
Multiplexing schemes for homomorphic
cryptosystems

Juan Camilo Corena?, Jaime Andrés Posada??

Fecha de recepción: 18 de mayo de 2010
Fecha de aprobación: 12 de junio de 2010

Abstract. We present in this article two secure multiplexing and demul-
tiplexing schemes that use homomorphic properties from known public
key cryptosystems. One scheme is suitable for cryptosystems with addi-
tive homomorphic properties such as Paillier and Benaloh cryptosystems.
The proposed scheme employs a modification of Hadamard codes to
generate a set of orthogonal codes over Z3. The other one is suitable for
cryptosystems with multiplicative homomorphic properties such as RSA
and ElGamal. Both schemes might be used in voting and auction systems
where anonymity of the individuals is crucial.

Resumen. Presentamos en este artículo dos esquemas seguros de multi-
plexación y demultiplexación que utilizan propiedades homomórficas de
algunos sistemas de cifrado de llave pública. Un esquema es adecuado para
sistemas con propiedades aditivas como Paillier y Benaloh. El esquema
propuesto utiliza una modificación de los códigos de Hadamard para
generar un conjunto de códigos ortogonales sobre Z3. El otro esquema es
adecuado para sistemas con homomorfismos multiplicativos como RSA y
ElGamal. Ambos esquemas podrían ser utilizados en sistemas de votación
y en subastas donde el anonimato de los individuos es crucial.

Keywords: homomorphic encryption, orthogonal vectors, secure auc-
tions.

Palabras Clave: cifrado homomórfico, vectores ortogonales, subastas
seguras.

? Juan Camilo Corena. M. Sc. Ingeniería de Sistemas, Universidad de los Andes.
investigacion@juancamilocorena.com

?? Jaime Posada, M.A. en Matemáticas UW-Madison, se desempeña como docente de
tiempo completo del Departamento de Matemáticas del Politécnico Grancolombiano
desde el año 2006. japosada@poli.edu.co.



Revista Elementos - Número 1 - Junio de 2011

1. Introduction

Vector orthogonality has been widely used in communications to allow senders
to multiplex their messages simultaneously and receivers to demultiplex the
desired data. One of these methods is synchronous CDMA, which exploits the
orthogonality between vectors representing information. To achieve orthogonality,
synchronous CDMA uses binary orthogonal vectors based on Hadamard codes, but
this is not suitable for most public key cryptosystems since those cryptosystems
use positive integer and not vectors as a way to represent data. Even though one
could cipher these vectors in each of their components, this approach might be
vulnerable to chosen ciphertext attacks. Thus it would be desirable to balance
these two aspects to achieve orthogonality in order to allow several individuals to
add encrypted information into a single data stream, and being able to retrieve
it later.

In order to allow these individuals to add information to a secure data stream,
we considered two case scenarios in this article. One is intended to be used
in algorithms with multiplicative homomorphisms in which case the proposed
solution is straightforward using unique factoring into primes. The second scenario
deals with cryptosystems with additive homomorphisms in which case we propose
the employment of modified Hadamard codes over Z3. The proposed schemes can
be used in elections, auctions and in any scenario where sensitive information is
to be provided by several individuals and a third party is to process the individual
components.

Although homomorphic encryption has been used in many cryptographic
protocols applied to elections and auctions such as [1,4,6,7], and later succeeded
by protocols such as [2] as a mechanism for protecting voters privacy and the
integrity of the election. To check the validity of encrypted information a proof of
knowledge is issued with a vote in a ballot. This proof will confirm that a given
ballot adds one and only one vote to the final tally. These proofs are outside the
tallying itself, which allows election officials to remove malicious ballots if they
are cast. Our scheme allows one to verify the correctness of the tally without
such proofs, at the cost of reduced number of ballots and larger key sizes. Our
proposal achieves similar results as the afore mentioned scheme with a different
approach, that could be used to simplify hardware implementations by joining
two stages of the process.

The article is organized in four main topics. In the first one we summarize
several cryptosystems with homomorphic properties along with some basic princi-
ples about CDMA multiplexing. In the second we introduce the set of codes used
by our scheme and we present it and finally we discuss computational viability in
Paillier’s cryptosystem and some possible applications aimed at auction systems.

2. Homomorphic encryption

Homomorphic encryption is a form of encryption where it is possible to perform an
algebraic operation on the plaintext by performing a possibly different operation

22



Multiplexing schemes for homomorphic cryptosystems

on the ciphertext. This form of encryption has been used widely in many contexts,
and in the next section we introduce four different cryptosystems that have two
different kinds of homomorphisms: multiplicative or additive.

2.1. Multiplicative homomorphisms

RSA Cryptosystem. Let n = pq where p, q are two distinct prime numbers.
Then compute φ(n) = (p− 1)(q − 1). Now choose e ∈ Z∗φ(n) and e > 0 such that
gcd(e, φ(n)) = 1, the next step involves determining e−1 in Z∗φ(n), we will call
this number d which is a number that satisfies ed ≡ 1 (mod φ(n)). The public
key is (n, e) and the private one is (n, d). To encrypt a plaintext m we compute

c ≡ me (mod n) (1)

We call the resulting encryption function E. To decrypt, calculate

m ≡ cd (mod n) (2)

This algorithm’s homomorphism can be deduced as follows:

E(m1) · E(m2) = me
1m

e
2 (mod n) = (m1m2)e (mod n)

= E(m1 ·m2) (3)

which can be rephrased as: given the product of two ciphertexts encrypted with
the same key, once they are decrypted the result will be the product of the plain
texts generating the ciphertexts modulo n. See [11] for more details regarding
this algorithm.

ElGamal Cryptosystem. Let G be a cyclic group of prime order q with
generator g. Then a random x ∈ Zq is chosen to be the secret key. The public key
is (G, q, g, h), where h = gx. Given a plain text m ∈ G the encryption function
E is:

E(m) = (gr,mhr) (4)

where r ∈ Zq is randomly chosen. To decrypt a message of type (c1, c2) using the
secret key x, first calculate s = cx1 and then recover the original message m as
follows:

m = c2

s
(5)

This algorithm’s homomorphism can be deduced as follows:

E(m1) · E(m2) = (gr1 ,m1h
r1) (gr2 ,m2h

r2)
=
(
gr1+r2 ,m1m2h

r1+r2
)

= E(m1 ·m2) (6)

which can interpreted as: product of two ciphertexts encrypted with the same
key, once they are decrypted the result will be the product of the plain texts
generating the ciphertexts. See [8] for more details regarding this algorithm.

23



Revista Elementos - Número 1 - Junio de 2011

2.2. Additive homomorphisms

Benaloh Cryptosystem. Choose a blocksize r and choose primes p and q such
that r divides (p − 1) and gcd(q − 1, r) = 1. Let n = pq, and choose y ∈ Z∗φ(n)

such that y
φ(n)
r 6≡ 1 (mod n). The public key is (y, n, r) and the private key (p, q).

Given a plain text m ∈ Zr the encryption function E is:

E(m) = ymur (mod n) (7)

where u ∈ Z∗n is randomly chosen. To decrypt a message c = ymur (mod n) note
that

c
φ(n)
r = ym

φ(n)
r (mod n) (8)

and so in order to find m, one can to solve the discrete logarithm by exhaustive
search, or using the Baby-step, Giant-step method because m is small in practice.

This algorithm’s homomorphism can be deduced as follows:

E(m1) · E(m2) = (ym1u1
r) (ym2u2

r) = ym1+m2(u1u2)r

= E (m1 +m2 (mod φ(n)/r)) (9)

which can be rephrased as: given the product of two ciphertexts encrypted with
the same key, once they are decrypted the result will be the sum of the plain texts
generating the ciphertexts modulo φ(n)/r. See [5] for more details regarding this
algorithm.

Paillier Cryptosystem. Let n = pq where p, q are two distinct prime numbers.
Then compute λ = lcm(p − 1, q − 1). Choose g ∈ Z∗n2 such that n divides the
order of g. The public key is (n, g) and the private key (p, q). Given a plain text
m ∈ Zn the encryption function E is:

E(m) = gmrn
(
mod n2) (10)

where r ∈ Z∗n is randomly chosen. To decrypt a message c ∈ Z∗n2 , compute:

m =
(
L
(
cλ
(
mod n2))) (L (gλ (mod n2)))−1 (mod n) (11)

where L(u) = (u − 1)/n. This algorithm’s homomorphism can be deduced as
follows:

E(m1) · E(m2) = (gm1r1
n) (gm2r2

n) = gm1+m2(r1r2)n

= E (m1 +m2 (mod n)) (12)

which can be rephrased as: given the product of two ciphertexts encrypted with
the same key, once they are decrypted the result will be the sum of the plain
texts generating the ciphertexts modulo n. See [10] for more details regarding
this algorithm.

24



Multiplexing schemes for homomorphic cryptosystems

3. CDMA multiplexing

3.1. Hadamard codes

Hadamard codes are used for signal error detection and correction. They were
successfully used in space probes such as Mariner, Viking or Voyager to send
pictures from other planets back to earth. Valid codewords are the rows of H and
−H, where H is a Hadamard matrix (a square matrix whose entries are either 1
or −1 and whose rows are pairwise orthogonal) and where each −1 is replaced
by 0. To illustrate this, given the following Hadamard matrix,

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (13)

the codewords are (1, 1, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 0, 0, 1), (0, 0, 0, 0), (0, 1,
0, 1), (0, 0, 1, 1) and (0, 1, 1, 0).

3.2. Codes over Z3

We modify the construction of Hadamard codes to generate recursively the
following set of codes over Z3:

1. (1) is a valid code.
2. If v is a valid code, then v_v and v_¬v are valid codes, where _ denotes

concatenation of vectors, and ¬v denotes the vector obtained from v by
interchanging the digits 1 and 2, or by calculating additive inverses over Z3.

We have then that (1), (1, 1), (1, 2), (1, 1, 1, 1), (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1)
are all valid codes, and in general a full binary tree T is constructed such that in
its nth level Tn there are 2n codes of length 2n. These codes have the following
properties used in the next section to describe our variation of the synchronous
CDMA technique.

Theorem 1. If n ≥ 1, then all codes of Tn are orthogonal over Z3. If n is
odd, and v ∈ Tn, then ‖v‖ ≡ 2 (mod 3). If n is even, and v ∈ Tn, then
‖v‖ ≡ 1 (mod 3).

Proof. By induction: (1, 1) and (1, 2) are orthogonal since (1, 1) • (1, 2) = 3 ≡
0 (mod 3). Let v,w ∈ Tn+1, n ≥ 1. There are four cases:

1. v = x_x, w = y_y, where x,y ∈ Tn.
In this case v •w = x • y + x • y = 0 + 0 ≡ 0 (mod 3)

2. v = x_x, w = y_¬y, where x,y ∈ Tn.
In this case v •w = x • y + x • ¬y = x • y − x • y = 0− 0 ≡ 0 (mod 3)

3. v = x_¬x, w = y_y, where x,y ∈ Tn.
In this case v •w = x • y + ¬x • y = x • y − x • y = 0− 0 ≡ 0 (mod 3)

25



Revista Elementos - Número 1 - Junio de 2011

4. v = x_¬x, w = y_¬y, where x,y ∈ Tn.
In this case v •w = x • y + ¬x • ¬y = x • y + x • y = 0 + 0 ≡ 0 (mod 3)

On the other hand, since 12 = 22 ≡ 1 (mod 3), then any given code v ∈ Tn
of length 2n satisfies the following:

‖v‖ ≡ 2n (mod 3) (14)

Using another induction argument we have that

2n ≡
{

2 (mod 3) n odd
1 (mod 3) n even (15)

and so it follows the second part of the theorem.

3.3. Synchronous CDMA

If several transmitters want to send information simultaneously over a single
channel, there are various techniques used to accomplish that, but we focus
ourselves in synchronous CDMA, which exploits the orthogonality between
vectors representing information. Our technique is basically synchronous CDMA,
but we use the codes constructed in section 3.2. More details about CMDA can
be found in [12].

Suppose that k transmitters t1, t2, . . . , tk want to send binary vectors si,
1 ≤ i ≤ k, of length m over a single channel. Let n be such that k ≤ 2n, and
to each transmitter ti, a unique code vi ∈ Tn is assigned. If the data to be
transmitted in the vector si is a one, then the vector vi is transmitted, and if a
zero is to be transmitted, then ¬vi is transmitted.

For example, if ti is assigned code vi = (1, 2), and wishes to send the binary
vector (1, 0, 1), the actual transmission is (vi,¬vi,vi) = ((1, 2), (2, 1), (1, 2))

In this way each transmitter ti generates a signal σi = (xi1, xi2, . . . , xim) where
each xil is either vi or ¬vi, to be transmitted over a single channel. To accomplish
that purpose, the signals σi, 1 ≤ i ≤ k, are to be added over Z3 to create the
following multiplexed signal:

ΛM =
k∑
i=1

σi (mod 3) (16)

To demultiplex the signal ΛM and recover a particular signal σi, the orthogo-
nality of the codes is used: Since the codes vi and vj are orthogonal, then

(xj1 • vi, x
j
2 • vi, . . . , x

j
m • vi) = (0, 0, . . . , 0) (17)

and so when we calculate the dot product of the code vi with each component of
the signal ΛM = (x1

1, x
1
2, . . . , x

1
m) + · · ·+ (xi1, xi2, . . . , xim) + · · ·+ (xk1 , xk2 , . . . , xkm)

we obtain
(xi1 • vi, x

i
2 • vi, . . . , x

i
m • vi) (18)

26



Multiplexing schemes for homomorphic cryptosystems

Each xil is either vi or ¬vi, so each component of the previous vector is either
vi • vi = ‖vi‖ or vi • ¬vi = −‖vi‖. Thus a vector with digits 1, 2 is obtained.
Since the magnitude of a code is based on the parity of n, there are two procedures
to recover the binary vector si:

1. n is odd. In this case by theorem 1, ‖vi‖ = 2 and so the rth component
xir • vi of the vector

(xi1 • vi, x
i
2 • vi, . . . , x

i
m • vi) (19)

is 2 if and only if a one was to be transmitted in the rth position of the vector
si.

2. n is even. In this case by theorem 1, ‖vi‖ = 1 and so the rth component
xir • vi of the vector

(xi1 • vi, x
i
2 • vi, . . . , x

i
m • vi) (20)

is 1 if and only if a one was to be transmitted in the rth position of the vector
si.

To give an example of this process, suppose transmitter α is assigned code
(1, 1) and wishes to send message (1, 0, 1), and transmitter β is assigned code
(1, 2) and wishes to send message (1, 1, 0). Then

σα = ((1, 1), (2, 2), (1, 1)) σβ = ((1, 2), (1, 2), (2, 1)) (21)

and so
ΛM = ((2, 3), (3, 4), (3, 2)) = ((2, 0), (0, 1), (0, 2)) (mod 3) (22)

To recover σα we calculate the dot product of the code (1, 1) with each component
of the signal ΛM to get (2, 1, 2). In this case n = 1, so a 2 means that a
one was to be transmitted. The recovered message is (1, 0, 1). To recover σβ ,
the dot product of the code (1, 2) with each component of the signal ΛM is
(2, 2, 4) = (2, 2, 1) (mod 3). The recovered message is (1, 1, 0).

4. Proposed schemes

We propose the schemes based on the following requirements:

1. The scheme is able to multiplex a set of data identified by specific codes.
2. The multiplexed information can be sent over a secure channel without

leaking any information about the individual components.
3. It is possible for external agent having a proper cryptographic key and a

valid code to verify if a given information was sent over the secure channel.

27



Revista Elementos - Número 1 - Junio de 2011

4.1. Multiplicative homomorphisms

Given a set of individuals S = {s1, s2, . . . , sn}, each si wishing to send a message
mi in the set M = {m1, . . . ,mn} we assign a prime number pi to each sender
si. These prime numbers will serve as codes for identifying each si within the
multiplexed message. To multiplex the information we compute

Λ =
n∏
i=1

E (pmii ) (23)

where E is an encryption function with multiplicative homomorphic properties
such as RSA or ElGamal. To demultiplex the information we revert the encryption
function by computing

Γ = E−1

(
n∏
i=1

E(pmii )
)

=
n∏
i=1

pmii (24)

Then, to recover the message mi sent by individual si one has to find the largest
power of pi dividing Γ .

Regarding the requirements we intended for our scheme, the first requirement
is true based on the fundamental theorem of arithmetic. The second requirement
is satisfied since we used E which is assumed to be a secure cryptographic
algorithm such as RSA or ElGamal. For the last requirement one has to check if
pi divides Γ , this is an easy task for an individual knowing the proper private
key and a code pi as long as mi is bounded.

4.2. Additive homomorphisms

Given a set of individuals S = {s1, s2, . . . , sn}, each si wishing to send a message
mi in the set M = {m1, . . . ,mn} we assign a unique code vi ∈ Tk as explained
in section 3.2, where k is such that n ≤ 2k.

Given a signal σi, which is a vector of vectors, each component being vi or ¬vi,
then σ̄i denotes the vector obtained from σi by concatenating its components into
a single vector. For example, if σα = ((1, 1), (2, 2), (1, 1)) then σ̄α = (1, 1, 2, 2, 1, 1).

Let B be a positive integer base such that B ≥ 2k+1 + 1. B is chosen this way
since the largest value one can have in a given position when adding numbers in
base B with only digits 1 and 2 is 2n ≤ 2k+1. Let [σi]B be the following number
in base B

[σi]B =
l∑
i=1

γl+1−iB
l+1−i (25)

where γi is the ith component of the vector σ̄i, and l is its length. For example,
if σα = ((1, 1), (2, 2), (1, 1)) then [σα]B = 1B5 + 1B4 + 2B3 + 2B2 + 1B + 1.

To multiplex the information we compute

Λ =
n∏
i=1

E ([σi]B) (26)

28



Multiplexing schemes for homomorphic cryptosystems

where E is an encryption function with additive homomorphic properties such as
Benaloh or Paillier. To demultiplex, first compute

Γ = E−1

(
n∏
i=1

E ([σi]B)
)

=
n∑
i=1

[σi]B (27)

Since the base B is large enough, then
n∑
i=1

[σi]B will behave as vector sum, and

so this will allow us to reassemble the original CDMA signal. To accomplish that,
one has to compute

n∑
i=1

σi by reversing the process that constructed [σi]B from

σi as follows: first think of [σi]B as a vector σ̄i and then split this vector into a
vector of vectors of length 2k to get σi.

For example, if

σα = ((1, 1), (2, 2), (1, 1)) σβ = ((1, 2), (1, 2), (2, 1)) (28)

then B = 5, [σα]B = 1B5 + 1B4 + 2B3 + 2B2 + 1B+ 1 and [σβ ]B = 1B5 + 2B4 +
1B3 + 2B2 + 2B + 1. In this case the recovered Γ is

Γ = 2B5 + 3B4 + 3B3 + 4B2 + 3B + 2 (29)

To reassemble the original CDMA signal, first we think of Γ as the vector
(2, 3, 3, 4, 3, 2), and then we split this vector into the vector ((2, 3), (3, 4), (3, 2)).
Finally, this vector modulo 3 is ((2, 0), (0, 1), (0, 2)). To recover each individual
messages (1, 0, 1), (1, 1, 0) sent by α, and β respectively, one proceeds as the final
example in section 3.2.

Regarding the requirements we intended for our scheme, the first requirement
is true based on the results obtained in theorem 1. The second requirement is
satisfied since we used E which is assumed to be a secure cryptographic algorithm
such as Paillier. For the last requirement one has to check if [σi]B is one of the
components of Γ , this is an easy task for an individual knowing the proper private
key and a code [σi]B .

5. Computational viability

Given a set of codes C ⊆ Tk, a base B is chosen such that B ≥ 2k+1 + 1 as in
section 4.2. To estimate the size of the keys p, q needed in Paillier’s cryptosystem
one proceeds as follows. If each one of the individuals si want to send one bit
message, the worst case scenario is given by the input vm = (2, 2, . . . , 2) which
in base B is

[vm]B = 2B
2k − 1
B − 1 (30)

for example: if k = 7 there are 128 possible codes and so B might be 257. In this
case

log2 ([vm]B) ≈ 1018 (31)

29



Revista Elementos - Número 1 - Junio de 2011

so two primes p, q of length 509 (in bits) will be needed to guarantee [vm]B < pq.
Considering that a key size of 1024 bits is the recommended security standard
for algorithms such as RSA, the proposed scheme can be used in practice with
reasonable scalability.

For messages consisting of more than 1 bit, key sizes become rather large,
so the scheme would not be practical to carry more information. Despite this
limitation, the scheme is suitable for elections and auctions situations since
interaction among participants can be easily modeled by binary responses. One
such application is presented in the next section.

6. Possible applications

The proposed scheme has several applications in the field of secure voting and
secure auctions. In this section we describe one possible way to implement
anonymous auctions based on Paillier’s cryptosystem.

Let S be the seller and B = {b1, b2, . . . , bm} be the set of bidders, each bidder
bi generates the following set of pairs of codes Ci = {(aij , dij) : 1 ≤ j ≤ r} ⊆ Tn
where n is large enough to accommodate all the bidders, r is the maximum
number of rounds in the auction and the sets Ci are pairwise disjoint. In the
auction context, aij is meant to serve as an acceptance of the offer to a given
price set by the seller and dij as declining the offer. Each set Ci is digitally signed
with bi’s public key and sent to the seller in a secure way so the seller can keep
track of the auction process.

The auction will have several rounds; in the jth round S fixes a price and
the bidders are required to submit an answer accepting or declining the offer.
To this purpose a bidder bi sends (EPS (aij), Σi(aij)) if he/she is willing to pay
for the fixed price and sends (EPS (dij), Σi(dij)) otherwise. Here EPS is Paillier’s
cryptosystem encrypting function with a public key belonging to S and Σi is a
digital signature function for bi.

The seller verifies the digital signatures for every bidder against the data sent
during the setup stage to confirm the identity of the bidder, then computes

E−1

 m∏
j=1

EPS (xij)

 =
m∑
j=1

xij (32)

where xij is the answer issued by bi. Then the seller recovers the individual
components xij as in section 4.2; the winner is decided when there is only
one positive response xij . Since dot products usually have lower computational
complexity than decryption, the advantage of this approach lies in the fact that
a single decryption operation is needed.

This scheme guarantees privacy of the bidders, anonymity of them except for
the seller, non repudiation for bids and validity in the process, conditions for
secure auctions as stated in [9].

30



Multiplexing schemes for homomorphic cryptosystems

7. Related work

Other applications where homomorphic additive cryptosystems are central, in-
clude elections or voting systems. Another technique for counting votes is known
as a multi-counter [3], which consists of generating a counter for each available
candidate. To every candidate a segment of n continuous bits is assigned, so the
segment is able to accommodate at most 2n − 1 votes. If there are m candidates,
then mn bits would be needed to keep track of all the votes. When a voter casts
a vote for a particular candidate, his choice is added to the segment assigned to
that candidate. Arithmetic within each segment is performed without interfering
with the other segments. For example, in an election with 3 candidates A,B,C,
and 3 potential voters, each candidate is assigned with 2 bits. In case there were
28 voters instead of just 3, the number of bits assigned to each candidate has to
be incremented from 2 to 5. The aggregated result is shown in figure 1 where
two votes were cast for A, none for B and one for C.

A︷︸︸︷
1 0 0 0︸︷︷︸

B

C︷︸︸︷
0 1

Fig. 1. An example tally with two votes for A, none for B, and one for C.

Attacks to systems based on the previous counting method are possible,
these include: adding a vote several times to increase the count for a particular
candidate and subtracting votes via additive inverses. To thwart these kind of
attacks, proofs of the value contained are generated to check for the validity
of a ballot. However this kinds of integrity checking routines are performed as
an additional procedure. Regarding this, our system can be used to check the
validity of an election, since introducing a value outside the assigned set for a
given voting place, immediately invalidates the count, thus revealing the presence
of ballot tampering. This is achieved by adding another layer of error checking
based on the orthogonality of the chosen codes.

8. Conclusions

This article presented an alternative way to multiplex information in several
known cryptosystems with homomorphic properties. Even though the proposed
scheme for multiplicative homomorphism is not practical, the scheme presented
for additive homomorphisms is practical and presents advantages over other
known ways to achieve the same result in terms of computational complexity to
detect fraud in elections or auctions.

31



Revista Elementos - Número 1 - Junio de 2011

References

1. Abe, M. and Suzuki, K.: M+1-st price auction using homomorphic encryption.
Public Key Cryptography, pages 115–124, (2002)

2. Adida, B. and Rivest, R. L.: Scratch & vote: self-contained paper-based crypto-
graphic voting. WPES ’06: Proceedings of the 5th ACM workshop on Privacy in
electronic society, pages 29–40, New York, NY, USA, ACM. (2006)

3. Baudron O., Fouque P. A., Pointcheval, D., Stern, J. and Poupard G.: Practical
multi-candidate election system. PODC ’01: Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing, pages 274–283, New York,
NY, USA, ACM. (2001)

4. Benaloh, J. C. and Tuinstra, D.: Receipt-free secret-ballot elections (extended
abstract). In STOC, pages 544–553, (1994)

5. Clarkson, J. B.: Dense probabilistic encryption. Proceedings of the Workshop on
Selected Areas of Cryptography, pages 120–128, (1994)

6. Cramer, R., Gennaro, R. and Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. EUROCRYPT, pages 103–118, (1997)

7. Cramer, R. J., Franklin, M., Schoenmakers, L. A. and Yung, M.: Multi-authority
secret-ballot elections with linear work. Technical report, Amsterdam, The Nether-
lands, (1995)

8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, (1985)

9. Kikuchi, H., Harkavy, M. and Tygar, J. D.: Multi-round anonymous auction
protocols. Proceedings of the First IEEE Workshop on Dependable and Real-Time
E-Commerce Systems, pages 62–69. Springer-Verlag, (1999)

10. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
EUROCRYPT, pages 223–238, (1999)

11. Rivest, R. L., Shamir A., and Adleman, L. M.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, (1978)

12. Viterbi, A. J.: CDMA: principles of spread spectrum communication. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, (1995)

32


	Multiplexing schemes for homomorphic cryptosystems

