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Abstract 

 
A method is introduced to obtain information on the movement of a human upper extremity based on automatic video 

analysis. This study used basic techniques of image segmentation and contour curvature calculation of the segmented 

extremity, as well as temporary dynamic alignment of sequences to track the two critical points that mark the elbow. 

Additionally, the median axes of the arm and forearm were calculated to then obtain curves of the extremity’s flexion 

angle over time. This methodology was used with seven individuals and the proposed automatic measurement was 

compared to the semi-assisted measurement in which a physiatrist conducted measurements on images by using a 

computer. The results suggest that this methodology could serve as a support tool in medicine for the evaluation of 

different diseases that affect the mobility of the extremities. 
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Resumen 
 

Se presenta un método para obtener información del movimiento de una extremidad superior humana en base al análisis 

automático de video. Se usan técnicas básicas de segmentación de imágenes, cálculo de la curvatura del contorno de la 

extremidad segmentada y se utiliza Alineamiento Dinámico Temporal de Secuencias para hacer seguimiento de dos 

puntos críticos que marcan el codo. Adicionalmente, se calculan los ejes medios del brazo y antebrazo para luego obtener 

curvas del ángulo de flexión de la extremidad en el tiempo. Se aplica esta metodología en siete personas y se compara la 

medición automática propuesta con la medición semiasistida en la que un fisiatra realiza las mediciones en imágenes 

haciendo uso de un computador. Los resultados sugieren que esta metodología podría servir de herramienta de apoyo en 

medicina para la evaluación de distintas enfermedades que afectan la movilidad de las extremidades. 

 

Palabras claves: Alineamiento dinámico temporal, Ángulo flexo-extensión, Cuantificación, Curvatura de una señal, 

Segmentación  
 

 

1. Introduction 

 
Visual systems to track human extremities on video can b

e classified into two categories from the use or not of anat

omic markers. Using markers to indicate the region of int

erest largely simplifies the problem of tracking human mo

vement, hence, these have been successfully used in sport

s analysis environments and in capturing movement to cr

eate animations. However, this type of technology is quit

e costly and is only executed in supervised environments. 

 

Video analysis systems are only practical without marker

s, given that they are more economic, simple, and rapid re

garding patient preparation. Methods based on models are 

the most popularly used, varying from a simple 2D model 

to others more sophisticated in 3D [1] [2]. This type of tra

cking is conducted by making the image characteristics c

oincide with the shape model, using the knowledge of the 

characteristics of the human body and its movement. Mos

t of these tracking systems require manual starting accord

ing to specific parameters for each subject under study 
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[3], which could be a disadvantage for clinical application

s like evaluation of patients with motor problems during a 

medical consultation. 

 

This work consists of a real-time visual tracking system w

ithout anatomic markers. The system uses a low-resolutio

n (1.3 MP) web camera to capture images. Each video fra

me acquired is segmented, thus, extracting the contour cu

rvature of the region of interest (upper extremity). Tracki

ng of the contour frame by frame on video is carried out t

hrough the temporary dynamic alignment of sequences of 

the contour curvature from the previous frame with that o

f the present frame [4] [5]. Two key points are detected, w

hich mark the elbow articulation and which serve to divid

e the upper extremity into arm and forearm. On each seg

ment, arm and forearm, the medial axis is extracted. The a

ngle between the medial axes will be the extremity’s flexi

on-extension angle. After this process a curve of angles is 

available whose information is used to make the respectiv

e calculations of the extremity’s range of motion and the 

mean rates with which its flexion and extension movemen

ts are executed. 

1.1. Problem approach 

Seeking a methodology for the quantitative analysis of the 

motion of the extremities of the human body represents an 

important task to implement low-cost systems aimed at 

evaluation and diagnosis of patients with trauma on the 

upper or lower limbs of the body [6] [1] [2].   

2. Method proposed 

The methodology proposed to obtain the range of flexion 

motion (RMflex), range of extension motion (RMext), rate of 

flexion (Vflex), and rate of extension (Vext) comprises the 

following processes applied to each video frame (352 x 

288 pixels): 

 

 Segmentation:  

 

The segmentation method was applied via Otsu’s gray 

scale image thresholding [7] [8] [9], and the object with 

the centroid closest to the center of the image was selected, 

which must correspond to the human extremity under 

study. It should be noted that using controlled lighting, 

light colored clothing on the patients and a white 

background reduced considerably the problems caused by 

unbalanced lighting during the segmentation process 

(Figure 1). 

Figure 1. Segmentation, curvature, skeleton, elbow key 

points 

The curvature vectors can, thus, be observed in Figure 2 

as an additional representation of the concept of curvature. 

In said figure, Pi is the starting point to generate the 

contour curvature. 

 

 
Figure 2. Vectors generated in the contour curvature 

 

 Contour curvature:  

 

From the segmented object, select the pixel closest to the 

upper left corner of the image and from there track the 

contour of the object [10]. To obtain a softer contour, an 

averaging filter was applied to the contour’s coordinates. 

Thus, we obtained the closed contour c(n)=[x(n), y(n)], as 

observed in Figure 1. The contour curvature is calculated 

according to the following formula: 

 

𝑟(𝑛) = 𝑠𝑔𝑛 {(𝑝′(𝑛) × 𝑝′′(𝑛)) ∙ (�̂� × �̂�)}
𝑣(𝑛) ∙ 𝑤(𝑛)

|𝑣(𝑛)||𝑤(𝑛)|
 

(1) 

 

Where:  
𝑥 ′(𝑛) = 𝑥(𝑛 + 𝛿) − 𝑥(𝑛) 

𝑥 ′′(𝑛) = 𝑥′(𝑛 + 𝛿) − 𝑥′(𝑛) 

𝑝′(𝑛) = [𝑥 ′(𝑛), 𝑦′(𝑛), 0] 

𝑝′′(𝑛) = [𝑥 ′′(𝑛), 𝑦′′(𝑛), 0] 

𝑣(𝑛) = [𝑥 ′(𝑛 − 𝛿), 𝑦′(𝑛 − 𝛿)] 

𝑤(𝑛) = −[𝑥 ′(𝑛), 𝑦′(𝑛)] 

 

î and ĵ represent the unit vectors in the direction of 

coordinates x and y of the contour’s pixels. We used a 

value of x=15 and the sgn{x} function represents the sign 

of x. Figure 1 shows the curvature signal corresponding to 

the segmented extremity.  

 

 Alignment of the curvature:  

 

By applying temporary dynamic alignment of sequences, 

the current contour curvature is aligned to the contour 

from the prior video frame. The algorithm of temporary 

dynamic alignment of two curvature signals, 

a=[a1,a2,…,an] and b=[b1,b2,…,bm], is based on the 

construction of a dynamic programming matrix in which 

each matrix element [î,ĵ] represents a similarity 

measurement between a=[a1,a2,…,ai] and b=[b1,b2,…,bj]. 

The dynamic programming matrix, M, is constructed in 

the following manner: 

 

Initialization: 

 
𝑀(𝑖, 0) = 0  0 ≤ 𝑖 ≤ 𝑛 

𝑀(0, 𝑗) = 0, 0 ≤ 𝑗 ≤ 𝑚 
(2) 
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𝑀(𝑖, 𝑗)

= 𝑚𝑎𝑥 {

𝑀(𝑖 − 𝑙, 𝑗 − 1) + 𝑠𝑐𝑜𝑟𝑒(𝑎𝑖 , 𝑏𝑗)

𝑀(𝑖, 𝑗 − 1) + 𝑑       1 ≤ 𝑖 ≤ 𝑛

𝑀(𝑖 − 1, 𝑗) + 𝑑       1 ≤ 𝑗 ≤ 𝑚
0

 

 

(3) 

𝑠𝑐𝑜𝑟𝑒 (𝑎𝑖 , 𝑏𝑗) =
1

1 + |𝑎𝑖 − 𝑏𝑗|
 

(4) 

 

Where (4) represents the similarity between the value of 

curvature ai and the value of curvature bj. As noted in Eq. 

(3), the value of an element from the matrix stems from 

considering the maximum among four elements, we will 

call case 1, 2, 3, 4, when the maximum turns out to be the 

first, second, third, or fourth of the arguments of the 

function. d has a value of 0.4 (called penalization through 

insertion of space) if the summand with d in Eq. (3) stems 

from a case 1 and has a value of -0.05 (called penalization 

through extension of space) in another case.  

It is necessary to construct a Ptr matrix of pointers where 

each Ptr(i,j) element points to an element from the M 

matrix, depending on what case comes from the value of 

M(i,j): 

  

𝑃𝑡𝑟(𝑖, 𝑗) =

{
  
 

  
 &𝑀(𝑖 − 1, 𝑗 − 1)         𝑖𝑓 𝑐𝑎𝑠𝑒 1

&𝑀(𝑖, 𝑗 − 1)                𝑖𝑓 𝑐𝑎𝑠𝑒 2

&𝑀(𝑖 − 1, 𝑗)               𝑖𝑓 𝑐𝑎𝑠𝑒 3

𝑛𝑢𝑙𝑙                      𝑖𝑓 𝑀(𝑖, 𝑗) = 0

  

(5) 

 

“means direction in memory of”. The construction of each 

alignment between the two is carried out by seeking the 

maximum in the programming matrix, M. From the 

position of the local maximum follow up of the pointers 

until reaching a null pointer. Each position [k,g] pointed 

in that follow up represents the corresponding pairing 

between ak and bg. For a detailed description of this 

procedure see [4]  [5]. 

  
The curvature signal corresponding to the first video frame 

is aligned to a curvature template belonging to a pre-

established dictionary of contour curvatures of human 

extremities. The two curvature values corresponding to 

the elbow have been labeled on the templates (see P0 and 

P1 in Fig. 1 and Fig. 2), which is why in the subsequent 

alignments follow up can be conducted of these 

characteristic points of the elbow. 

 

An example of alignment between two curvature signals, 

one from the first video frame with a template from the 

data base, can be seen in Figure 3. It can be noted how the 

alignment algorithm inserts spaces to maximize the 

alignment of similar curvature values. This alignment, one 

from a curvature template with that from the first video 

frame is the most critical; from the second video frame on, 

the alignments are more exact given that little variation is 

expected in the shapes of the contours in consecutive 

frames. 

 

The fact that in a video frame the starting point of contour 

tracking is in a different anatomical position to that of the 

prior frame could be considered a problem, given that 

curvature waves appearing at the beginning of one of the 

signals will have their corresponding at the end of the 

other curvature signal. This could be solved if, before 

applying the process of temporary dynamic alignment of 

sequences to one of the curvature signals (that of the 

current frame or of the prior) an exact version of itself is 

concatenated, producing the effect of going over the 

closed contour twice. If the algorithm always tracks the 

contour in the same sense, it ensures that the curvature of 

the prior frame achieves its similar pattern in the current 

frame. 

 
Figure 3. Alignment of two contours of the arm using 

temporary dynamic alignment 

 

 Skeletonization:  

 

using already known algorithms on image analysis [9], we 

obtain the skeleton of the segmented extremity. The 

skeleton is a first approach to the contour’s medial axis 

(Figure 1). Separation of arm and forearm: upon aligning 

the curvature of the current frame with that of the prior 

frame, we obtain the two critical points of the elbow from 

the current frame. By drawing a straight line between 

them, the segmented object is divided into two parts; one 

belonging to the arm and the other to the forearm. 
 

 Calculation of median axes of the two segments of the 

extremity:  

 

the line dividing the arm into two parts also cuts the 

skeleton obtained from the complete extremity. In each 

skeleton segment obtained (arm and forearm) we select the 

skeleton branch closest to the segment’s centroid. For each 

segment of the extremity, the medial axis is constructed by 

prolonging a line from the distal end (with respect to the 

elbow) of the skeleton branch selected toward the 

midpoint between the two characteristic points of the 

elbow. For the forearm, the skeleton branch selected is 

truncated by selecting only 70% of its pixels proximal to 

the elbow to keep the part of the skeleton, given by the 

shape of the hand, from influencing on the inclination of 

the forearm’s medial axis. 

 

Upon obtaining the between the medial axes for each 

video frame, we can construct a flexion-extension angle 
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curve over time. From the analysis of the flexion-

extension angle curves over time, we can obtain the range 

of motion in flexion and extension and the rate of flexion 

and of extension in the following manner. 

 

 Range of motion: 

 

The measurement of the angle between the median axes 

frame by frame produces an undulating signal for several 

flexion and extension actions of the extremity, where each 

rise represents a flexion movement and each drop 

represents an extension movement (Figure 4). By 

averaging the value of the peaks of this oscillating signal, 

we obtain the range of flexion motion; by averaging the 

values of the valleys, we obtain the range of extension 

motion. 

 

 Flexion-extension rate:  

 

The difference of the angle measured between frame and 

frame divided into the camera’s sampling period (30fps) 

determines the forearm’s rate of angular motion with 

respect to the arm. If we average said calculation for each 

of the points of the ascending segments from the 

oscillating curve (degrees vs. time) we obtain the rate of 

flexion and if we do this for the descending segments we 

obtain the mean rate of extension. 

 

3. Results 

The methodology proposed was evaluated in four patients 

from the Neurology service at the Universidad de Los 

Andes Hospital and in three healthy individuals. Table I 

shows the range of flexion, range of extension, mean rate 

of flexion, and mean rate of extension measured 

automatically in the seven subjects. 

Table I. Measurement example of dynamic parameters 

of the upper extremity 

Subject Disease RMext (º) RMflex (º) Vext (º/s) Vflex (º/s) 

p1 Parkinson 4 134 9 10 

p2 Parkinson 15 134 17 15 

p3 Chorea 13 123 10 12 

p4 Tic -3 117 14 14 

p5 None 2 130 9 9 

p6 None 6 120 4 3 

p7 None 6 129 4 5 

 

In Table I, Parkinson, Chorea, and Tic are names of 

pathologies that affect motor control of the extremities. A 

p2 and p3 limitation in the arm’s extension range of 

motion can be noted. Additionally, it is interesting that the 

flexion and extension rates measured in patients with 

neurological problems are higher than in normal subjects. 

In any case, these observations only seek to illustrate the 

usefulness offered by implementing these types of 

automatic measurements. To classify pathologies and 

correlate the data, a more exhaustive and specific study 

would be needed. 

 

Figure 4 shows an example of a segment of the curve of 

degrees of flexion versus time obtained via the automatic 

method proposed, along with a curve of the measurement 

with the semi-assisted method. The semi-assisted method 

consists in a physiatrist using a computer to mark in each 

image the key points of the extremity and who measures 

the flexion angle of the extremity according to that 

professional’s anatomic and procedural knowledge. In the 

example in Figure 4, we note that the curve resulting from 

the automatic process presents a tendency to represent 

degrees of flexion below those measured by the semi-

assisted method. We think this difference could be the 

result of a better location of the key points to be used by 

the physiatrist’s measurement. A factor that could, thus, 

influence the automatic measurement and which we think 

will be worth dealing with in future research is the effect 

produced by the folds between the arm and forearm, 

formed on the anterior face of the elbow, which could 

deviate the median axes from their ideal location in the 

skeletonization process. The ideal orientation of the 

median axes should be following the osseous structures. 

 

 
Figure 4. Curves of degrees of flexion versus time with 

the method proposed and the semi-assisted method 

4. Conclusions 
 

The results obtained suggest that the implementation of a 

system based on our methodology could serve as support 

in evaluating patients with neurological diseases, given 

that it would offer the possibility of performing an 

objective follow up of the evolution of the disease or its 

improvement with treatment. It would be possible to keep 

a record in days and months of the patient’s evolution 

regarding the flexion and extension range of motion, 

flexion and extension rate, and other variables extracted 

from the curve of degrees of flexion versus time. Not using 

markers for recognition of key points in the image 

represents an advantage when reducing the patient’s 

preparation time to take the video. However, a more 

specific study is required to contrast our method with 

others using markers and, thus, analyze in detail the 

advantages and disadvantages of one modality over 

another. It would be very interesting to conduct a 

morphological analysis of the degrees versus time curve, 

seeking to detect and classify neuromuscular pathologies. 

This work could evolve into the study of morphological 

images of the arm by using machine learning methods to 

achieve a training process to better recognize the location 
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of bones on the plane and, thereby, have a better reference 

of the medial axes of arm segments. 
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