the same ECG signals. 

 

 

Table 2. Manual method results 
Signal QTv QTd Ef% µQT σ2QT µQTc σ2QTc µFc σ2Fc 

e0611 79 79 100 0.4472 0.0119 0.4087 0.0117 45.7364 0.9389 

e0119 99 99 100 0.4154 0.0134 0.4177 0.0154 61.115 4.7103 

e0207 90 90 100 0.4353 0.012 0.4263 0.0131 56.3912 2.9593 

sele0106 109 109 100 0.4638 0.0182 0.4707 0.0165 62.6475 5.2609 

sel116 127 127 100 0.3572 0.015 0.3908 0.0166 78.5193 1.5644 

 

Table 3. Proposed method results 
Signal QTv QTd Ef% µQT σ2QT µQTc σ2QTc µFc σ2Fc 

e0611 79 79 100 0.4405 0.005 0.4023 0.0052 45.7306 0.8812 

e0119 99 97 97.9797 0.421 0.0131 0.4233 0.0162 61.1076 4.6935 

e0207 90 89 98.89 0.4254 0.0129 0.4161 0.0148 56.3286 2.9286 

sele0106 109 109 100 0.4427 0.0121 0.4486 0.0122 62.639 5.2369 

sel116 127 127 100 0.3463 0.093 0.3784 0.0103 78.51 1.3866 

 

 
Figure 5. QT interval quantification  

 

Table 1 demonstrates the large difference in 

execution time used by the two methodologies. This 

rapid analysis of massive ECGs obtained an 

ordering of the data suitable for automatic 

classification tasks, which represents the strength of 

our work. 

 

Table 1. Computational analysis 

Signal 
N. 

Samples 

N. 

Waves 

Algorithm 

(min) 

Manual 

(min) 

e0611 12971 79 0.0436 11.61 

e0119 12251 99 0.0434 10.54 

e0207 12031 90 0.0436 10.36 

sele0106 13134 109 0.04619 13.72 

sel116 12125 127 0.0458 10.52 

 

Tables 2 and 3 show the results obtained when 

measuring the QT interval of several signals from 

the MIT database, with the conventional manual 

method and the automatic method proposed. 

 

For Tables 2 and 3, QTv represents the true QT 

intervals, QTd are the QT intervals detected, Ef% is 

the efficiency provided; this is, defined as the ability 

to detect the same waves visually recognized by 

human expert ECG analysis. QTc is the corrected 

QT interval [13], a sort of normalization with the 

instantaneous heart rate. Fc is the heart rate. 

 

From the comparison of both tables, for instance, it 

is clear that automatic measurement of the QT 

segment differs by less than 5%, for each signal, 

from the manual measurement by an expert. The 

measurement of this parameter is very important for 

the quantification of heart disease, and in this case, 

demonstrates the potential use of the method 

proposed. 

6. Conclusions 

The proposed approach shows promising results to 

analyze the ECG signal. This methodology allows 

quickly and automatically segmenting all the 

PQRST waves of an electrocardiogram, it also 

allows any processing quantitative measurement as 

timeslots or wavelengths. Additionally, it is possible 

to get an ordered selection of data suitable to apply 

algorithms for training and classification tasks.  

 

Processing times were obtained at least 100 times 

lower than those obtained by conventional manual 

analysis and QT measurement error rates were under 

5%.  



  

 

 

13 

 

There are several ideas to develop from this work, 

statistical evaluation of the method on a larger 

amount of data is necessary and involve the 

possibility of training to detect and classify diseases, 

although the similarity observed in an alignment of 

a template with standard features of an ECG signal 

can provide a first approximation to a possible 

diagnosis. 
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