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Introduction

A Simulation of  a virtual qubits on a classical computer has 
been developed recently (Kamalov, 2006; Kamalov, 2009). 
From this, a classical computer model of  quantum entan-
gled states is proposed. The approach relies in a controlled 
correlation or anti-correlation of  the epr-Bohm type where 
the Bell inequalities are not violated. The authors of  (Ka-
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malov, 2006; Kamalov, 2009) argue that the construction of  
virtual quantum states is possible due to the hypothesis on 
the nature of  quantum states (Kamalov, 2001). Thus, they 
construct a correlated quantum objects from the stochastic 
geometrical background (i. e. gravitational fields and waves 
background) whose solutions are two particles oscillating 
with a suggestive random phase. This phase is the same in 
all of  the geometric area of  coherence (Kamalov, 2006). 

Simulación de una computadora cuántica 
virtual sobre una computadora clásica 
operando con un número infinito de bits 

Resumen. Una simulación en términos de 
un número infinito de señales analógicas de 
los qubits virtuales generados aleatoriamente 
es hecha. Las compuertas cuánticas asociadas 
con la computadora cuántica aleatoria son 
simuladas con amplificadores operacionales. 
La simulación satisface los cinco criterios de 
Di Vincenzo impuestos a una computadora 
cuántica operativa. La medición cuántica y 
entrelazamiento son explicados perfectamente. 
Dentro de nuestro enfoque, decoherencia no 
es un problema ya que el tiempo de ejecución 
de una compuerta es menor que el tiempo 
de calibración del amplificador operacional. 
En suma, la presente simulación de una 
computadora cuántica en señales y sistemas 
de Electrónica, es completa y proporciona 
información importante acerca de los detalles 
de decoherencia.
Palabras clave: qubits, compuertas, 
analógicas, señales, sistemas, entrelaamiento, 
SO(2), decoherencia.

Abstract. A simulation of  virtual and 
randomly generated qubits in terms of  
an infinite number of  analogical signals is 
performed. The quantum gates associated 
with the random quantum computer are 
simulated through operational amplifiers. 
The present simulation satisfies the five 
Di Vincenzo requirements imposed to an 
operative quantum computer. Quantum 
measurement and entanglement are perfectly 
well accounted for. Within our approach, 
decoherence is not a problem since the 
time of  execution of  a gate is less than 
the calibration time of  the operational 
amplifier. In short, the present simulation 
of  a quantum computer in electronics 
signals and systems is complete and gives 
important information about the details on 
decoherence.
Key words: qubits, gates, analogical signals, 
systems, entanglement, SO(2), decoherence.
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By proposing an algorithm for the coherent phase, in (Ka-
malov, 2006; Kamalov, 2009) a virtual qubit is modeled on 
a classical computer. At this point we want to stress, that 
Feynman’s original idea of  quantum calculation, relies on 
the impossibility of  calculating through a classical com-
puter, the action of  a transformation on a superposition 
of  entangled states (Feynman, 1982; Feynman, 1986). The 
above is a serious obstacle for the approach practiced in 
(Kamalov, 2006; Kamalov, 2009) although certainly this last 
is not completely wrong. That is, the approach is overall 
semi-classical since the discretization process for obtaining 
the Boolean values 0 and 1 is achieved without making use 
of  the azimuthally of  the single valued coherent phase. In 
this way, they simulate a virtual quantum computer with just 
one classical bit. Consequently, the agreement of  (Kamalov, 
2006; Kamalov, 2009) with Feynman’s quantum compu-
tation is not direct unless we work within a very limited 
semiclassical scheme.

On the other hand, it is worth to note that in the origi-
nal papers (Feynman, 1982; Feynman, 1986) nothing was 
mentioned about the limit case of  a classical computer 
operating with an infinite number of  classical bits. By this 
reason, in the present work the simulation of  the virtual 
quantum computer of  Kamalov et al (Kamalov, 2006) is 
done in terms of  a computer operating with an infinite 
number of  classical bits. The utility of  the present approach 
is the suggestion of  a new approach for generating quan-
tum computer technologies. The initialization state of  the 
respective non-finite classical machine is implemented by 
subjecting the resulting signal to a rectifier whose time of  
operation is very long. Furthermore, in the image of  the 
classical computer operating with an infinite number of  
bits, an unitary operation (quantum gate) is thought of  as 
phase shifting in discrete steps. 

The paper is organized as follows: In section II a brief  
review on the construction of  virtual quantum states is 
given, in Section III the equivalence between a virtual 
quantum computer and a computer of  an infinite number 
of  bits is proved. In section IV the initialization is discus-
sed and the CNOT gate is also simulated in the image of  
a computer of  an infinite number of  bits. Furthermore, 
quantum entanglement is also simulated in terms of  signals 
and systems. Finally in Conclusions a discussion about the 
results is given. 

1. Virtual quantum states

The theoretical basis for the construction of  virtual quan-
tum states is accounted in Ref. (Kamalov, 2009). In such an 

approach, the generator of  various non-interacting objects 
is the generating correlation (coherence) of  a stochastic 
geometrical background. The region of  the background 
localization is called the area of  coherence zone. The 
explanation about how this occurs is quite simple; let us 
consider a situation where the background of  stochastic 
gravitational fields and waves represent the effect of  the 
stochastic geometrical background. This makes that the 
mathematical metric fluctuates. To use the representation 
of  extended particles as localized self-gravitating structures 
within the Einstein-De Broglie approach, we obtain the self-
gravitating solution with the non-resonance quantization 
mechanism as a result (Kamalov, 2009). The accounting 
for the gravitational field in the vacuum within the Einstein 
theory (with invariants of  Ricci tensor R and metric tensor 
g) is the action function (Saharov, 1967; Saharov, 1975).           

1
16πG                                                (1) 

The resultant action of  all these gravitational fields with 
number j is the functional

                    
S0(ψ) = Σj = 1 Sj, ∞                                                               (2) 

being ψ(x) the external field given by the metric tensor gik 
of  the gravitational field (Kamalov, 2009). The metric in the 
linear approach is:
                                                                        
 gik = ηik + hik,                                                                 (3) 

where ηik is the Minkowski metric (unity diagonal matrix) 
and hµν satisfies the gravitational field equations

             
�hmn = 16πGSmn,                                                             (4) 

G being the gravitational constant, Smn the energy-momentum 
tensor of  gravitational field sources and � the d’Alembertian 
operator. The solution of  Eq. (4) is:

      
hµν = eµν exp(ikνxν) + e*  exp(-ikνxν),                           (5) 

the tensor hµν is called the metric perturbation, eµν is the 
polarization, and kν the 4-dimensional wave vector. In the 
approach of  Kamalov et al it is assumed that the metric per-
turbation is distributed in space with an unknown distribution 
function ρ = ρ(hµν).

The relative displacement δ of  two particles is described 
in General Theory of  Relativity by deviation equations 
(Kamalov, 2009):
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δi( j) = R      ( j)δm                      ,D2

D  2
dxk

d  
dxn

d  
i
kmn

                            
                                                                                       (6) 

where R      ( j)i
kmn  is the Riemann’s tensor with gravitational 

field number j of  the stochastic gravitational fields. Eq. (3) 
reduces to an equation of  two particles oscillations whose 
solution is:

          
d1( j) = d0exp(kaxa + iω( j)t)                                           (7) 

with a = 1, 2, 3. To sum over all of  the fields the phase trans-
forms as Φ( j) = ω( j)t → Φ(t) = ω(t)t, where t is the time 
coordinate. According with present approach, which is close 
of  Ref. (Kamalov, 2009) this random phase is the same for 
various quantum microobjects in the area of  this coherent 
background localization (Kamalov, 2004). This area is such 
that the correlation factor for these two particles is nonzero 
i. e. presence of  quantum entanglement. 

2. Equivalence of a virtual quantum computer and a 
computer of an infinite number of bits

The generation of  several dichotomic random signals with 
controlled mutual correlation factor out of  a single conti-
nuous stochastic process has been implemented (Kamalov, 
2006). In fact, in the Eqs. (37) and (38) of  Ref. (Kamalov, 
2006) a random signal was generated on its basis with the 
help of  the algorithm:

b(a,t) = sign{cos(Φ(t) + a)},                                    (8) 

where a is an arbitrary parameter and Φ(t) a random quan-
tity, which satisfy 〈Φ(t)〉 = 0. Paraphrasing the first line after 
Eq. (37) of  (Kamalov, 2006) "The random phase (37) can 
be used for simulating quantum computing via generating 
the following K random dichotomic functions". However, 
we want to stress that in the Kamalov's random dichotomic 
functions given by Eq. (8) it was not mentioned explicitly 
that there are an infinite number of  degrees of  freedom 
although certainly such a functions contains them. In fact 
he claims that "are arbitrary fixed phases". It is worth men-
tioning that the infinite number of  Boolean signals of  Eq. 
(8) is quantized due that,

       
Bn = sign{cos(Φ(t) + a + nπ/2)},                              (9)

is also a Boolean signal for each n = 0, ±1, ±2, ±3,.... The set 
of  bits Bn of  the above equation is non finite. The correlation 
of  signals b(a) and b(a + ∆a) is (Kamalov, 2006):

M(∆a) = 〈x(a)x(a + ∆a)〉 = 1- 
2|∆   |                              (10)

We observe that for a couple of  phases a1 = a + (n + 1)
π/2 and a2 = a + nπ/2 a classical computer is achieved be-
cause in such a case the entanglement (i. e. correlation) is 
(Kamalov, 2006):

M(∆a) = 1 -  
2|∆   |

 = 0. 

2.1. Experimental simulation of the probabilistic 
quantum states.
The central idea about quantum computers proposed by 
Feynman is that they cannot be simulated by a finite number 
of  classical bits. We point out that if  the computer works 
with an infinite number of  bits then there is not contra-
diction with Feyman's idea. Furthermore, the simulation 
is possible. 

Let us define the orthogonal O-bits in terms of  typical 
electrical engineering analogical signals as follows

         
|0) = a0

2  + Σ∞
n = 1 an cos(nπx),                                   (11)

|1) = Σ∞
n = 1 bn sin(nπx),                                            (12)

 
where the coefficients an y bn, which are obtained as usual by 
using the ortho normality of  the functions sin and cos, satisfy

(0|0) = |a0/2|2 + Σ∞
n = 1 |an|2 = 1,                                (13)

(1|1) = Σ∞
n = 1 |bn|2 = 1,                                               (14) 

(0|1) = (1|0) = 0.                                                       (15)

If  q: [0, 1] → R is a continuous periodic function then a 
general O-bit satisfy 

|q) = A|0) + B|1),                                                           (16)

 where |A|2 + |B|2 = 1.  

The way in which the quantum bits (dichotomic random 
signals) of  Ref. (Kamalov, 2009) can be experimentally 
simulated by the signals (16) is illustrated in figure 1 where 
micro controller 16F877A system has as input a random 
generation of  a function obtained from a C++ program, 
which is sent to a deriver LM741 (integrer) transformer 
from where a signal called basic O-bit emerges with a 
definite parity.
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 It is worth to observe that the simulations (11) and (12) 
of  the quantum bits involve an infinite number of  degrees 
of  freedom or component modes. In other words, the si-
mulation is done on a Hilbert space of  order 1.

3. Di Vincenzo criteria imposed to an operative 
quantum computer

In order to complete the simulation of  random quantum 
computers by classical computers of  an infinite number of  
bits, we need first to simulate the five requirements imposed 
by DiVincenzo (Nakahara, 2004) on operative quantum 
computers. These five requirements are the following:

a) The quantum degrees of  freedom: the qubits required 
to hold data and perform computation should be available as 
dimensions of  the Hilbert space of  a quantum system. This 
requirement is trivially simulated by the Eqs (11) and (12).

b) Initialization: this requirement indicates that it must be 
possible to place the quantum system in a fiducial starting 
quantum state. The idea is then to set the system in an “all spin 
down” configuration for a chain of  nuclear spins. This can be 
prepared by cooling the system to its ground state. The res-
pective simulation of  this initial state is achieved if  we start the 
signal with an |1) obtained from the procedure of  figure 1.

c) Precision Required (decoherence): this requirement in-
dicates that the quantum computer must be to a high degree 
isolated from coupling with the environment. That is, the en-
tanglement (Schroedinger, 1983; Schroedinger, 1935) between 
the quantum computer system and the environment system 
must be very small. Otherwise the system would collapse in a 
phase-breaking or decoherent state. This might cause lost of  
precision due that the time which has the quantum computer 
for performing logic primitive operations is negligible. In such 
a case an error correction theory would become necessary and 
this is precisely a paradigm of  quantum information theory. In 

figure 2 is sketched the way the O-bit is 
processed through a logic gate. In the 
signal image the noiseless requirement 
is achieved by an optimal calibration 
of  the device with which unwelcome 
fluctuations are avoided. The common 
source of  noise in the signal image 
come from the external currents to the 
apparatus. In this way, the above gauge 
must be complimented with an ideal 
isolation of  the system for repelling 
external currents which could deform 
the signal under study. 

d) One qubit logic gate: in Ref. (Os-
hima, 2003) it has been shown that in 
presence of  an appropriate magnetic 
field, which act on a single qubit there 
is a non adiabatic unitary operation on 
its wave function. This consists of  a 

Figure 1.    Experimental setup for the generation of an O-bit from a random signal.

Figure 2.    Experimental device for the signals simulation of the Control-Not gate.
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phase shifting exp(iΦg) which define an universal quantum 
gate. This gate can be accomplished in the probabilistic 
quantum computer as a simple modulation in the amplitu-
de of  the signal. This simulation is faithful since there is a 
correspondence one to one and onto between an unitary 
operation acting on the qubit and an appropriate modulation 
in the amplitude of  the signal. From the experimental point 
of  view it is a trivial task to implement this through the use 
of  a capacitor for eliminating the loops and a standard diode 
(Oppenheim, 1999). 

e) Quantum Measurement: the framework of  quantum 
mechanics requires a careful definition of  measurement. The 
issue of  measurement lies at the heart of  the problem of  
the interpretation of  quantum mechanics, for which there is 
currently no consensus (Feynman, 1982; Wheeler, 1983). 

Measurement is viewed in different ways in the many in-
terpretations of  quantum mechanics; however, despite the 
considerable philosophical differences, they almost univer-
sally agree on the practical question of  what results from a 
routine quantum physics laboratory measurement (Wheeler, 
1983). To describe this, a simple framework to use is the 
Copenhagen interpretation, the utility of  this approach has 
been verified countless times. All other interpretations are 
necessarily constructed so as to give the same quantitative 
predictions as this in almost every case.

The expected result of  the measurement is in general 
described by a probability distribution that specifies the 
likelihoods that the various possible results will be obtai-
ned (This distribution can be either discrete or continuous, 
depending on what is being measured e.g. parity, energy, 
momentum, etc). What is universally agreed, however, is 
that if  the measurement is repeated, without re-preparing 
the state, one finds the same result as the first measurement. 
As a result, after measuring some aspects of  the quantum 
state, we normally update the quantum state to reflect the 
result of  the measurement. This updating ensures that if  an 
immediate re-measurement is repeated without re-preparing 
the state, one finds the same result as the first measurement. 
The updating of  the quantum state model is called wave-
function collapse (Feynman, 1982; Wheeler, 1983), which 
can be formulated as follows.

Let the one qubit system be prepared in a state (in the signals 
and systems image this means to prepare the initial signal as a 
linear combination of  sinusoidal and cosenoid functions)

|ψ〉 = C0|0〉 + C1|1〉,                                                (17)

where |C0|2 + |C1|2 = 1. To measure the observable Ĥ it will 
be obtained the result h with probability given by:

|p = |〈ψ|Ĥ|ψ〉|2 = h0|C0|2 + h1|C1|2,                            (18) 
 
where Ĥ|n〉 = hn|n〉 with n = 0, 1. 

In Quantum Mechanics for the measurement process we 
need to take into consideration the measuring apparatus. 
By following Von Neumann (Neumann, 1955) we visualize 
the measurement as beginning with the surroundings S in-
teracting with our machine M in the ready state |ψ〉. During 
this “pre-measurement” phase, the interaction Hamiltonian 
entangles S with M. Assuming that the apparatus can be 
characterized by a single degree of  freedom (Srikanth, 2003), 
represented by the {|ζi〉} that span the pointer basis, one 
obtains the state

|ψ〉  |Ψ〉 = h0|C0|2|ζ0〉 + h1|C1|2|ζ1〉.                             (19)

Certainly it is not so simple to determine the general 
form of  the interaction which leads to a specific measu-
rement. However, in Quantum Computation and Quan-
tum Information very often it is suggested that the more 
general form of  the interaction of  the measurement is 
(Nielsen, 2000):

Ĥ = e-i(a1σx+a2σy+a3σz),                                          (20)

where a2
1+a2

2+a2
3 = 1. By the way, the above interaction leads 

to bit flipping through σx, a phase with σz or both within σy 
(Calderbank, 1997). 

Within the signal and system approach, the simulation of  
the measurement process, which is represented by the Eq. 
(20), is then achieved by simulating in terms of  signals the 
Pauli matrices σx, σy and σz. This means to perform appro-
priate changes in the phases of  the O-bits signals to turn |0) 
into i|1), |0) or |1) into i|0), -|1). 

f ) Simulation of  the Control-Not gate: in order to proceed 
further for a more complete signals and systems simulation 
of  the random quantum computer, we must be able of  simu-
lating the Control-Not gate. For this purpose the electronic 
circuit shown in the figure 2 is proposed.

The circuit of  figure 2 is fed through two channels correspon-
ding to the two input signals, which are simulating to the two 
initial qubits. This is composed of  the following components: 
oscilloscope, LM741 amplifier, capacitor, a 100 k Ohms, a 4045 
gate and two push buttons representing the two initial qubits. To 
push the buttons, the incoming current activates the gate, which 
decides the parity of  the output signal through the pin 3.  

g) Entanglement: quantum entanglement (Nielsen, 
2000) is a basic ingredient for Quantum Computation. 
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The definition of  an entangled state is that it is not 
entirely independent of  other states. This intuitive po-
int of  view led to the formulation of  the epr paradox 
(Einsten, 1935) where the validity of  the Quantum Me-
chanics was drastically questioned. In his paper of  1964 
John Bell (Bell, 1964) proved that quantum mechanics 
and Einstein's assumptions lead to different results. In 
recent Bell test experiments (Aspect, 1999) it has been 
shown that pure Quantum Mechanics is acceptable and 
that Einstein’s “local realism” does not. The so called 
Bell states are an important tool for the discussion of  
bi-partite entanglement which play a fundamental role 
for Quantum Computation and Quantum Information 
sciences (Nielsen, 2000).

A complete simulation of  the random quantum computer 
in terms of  signal and systems demands an accounting of  

quantum entanglement. In this way, we stress that this is 
possible if  we employ analogical signals since the digital ones 
are manipulated in terms of  classical logic gates, which are 
unsuitable for Quantum Computation. Thus, for accomplis-
hing simple bi-partite entanglement in terms of  signals, two 
random signals are produced as it is sketched in figure 1. Then 
the relative parity of  these two signals which are different, 
are made dependent each other to subject them to an TL084 
operational amplifier as it is illustrated in figure 3.

In figure 3 the amplifier works in such a way that if  the 
parity of  one analogical signal changes then the parity of  
the other changes too in such a way that the products of  
the parities is invariant under rotations. In this way, the 
simulation of  simple entanglement in terms of  analogical 
signals is done. 

Let us proceed now to simulate the so called Bell states:
 

|Φ+〉 = 1
2

( |0〉A⊗|0〉B+|1〉A⊗|1〉B) ,  
(21)

|Φ-〉 = 1
2

( |0〉A⊗|0〉B-|1〉A⊗|1〉B) ,  
(22)
      
|Ψ +〉 = 1

2
( |0〉A⊗|1〉B+|1〉A⊗|0〉B) , 

(23)
        
|Ψ-〉 = 1

2
(|0〉A⊗|1〉B-|1〉A⊗|0〉B). (24)

 
The idea is to employ a couple of  

amplifiers of  the type TL084. For 
instance, to create the signal state 
|Φ+〉 = 1

2 (|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B), a 
couple of  analogical states |0〉A and |0〉

B are first randomly created in an in-
dependent way in the form illustrated 
in figure 1. Then they are introduced 
in a TL084 operational amplifier with 
which the entangled signal 1

2 (|0〉A ⊗ 
|0)B is created, providing an amplitu-
de modulation 1 → 1

2
 is performed 

through the process. In exactly the 
same way it is created the entangled 
signal 1

2 (|1〉A ⊗ |1)B Therefore, to 
superpose the two above signals in the 
usual way, it is obtained the Bell signal 
|Φ+), which is maximally entangled 
since this cannot be decomposed by a 
product of  signals. This follows from 
the simple rules of  the product of  sine 

Figure 3.    The TL084 operational amplifi er which makes dependent each other the parities of two random 

signals of different parity.

Figure 4.    Generation of the maximally entangled Bell signal |Φ+). The respective Bell signal |Ψ +) is obtained in 

a very similar way.
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and cosine functions. All this is sketched in the figure 4. From 
such figure it is easily seen that the state |Φ+) is even under 
exchange of  the couples of  entangled signals A and B. On 
the other hand, the respective Bell signal |Ψ+) is obtained in 
a very similar way. 

In order to create the Bell signal |Φ-) we follow a 
procedure analog to the employed for the creation of  
the signal |Φ+). The only difference is that the input 
signal |1)A is firstly subjected to a phase shifting |1)A 
→ -|1)A. In this way the Bell signal |Φ-〉 = 1

2
(|0〉A ⊗ 

|0〉B + |1〉A ⊗ |1〉B), is obtained. This process is sket-
ched in figure 5. 

Conclusions

The construction of  virtual quantum states from a sto-
chastic geometrical background has been investigated. 
A simple method of  generating a dichotomic signal has 
also been accomplished. In fact, this can be thought of  
a probabilistic quantum computer. We argue here that a 
quantum computer can be simulated on a classical compu-
ter with an infinite degrees of  freedom. In fact, we have 
found a simulation of  the virtual quantum computer in 
terms of  a non finite number of  analogical signals defi-
ning the orthogonal qubits (O-bits). We have also verified 
that such simulation satisfies the five requirements im-
posed by Di Vincenzo imposed to an operative quantum 
computer. The decoherence time of  the random quantum 
computer is thought of  in the signals 
and systems image as the amplifiers 
calibration time which goes from 1 
µs to a few minutes. Decoherence 
is not a problem since the signals 
operation time is constrained to be 
less than the amplifiers calibration 
time. In particular, the Control-Not 
gate which has been successfully 
simulated in the present work has 
a time of  execution less than the 
calibration time, of  the amplifier 
LM741. Quantum entanglement 
is a basic tool of  communication 
and processing of  the information. 
By this reason, in the present work 
entanglement has been simulated 
through the operational amplifier 
TL084. Furthermore, by manipula-
tion of  the signals in a two amplifiers 
of  the type TL084, the simulation 

of  the four maximally entangled Bell states |Φ+〉, |Φ-〉, 
|Ψ+〉 and |Ψ-〉 has been done in terms of  four randomly 
generated analogical signals |Φ+), |Φ-), |Ψ+), and |Ψ-) 
respectively. By using the definitions of  odd and even 
functions we observe from figure 3 that the product of  
the parities is invariant in the amplifier TL084 (which 
simulates bi-partite entanglement) under rotations of  
the signals. This suggests that the system TL084 is a gate 
simulating an interaction that has a SO(2) symmetry.

Retrospective

The development of  an operative quantum computer is a 
novel paradigm of  the Computer Sciences Technologies. 
The subject becomes rather abstract for many scientist and 
students. The importance of  the present paper lies in the 
four following points. a) The operational amplifiers emplo-
yed in the present work are fed by signals (called O-bits) 
represented by |0) = (a0, a1, a2, a3,...) and |1) = (b0, b1, 
b2, b3,...) in Eqs. (11) and (12). The O-bits can be thought 
of  as a non-deterministic Turing machines with an infinite 
number of  degrees of  freedom. b) This helps to make more 
tangible and concrete the concept of  a quantum computer 
to non specialists. c) This prompts electronics science to 
develop more efficient chips for accounting for quantum en-
tanglement and control not gates. d ) The present approach 
is a novel technology for developing quantum computers, 
which may compete with others previously developed. 

Figure 5.    Generation of the maximally entangled Bell signal |Φ -). The respective Bell signal |Ψ -) is obtained in 

a very similar way.
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