
83CIENCIA ergo sum,  Vol.  19-1, marzo-junio 2012 Universidad Autónoma del Estado de México, Toluca, México. Pp. 83-92. 

Recepción: 21 de mayo de 2011
Aceptación: 14 de diciembre de 2011

Introduction 

A connected topological space Z is unicoherent if  whenever 
Z = A ∪ B, where A and B are closed, connected subsets of  Z, 
we have A ∩ B is connected. Let Z be a unicoherent topolo-
gical space and let z be an element of  Z, we say that z makes 
a hole in Z if  Z − {z} is not unicoherent. A compactum is 
a nondegenerate compact metric space. A continuum is a 
connected compactum. Given a continuum X , we define its 
hyperspaces: Fn(X ) as the set of  all nonempty subsets A of X 
such that A has at most n points, for each positive integer n. 
Such hyperspaces are considered with the Hausdorff  metric. 

S. Macías, in (Macías, 1999. Theorem 8), proved that, if X is 
a continuum and n is an integer bigger than two, then Fn(X ) 
is unicoherent. E. Castañeda in (Castañeda, 1998) gave a uni-
coherent continuum X such that F2(X ) is not unicoherent. 

The following problem arises in (Anaya, 2007): 
Problem. Let H(X ) be a hyperspace of  X. For which ele-
ments A ∈ H(X ), A makes a hole in H(X ). 

Some partial solutions of  this problem are presented in 
(Anaya, 2007), (Anaya, 2011) and (Anaya et al. , 2010). In the 
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Haciendo hoyos en los segundos productos 
simétricos de dendritas y algunos abanicos
Resumen. Sea X un continuo métrico tal que 
el segundo producto simétrico de X, F2(X ) es 
unicoherente. Sea A ∈ F2(X ), A se dice que 
hace un hoyo a F2(X ), si F2(X ) − {A} no es 
unicoherente. En este artículo, caracterizamos 
a los elementos A ∈ F2(X ) tales que A hace 
un hoyo a F2(X ), donde  X es una dendrita o 
un abanico homeomórfico al cono sobre un 
espacio métrico compacto. 
Palabras clave: continuo, producto simétrico, 
propiedad b), unicoherencia. 

Abstract. Let X be a metric continuum such 
that the second sym¬metric product of  X, 
F2(X ), is unicoherent. Let A ∈ F2(X ), A is said 
to make a hole in F2(X ), if  F2(X ) − {A} is 
not unicoherent. In this paper, we characterize 
the elements A ∈ F2(X ) such that A makes a 
hole in F2(X ), where X  is either a dendrite or a 
homeomorphic fan to the cone over a compact 
metric space. 
Key words: continuum, symmetric products, 
property b), unicoherence. 

current paper, we are presenting the solution to this problem 
when X is either a dendrite or a fan homeomorphic to the 
cone over a compactum and H(X ) = F2(X ).  

1. Notation and auxiliary results 

We use N and R to denote the set of  positive integers and 
the set of  real numbers, respectively. Let Z be a topological 
space and let A be a subset of  Z, the symbol cl(A) denotes 
the closure of  A in Z. An arc is any space homeomorphic 
to [0, 1]. A free arc in a continuum X is an arc pq, where 
p and q are the end points of  pq, such that pq − {p, q} is 
open in X. A point z in a connected topological space Z is a 
cut point of  (non-cut point of ) Z provided that Z − {z} 
is disconnected (is connected). A map f  : Z → S1, where Z 
is a topological connected space and S1 is the unit circle 
in the Euclidean plane R2, has a lifting if  there exists a 
map h : Z → R such that f  = exp◦h, where exp is the map 
of  R onto S1 defined by exp(t ) = (cos(2πt ), sin(2πt )). A 
connected topological space Z has property b) if  each f  : 
Z → S1 has a lifting. 
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Let Y be a continuum arcwise connected, by an end point of 
Y, we mean an end point in the classical sense, which means 
a point p of  Y that is a non-cut point of  any arc in Y that 
contains p, the set of  all end points of  Y is denoted by E(Y ). 
A point p of  a continuum X is a ramification point provided 
that p is a point which is a common end point of  three or 
more arcs in X that are otherwise disjoint and the set of  all 
ramification point of X is denoted by R(X ). 

A metric space X is called Peano space provided that for 
each p ∈ X and each neighborhood V of  p, there exists 
a connected open subset U of X such that p ∈ U ⊂ V. A 
Peano continuum X is said to be a dendrite if X contains no 
simple closed curve. A fan is an arcwise connected, heredi-
tarily unicoherent continuum with exactly one ramification 
point (hereditarily unicoherent means each subcontinuum 
is unicoherent). 

A subspace Y of  a topological space Z is a deformation 
retract of  Z if  there exists a map H : Z × [0, 1] → Z such 
that, f o r  each x ∈ Z, H(x , 0) = x , H(Z × {1}) = Y and, for 
each y ∈ Y, H(y, 1) = y. We say that a topological space, Z, 
is contractible if  there exists z ∈ Z, such that {z} is a defor-
mation retract of  Z. 

Let Z be a topological space. Given two subsets K1 and K2 of  
Z, we define 〈K1, K2 〉 = {{x, y} ⊂ Z : x ∈ K1 and y ∈ K2}. 

The following proposition is easy to prove. 
Proposition 1.1. If X is a continuum and K1, K2 are sub-

continua of X , then 〈K1, K2〉 is a subcontinuum of  F2(X ), and 
it does not have cut points, when K1, K2 are nondegenerate. 

Proposition 1.2. Let X be a Peano continuum and let p ∈ 
X be such that X − {p} has at least three components. Then 
there exist two nondegenerate subcontinua Y1 and Y2 of X 
such that p is a cut point of  either Y1 or Y2, Y1 ∩ Y2 = {p} 
and Y1 ∪ Y2 = X. 

Proof. Let F0 be a component of X − {p} and let K0 = {C 
⊆ X − {p} : C is a component of X − {p} and C ≠ F0}. We 
consider Y1 = F0 ∪ {p} and Y2 = K0 ∪ {p}. It is easy to see that 
Y1 and Y2 satisfy the required properties.                           □ 

Proposition 1.3. Let X be a Peano continuum and let p 
and q be different cut points of  X. Then there exist three 
nondegenerate subcontinua Q1, Q2 and Q3 of X such that 
p and q are non-cut points of  Q1, p ∈ Q2, q ∈ Q3, Q1 ∩ Q2 
= {p}, Q1 ∩ Q3 = {q}, Q2 ∩ Q3 = ; and X = Q1 ∪ Q2 ∪ Q3. 

Proof. Let C0 be the component of X − {p} such that 
q ∈ C0. Notice that C0 ∪ {p} is a subcontinuum of  X. Since 
q is a cut point of X , q is a cut point of  C0 ∪ {p}. Let D0 be 
the component of  (C0 ∪ {p}) − {q} such that p ∈ D0. 

We consider Q1 = D0 ∪ {q}, Q2 = {C ⊂ X − {p} : C is a 
component of X − {p} and C ≠ C0} ∪ {p} and Q3 = {D ⊆ 
(C0 ∪ {p}) − {q} : D is a component of  (C0 ∪ {p} − {q} and 

D ≠ D0} ∪ {q}. It is not difficult to show that Q1, Q2 and Q3 
satisfy the required properties.                                          □

2. Dendrites

Given a dendrite X. It is known that F2(X ) is unicoherent (see 
Ganea, 1954). In this section, we characterize those elements 
A of  F2(X ) such that A makes a hole in F2(X ). 

Given x ∈ X. The order of  x in X we mean the Menger-
Urysohn order, see (Kuratowski, 1968, §51, I, p. 274), or 
equivalently (see, for example Kuratowski, 1968, §51, I, p. 
274) the classical sense, i. e., the number of  arcs emanating 
from x and disjoint out of  x (see Charatonik, 1962, p. 229 
and Lelek, 1961, p. 301), we will denote it by ord(x , X ). This 
number is equal to the number of  components of  X − {x} 
(see Whyburn, 1942: 11, (1.1), (iv), p. 88). Notice that the 
points of  order 1 are end points of  X , the points of  order 
2 or more are cut points of  X and the points of  order 3 or 
more are ramification points of  X. The symbol R2(X ) denotes 
the set of  all points of  X of  order 2. Notice that, X = E(X ) 
∪ R2(X ) ∪ R(X ). 

Throughout this section, X will denote a dendrite. 
Theorem 2.1. Let p be a ramification point of  X. Then 

{p} makes a hole in F2(X ). 
Proof. By Proposition 1.2, there exist two nondegenerate 

subcontinua Y1 and Y2 of  X such that X = Y1 ∪ Y2, Y1 ∩ Y2 = 
{p} and p is a cut point of  either Y1 or Y2. Suppose that p is 
a cut point of  Y1. Let A1 = F2(Y1) − {{p}} and A2 = (F2(Y2) 
∪ 〈Y1, Y2〉) − {{p}}. 

Note that A1 = F2(Y1) ∩ (F2(X ) − {{p}}), A2 = (F2(Y2) ∪ 
〈Y1, Y2〉) ∩ (F2(X ) − {{p}}). Then, by Proposition 1.1, A1 and 
A2 are closed subsets of  F2(X ) − {{p}}. Let q ∈ Y2 − {p}. 
Then {p, q} ∈ (F2(Y2) ∩ 〈Y1, Y2〉) − {{p}}. 

Given i ∈ {1, 2}. Note that F2(Yi) − {{p}} = 〈Yi , Yi〉 − 
{{p}}. Then, by Proposition 1.1, F2(Yi) − {{p}} and 〈Y1, 
Y2〉 − {{p}} are connected. So A1 and A2 are connected. 
Clearly, F2(X ) − {{p}} = A1 ∪ A2. Notice that A1 ∩ A2 = 
〈{p}, Y1〉 − {{p}} and {p} is a cut point of  〈{p}, Y1〉. So A1 
∩ A2 is not connected. Hence, F2(X ) − {{p}} is not uni-
coherent.                                                                           □ 

Theorem 2.2. Let p and q be different cut points of  X. 
Then {p, q} makes a hole in F2(X ). 

Proof. By Proposition 1.3, there exist three nondegenerate 
subcontinua Q1, Q2 and Q3 of  X such that p and q are non-
cut points of  Q1, p ∈ Q2, q ∈ Q3, Q1 ∩ Q2 = {p}, Q1 ∩ Q3 
= {q}, Q2 ∩ Q3 = ; and X = Q1 ∪ Q2 ∪ Q3. 

We consider the sets A1 = (F2(Q1) ∪ F2(Q2) ∪ F2(Q3)) − 
{{p, q}} and A2 = (〈Q1,Q2〉 ∪ 〈Q1,Q3〉 ∪ 〈Q2,Q3〉) − {{p, q}}. 
Clearly, F2(X ) − {{p, q}} = A1 ∪ A2. Using Proposition 2.1, 
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it can be proved that A1 and A2 are closed and connected 
subsets of  F2(X ) − {{p, q}}. Since A1 ∩ A2 = (〈{p}, Q1 ∪ 
Q2〉 ∪ 〈{q}, Q1 ∪ Q3〉) − {{p, q}}, A1 ∩ A2 is disconnected. 
Therefore F2(X ) − {{p, q}}is not unicoherent.                 □ 

Theorem 2.3. Let p be an end point of  X and let q ∈ X. 
If  p ∉ cl(R(X )), then {p, q} does not make a hole in F2(X ). 

Proof. Since p ∉ cl(R(X)), there exists an arc I contained in 
R2(X) ∪ {p}such that p ∈ E(I) and I ≠ X. Let v ∈ E(I) − {p}. 
Let f : I → [0, 1] be a homeomorphism such that f(p) = 1 and 
f(v) = 0. We define the function g : I × [0, 1] → I by g(x, t) 
= f−1((1 − t)f(x)). Notice that g is a map such that, for each t 
∈ [0, 1], g(v, t) = v, for each x ∈ I, g(x, 0) = x and g(x, 1) = v. 
Moreover, 

g(x , t ) = p if  and only if  x = p and t = 0.                          (1)

We define the function h : X × [0, 1] → X by 

h(x, t ) = g(x, t ),   if x ∈ I,
     x,      if x ∈ cl(X − I ).{

Since cl(X − I ) = (X − I ) ∪ {v}, it is easy to prove that h is 
a map. Notice that, for each y ∈ cl(X − I ), h(y, 1) = y and, for 
each x ∈ X , h(x , 0) = x and h(x , 1) ∈ cl(X − I ). Then cl(X − I ) 
is a deformation retract of  X. 

Now, we define G : (F2(X) − {{p, q}}) × [0, 1] → F2(X) − 
{{p, q}} by 

G({x , y}, t ) = {h(x , t ), h(y, t )}. 

By (1), G is well defined. It is easy to prove that G is continuous. 
Notice that, for each {x , y} ∈ F2(X ) − {{p, q}}, G({x , y}, 0) = 
{x , y}, G((F2(X ) − {{p, q}}) × {1}) = F2(cl(X − I )) and, for 
each {u , v} ∈ F2(cl(X − I )), G({u , v}, 1) = {u , v}. Hence, 
F2(cl(X − I )) is a deformation retract of  F2(X ) − {{p, q}}. 
Since cl(X − I ) is a dendrite (see Nadler 1992, 10.6 Corollary, 
p. 167), F2(cl(X − I ) is unicoherent. So, F2(X ) − {{p, q}} is 
unicoherent (see Eilenberg, 1936, §3. Theorem 7, p. 73).    □ 

Given a continuum X , 2X and C(X ) will denote the hy-
perspace of  all closed and nonempty subsets of  X and the 
hyperspace of  all nonempty subcontinua of  X , respectively. 
Let K(X ) ⊆ 2X. A Whitney map for K(X ) is a map µ : K(X ) 
→ [0, 1] that satisfies the following two conditions: 

1. or any A, B ∈ K(X ) such that A ⊆ B and A ≠ B, µ(A) 
< µ(B); 

2. µ(A) = 0 if  and only if  A ∈ K(X ) ∩ {{x} : x ∈ X}. 
Let w ∈ X. Then X is arc-smooth at w provided that there 

exists a continuous function αw : X → C(X ) that satisfies the 
following conditions: 

1. αw(w) = {w}, 
2. for each y ∈ X − {w}, αw(y) is an arc from w to y, and 
3. if  x ∈ αw(y), then αw(x ) ⊆ αw(y). 
Theorem 2.4. Let p be an end point of  X and let q ∈ X. 

If  p ∈ cl(R(X )), then {p, q} does not make a hole in F2(X ). 
Proof. We can consider w0 ∈ X such that it is either any 

point of  R(X ), if  p = q, or an element of  R(X ) such that p 
and q belong to different components of  X − {w0}, if  p ≠ q. 
Let I be the arc joining p and w0 in X. Given w ∈ R(X ) ∩ 
I − {w0}. Since X is arc-smooth at w (see Illanes and Nadler 
1999. p. 226), there exists αw as above. Let W(w) be the 
subcontinuum of  X such that W(w) ∩ I = {w} and X − W(w) 
has two component. Let µ be a Whitney map for C(X ) (see 
Illanes and Nadler 1999. Theorem 13.4, p. 107). We define 
the following functions Lw : W(w) → [0, 1] and gw : W(w) × 
[0, 1] → W(w) by Lw(x ) = µ(αw(x )) and

                                       x,                      if Lw(x) ≤ 1 − t,
gw(x, t) =    the unique point y ∈   w(x)   
                   such that Lw(y) = 1 − t,        if Lw(x) ≥ 1 − t, 

{ α
 

respectively. We are going to prove that gw is continuous. Let 
{(xn, tn)}∞

n=1 be sequence in W(w) × [0, 1] and let (x0, t0) ∈ W(w) 
× [0, 1] be such that lim(xn, tn) = (x0, t0). Taking subsequences 
if  necessary, we may consider the following two cases: 

Case 1. Lw(xn) ≤ 1 − tn for each n. 
Since Lw is a map and limtn = t0, Lw(x0) ≤ 1 − t0. Hence, 

limgw(xn, tn) = limxn = x0 = gw(x0, t0). 
Case 2. L(xn) ≥ 1 − tn for each n. 
Let yn ∈ αw(xn) be such that Lw(yn) = 1 − tn. Taking sub-

sequences if  necessary, we may suppose that there exists 
y0 ∈ X such that limyn = y0. Then αw(y0) = limαw(yn) ⊆ 
limαw(xn) = αw(x0). Hence, y0 ∈ αw(x0). Since Lw is a map, 
Lw(x0) ≥ 1 − t0 and L(y0) = limL(yn) = lim(1 − tn) = 1 − t0. 
Therefore gw(x0, t0) = y0 = limyn = limgw(xn, tn). 

We conclude that gw is a map. Notice that, for each x ∈ 
W(w), gw(x , 0) = x and gw(x , 1) = w, and for each t ∈ [0, 1], 
gw(w, 1) = w. Then {w} is a deformation retract of  W(w). 

Let Y be the subcontinuum of  X such that Y ∩ I = {w0} 
and X − Y has one component. We define the function 
g : X × [0, 1] → X by 

g(x, t )  =  {
Clearly, g is well defined. In order to proof  that g is con-

tinuous, we consider {(xn, tn)}∞
n=1 a sequence in X × [0, 1] 

and (x0, t0) ∈ X × [0, 1] such that lim(xn, tn) = (x0, t0). Taking 
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subsequences if  necessary, we may consider the following 
three cases: 

Case 1. xn ∈ Y ∪ I for each n. 
Since Y ∪ I is a closed subset of  X, x0 ∈ Y ∪ I. So, 

limg(xn, tn) = g(x0, t0). 
Case 2. There exists w ∈ (R(X ) ∩ I ) − {w0} such that 

xn ∈ W(w) for each n. 
Since W(w) is a closed subset of  X , x0 ∈ W(w). Then 

limg(xn, tn) = limgw(xn, tn) = gw(x0, t0) = g(x0, t0). 
Case 3. For each n, there exists wn ∈ (R(X ) ∩ I ) − {w0} 

such that xn ∈ W (wn) and wn ≠ wm, if  n ≠ m. 
We may assume that there exist A ∈ C(X ) and y ∈ I 

such that limW(wn) = A and limwn = y. Then y ∈ A. We 
prove that A = {x0}. Let z ∈ A. Then there exists a se-
quence {zn}∞

n=1 of  X such that limzn = z and zn ∈ W(wn) 
for each n. We consider αy and αz as above (see Illanes 
and Nadler 1999. p. 226). By the continuity of  αy and 
αz, {y} = αy(y) = limαy(wn) and limαz(zn) = αz(z) = {z}. 
Since X is a dendrite, αy(wn) ⊆ αz(zn) for each n. Hence, z = 
y. Since x0 ∈ A, A = {x0}. Then limW(wn) = {x0}. Since 
gwn

(xn, tn) ∈ W(wn) for each n, limg(xn, tn) = limgwn
(xn, 

tn) = x0 = g(x0, t0). 
Hence, g is a map. Since for each x ∈ X , g(x , 0) = x and 

g(x , 1) ∈ Y ∪ I, and for each y ∈ Y ∪ I, g(y, 1) = y, Y ∪ I is 
a deformation retract of  X. Notice that

g(x , t ) = p if  and only if  x = p                                          (2)

and 

g(y, t ) = q if  and only if  y = q                                          (3) 

We consider the function G : F2(X ) − {{p, q}}) × [0, 1] → 
F2(X ) − {{p, q}}by 

G({x , y}, t ) = {g(x , t ), g(y, t )}. 

By (2) and (3), G is well defined. It can be proved that G 
is a map. Notice that, for each {x, y} ∈ F2(X ) − {{p, q}}, 
G({x, y}, 0) = {x, y}, G((F2(X ) − {{p, q}}) ×{1}) = F2(Y ∪ 
I ) and, for each {u, v} ∈ F2(Y ∪ I ), G({u, v}, 1) = {u,v}. 
Then F2(Y ∪ I ) − {{p, q}} is a deformation retract of  
F2(X ) − {{p, q}}. Since Y ∪ I is a dentrite (see Nadler 1992, 
10. 6 Corollary, p. 167) and p ∉ cl(R(Y ∪ I ), by Theorem 
2.3, F2(Y ∪ I ) − {{p, q}} is unicoherent. Therefore F2(X) 
− {{p, q}} is unicoherent (see Eilenberg, 1936, §3, Theo-
rem 7, p. 73).  

The proof  of  the following Corollary follows from the 
Theorems 2.3 and 2.4. 

Corollary 2.5. Let p be an end point of  X and let q ∈ X. 
Then {p, q} does not make a hole in F2(X ). 

Theorem 2.6. Let p ∈ X such that ord(p , X ) = 2. Then 
{p} does not make a hole in F2(X ). 

Proof. It can be proved that there exist two nondegenerate 
subcontinua F and K of  X such that p ∈ E(F ) ∩ E(K ) and X 
= F ∪ K . So, F2(X ) − {{p}} = (F2(F ) − {{p}}) ∪ (F2(K ) − 
{{p}}) ∪ (〈F , K〉 − {{p}}) . By Corollary 2.5, F2(F ) − {{p}} 
and F2(K ) − {{p}} are unicoherent. 

We can prove that 〈F , K〉 − {{p}} is homeomorphic to 
F × K − {(p , p)}. Since F and K are dendrites (see Nadler 
1992, 10.6 Corollary, p. 167) and p ∈ E(F ) ∩ E(K ), it can be 
proved that F − {p} and K − {p} are contractibles. Then 
F − {p} and K − {p} are unicoherent (see Eilenberg, 1936, 
§3, Theorem 7, p. 73). By Theorem 5 of  (Eilenberg, 1936, 
§3, p. 72), (F − {p} × (K − {p}), (F − {p}) × {p} and {p}× 
(K − {p}) are unicoherent. Hence, ((F − {p} × (K − {p})) 
∪ ((F − {p}) × {p}) ∪ ({p} × (K − {p})) = F × K − {(p , p)} 
is unicoherent (see Eilenberg, 1936, §3, Theorem 4, p. 72). 

Since F2(F ) − {{p}}, F2(K ) − {{p}} and 〈F , K〉 − {{p}} 
are unicoherent, F2(X ) − {{p}} is unicoherent (see Eilenberg, 
1936, §3, Theorem 4, p. 72). 

2.1. Classification
Theorem 2.7. Let X be a dendrite and let {x , y} ∈ F2(X ). 

Then {x , y} makes a hole in F2(X ) if  and only if  x ≠ y and 
neither x nor y is an end point of  X , or x = y and x is a 
ramification point. 

Proof. Necessity, let x and y be elements of  X such that 
{x , y} makes a hole in F2(X ). If  x = y, by Theorem 2.6 and 
Corollary 2.5, x is a ramification point of  X. On the other 
hand, if  x ≠ y, by Corollary 3.5, neither x nor y is an end 
point of  X. 

The sufficiency follows from Theorems 2.1 and 2.2.     □ 

3. Fans

In this section, we characterize those elements A of  F2(X ) 
such that A makes a hole in F2(X ), when X is a fan homeomor-
phic to the cone over a compactum. 

The unique ramification point of  a fan X is called the top 
of X , τ always denotes the top of  a fan. 

Whenever X is a fan homeomorphic to the cone over a 
compactum, S. Macías proved that, for each n ≥ 2, Fn(X ) is ho-
meomorphic to the cone over a continuum (see Macías, 2003). 
Then, for each n ≥ 2, Fn(X ) is contractible (see Rotman, 1998. 
Theorem 1.11, p. 23). Hence, given n ≥ 2, Fn(X ) has property 
b) (see Anaya, 2007. Proposition 9, p. 2001), and so it is unico-
herent (see Eilenberg, 1936, Theorems 2 and 3, pp. 69 and 70). 

□
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Let X be a fan which is homeomorphic to the cone over a 
compactum. We may assume that X is embedded in R2 (see 
Eberhart, 1969, Corollary 4, p. 90 and Charatonik, 1967, 
Theorem 9, p. 27), τ = (0, 0) is the top of  X , the legs of  X 
are convex arcs of  length one (see Macías and Nadler 2002, 
4.2). Let E(X ) = {eλ}λ∈Λ. Then X is the cone over E(X ) (see 
Macías and Nadler 2002, 4.2). Given two points a and b of  
R2, [a, b] denotes the convex arc in R2 whose end points are 
a and b, and ||a|| denotes the norm of  a in R2. Each leg of  
X , [τ, eλ], is parameterized for {reλ : r ∈ [0, 1]}. Note that 
for r = 0, reλ = τ. 

A fan X with top τ is said to be smooth provided that if  
{xn}∞

n=1 is a sequence in X converging to a point x ∈ X , then 
the sequence {τxn}∞

n=1 of  the arcs in X converges, in the hy-
perspace of  subcontinua of  X , to the arc τx. For example, 
the cone over a compact totally disconnected metric space 
is easily seen to be a smooth fan. Conversely, it is shown in 
(Eberhart, 1969) that every smooth fan is homeomorphic 
with a subcontinuum of  the Cantor fan. 

Throughout this section, X will denote a fan which is ho-
meomorphic to the cone over a compactum. 

We denote Cut(X ) = {x ∈ X − {τ} : x is a cut point in X} 
and NCut(X ) = {x ∈ X − E(X ): x is a non-cut point in X}. 

It is convenient to have the following proposition in order 
to write and prove some of  the subsequent theorems below. 

Proposition 3.1. If  p ∈ X − ({τ} ∪ E(X )), then: 
a ) p ∈ Cut(X ) if  and only if  p belongs to some free convex 

arc of  length one in X , 
b ) p ∈ NCut(X ) if  and only if  p belongs to some convex 

arc of  length one, Z, such that each q ∈ Z − {τ} is a limit 
point of  X − Z. 

Proof. The proof  follows from X is a fan homeomorfic 
to the cone over a compactum.                                          □

The proof  of  the following two theorems may be modeled 
from the proofs of  Theorems 2.1 and 2.2, respectively. 

Theorem 3.2. {τ} makes a hole in F2(X ). 
Theorem 3.3. If  p and q are different elements of  Cut(X ), 

then {p, q}makes a hole in F2(X ). 
Theorem 3.4. If  p ∈ Cut(X ), then {p} does not make a 

hole in F2(X ). 
Proof. Consider a free arc Z in X such that {p} belongs to 

the interior of  F2(Z ) in F2(X ). Thus, F2(Z ) is a closed neigh-
borhood of  {p}. It is not difficult to prove that the boundary 
of  F2(Z) in F2(X ) is connected. Since F2(Z) is homeomorphic 
to a 2-cell and {p} is an element of  its manifold boundary, 
then F2(Z ) − {{p}} is contractible. Then F2(Z ) − {{p}} has 
property b) (see Anaya, 2007. Proposition 9, p. 2001). By 
Proposition 2.4 of  (Anaya, 2011), we have F2(X ) − {{p}} 
has property b).                                                                 □ 

Theorem 3.5. If  p ∈ Cut(X ), then {τ, p} makes a hole 
in F2(X ). 

Proof. Let Z be a leg of  X such that p ∈ Z. Let A1 = 
F2(Z ) − {{τ, p}} and A2 = (F2(Y ) ∪ 〈Y, Z〉) − {{τ, p}}, where 
Y = (X − Z ) ∪ {τ}. 

It is easy to prove that A1 ∪ A2 = F2(X ) − {{τ, p}}, and 
A1, A2 are connected closed subsets of  F2(X ) − {{τ, p}}. 
Since A1 ∩ A2 is the set {{τ, x} : x ∈ Z − {p}} and it is 
disconnected, F2(X ) − {{τ, p}} is not unicoherent.           □

Theorem 3.6. If  A0 ∈ F2(X ) is such that A0 ∩ E(X ) ≠ ;, 
then A0 does not make a hole in F2(X). 

Proof. By Theorem 3.1 from (Macías, 2003), F2(X ) is ho-
meomorphic to the cone over the set B = {{A ∈ F2(X ) : 
eλ ∈ A} : λ ∈ Λ}. Therefore, F2(X ) − {A0} is homeomorphic 
to the cone over the set B minus the element {(A0, 0)}. Then, 
F2(X ) − {A0} is contractible. Hence, F2(X ) − {A0} has proper-
ty b). Therefore F2(X ) − {A0} is unicoherent (see Eilenberg, 
1936, Theorems 2 and 3, pp. 69 and 70).                           □ 

The last result is true for any hyperspace of  X that appears 
in Theorem 3.1 from (Macías, 2003). 

Lemma 3.7. Let X be a continuum. We suppose that the-
re exists a connected subset A in 2X that has property b), 
a sequence of  subcontinua {An}∞

n=0 in A, B ∈ ∞∩
n=0

 An and a 
sequence {An}∞

n=0 of  2X such that A0 = limAn and, for each 
n ∈ N ∪ {0}, An ∈ An. 

If  f : A → S1 is a map, t0 ∈ exp−1( f (B)) and, for each 
n ∈ N ∪ {0}, there exists a map hn : An → R such that f |An

 
= exp°hn and hn(B) = t0, then h0(A0) = limhn(An). 

Proof. Since A has property b), there exists a map h : A    → 
R such that f = exp°h and h(B) = t0. Given n ∈ N ∪ {0}. 
Since hn and h|An

 are liftings of  f |An
 and h|An

 (B) = hn(B), 
by (Greenberg and Harper, 1981, 5.1), h|An

 = hn. Hence, 
h0(A0) = limhn(An).                                                            □ 

Theorem 3.8. If  p ∈ NCut(X ), then {p} does not make 
a hole in F2(X ). 

Proof. By Proposition 8 of  (Anaya, 2007), we only need 
to prove that there exist two connected and closed subsets 
of  F2(X ) − {{p}}, A and D, which have property b) and the 
intersection of  them is connected. 

Suppose that p = 3
4 eλ0, for some eλ0 ∈ E(X ). For any λ, 

γ ∈ Λ, let 

eλ, eλ  ,      eγ, eγ    ∪  {teλ, teγ} : t ∈  0,1
2

1
2

1
2Aλ,γ =

































and 

A =  
λ,γ∈Λ

 Aλ,γ − {{p}}. 
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Let Y = 
λ∈Λ

 [τ, 1
2  eλ], for any λ ∈ Λ, let Dλ = 〈Y, [1

2 eλ, eλ]〉 
and let

D = F2(Y ) ∪  





λ∈Λ

Dλ



. 

Clearly, F (X ) − {{p}} = A ∪ D. 
Since, for any λ, γ ∈ Λ, {τ} ∈ Aλ,γ, we obtain that A is 

connected. Also, since for any λ ∈ Λ, {1
2 eλ} ∈ Dλ ∩ F2(Y ), 

we have that D is connected. 
Notice that 

A ∩ D = 
λ,γ∈Λ

 
















1
2

1
2

1
2

























{teλ, teγ} : t ∈  0,         ∪         eλ  ,      eγ, eγ .

Hence, A ∩ D is connected. 
Since X is embedded in R2, with τ = (0, 0) and its legs are 

convex arcs of  length one, it is easy to prove that A and D 
are closed subsets of  F2(X ) − {{p}}. 

We are going to prove that D has property b). Since Y is a 
fan homeomorphic to the cone over a compactum, F2(Y ) is 
homeomorphic to the cone over a continuum (see Macías, 
2003). By Theorem 1.11 of  (Rotman, 1998), F2(Y ) is con-
tractible. Therefore, F2(Y ) has property b). Since F2(Y ) is 
a deformation retract of  D, D has property b) (see Anaya, 
2007. Proposition 9). 

We will prove that A has property b). Let f  : A → S1 be 
a map. We do the proof  in two steps. First we are going to 
prove that there exist two contractible subsets of  A whose 
union is A and after that we will define the lifting of  f. 

Let B = (A − Aλ0, λ0) ∪ {{τ}}. 
Notice that A = B ∪ (Aλ0, λ0 − {{p}}). 
Now we are going to show that B and Aλ0, λ0 − {{p}} are 

contractible. Notice that 

3
4

1
2

1
2


















  



  


































 
1
2

1
2

1
2


















  






























and {3
4
 eλ0} belongs to the manifold boundary of  

F2([1
2

 eλ0, eλ0]). Hence, Aλ0, λ0 − {{p}} is contractible. 
If  we define the following map H : B   × [0, 1] → B by: 

1
2

1
2
1
2

1
2
1
2

1
2

1
2

1
2

1
2

1
2





H({reλ,seγ}, t ) =

α α

where α, β : [0, 1] × [0, 1]→ [0, 1] defined by α(x , t ) = 2x (
1
2  − t ) + t and β(x , t ) = 2x(1 − t ), we have {{τ}} is a defor-
mation retract of  B. Then B is contractible. 

Now, we will define a lifting of  the map f. Since B and 
Aλ0, λ0 − {{p}} have the property b), there exist two lif-
tings h1 : B → R and h2 : Aλ0, λ0 − {{p}} → R of  f |B and 
f |Aλ0, λ0 − {{p}}, respectively, such that h1({τ}) = h2({τ}). We 
define h : A → R by: 

h1 ({x, y}), if {x, y} ∈ B,
h2 ({x, y}), if {x, y} ∈ Aλ0, λ0 − {{p}}.

h({x, y}) =




We will prove that h is a lifting of  f. Clearly, exp°h = f. 
In order to prove that h is continuous, we consider a 

sequence {{xn, yn}}∞
n=1 in A and an element {x0, y0} of  A 

such that {x0, y0} = lim{xn, yn}. We only need to consider 
three cases: 

Case 1. {{xn, yn} : n ∈ N ∪ {0}} ⊂ B. Since h1 is conti-
nuous, h({x0, y0}) = limh({xn, yn}). 

Case 2. {{xn, yn} : n ∈ N ∪ {0}} ⊂ Aλ0, λ0 − {{p}}. 
Since h2 is continuous, h({x0, y0}) = limh({xn, yn}). 
Case 3. {x0, y0} ∈ Aλ0, λ0 − {{p}, {τ}} and, for each n ∈ N, 

{xn, yn} ∈ B. We want to use Lemma 3.7, to prove that h({x0, 
y0}) = limh({xn, yn}). Given n ∈ N ∪ {0}, there exist tn, sn ∈ 
[0, 1] such that xn = tneλn and yn = sneγn. We can suppose that, 
{λn, γn} ≠ {λm, γm}, if  n ≠ m. Since X is a fan homeomorphic 
to the cone over a compactum, we have x0 = limxn, y0 = limyn, 
limeλn = eλ0 = limeγn, s0 = limsn and t0 = limtn. 

We are going to prove that, for each n ∈ N ∪ {0}, there 
exists an arc αn in A such that αn ⊂ B, if  n ≠ 0, α0 ⊂ Aλ0, 
λ0 − {{p}}, αn ∩ αm = {{τ}}, if  n ≠ m, {xn, yn} and {τ} are 
the end points of  αn, {p} ∉ 

 ∞
 
n=0

 αn, α0 = limαn and 
 ∞
 
n=0

 αn is 
contractible. We consider two cases: 

Case 1. For each n ∈ N ∪ {0}, tn, sn ∈ [0, 12]. 
Then tn = sn and, for each n ∈ N ∪ {0}, we consider 

αn = {{reλn, reγn} : 0 ≤ r ≤ tn}

Case 2. For each n ∈ N, tn, sn ∈ (1
2, 1] and s0, t0 ∈ [1

2, 1]. 
Given n ∈ N ∪ {0}, consider 

α1, n = 







xn, 


  



  


1
2
 − sn




 r + sn




 eγn




 : 0 ≤ r ≤ 1




,

α2, n = 







 

  



  


1
2 − tn




 r + tn




 eλn, 

1
2eγn




 : 0 ≤ r ≤ 1




,

α3, n = 

{reλn, reγn} : 0 ≤ r ≤ 1

2




and 

αn = α1, n ∪ α2, n ∪ α3, n
 

(notice that γ0 = λ0). 
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Since p ∈ NCut(X ), it can be shown that {αn}∞
n=0 satisfies 

the required properties. 
Notice that 

 ∞
 
n=0

 αn has property b). If  we consider, for 
each n ∈ N, Φn = h1|αn and Φ0 = h2|α0, by Lemma 3.7, h2 
({x0, y0}) = limh1({xn, yn}). Hence h is a map. Therefore A 
has property b).                                                                                     □ 

Theorem 3.9. If  p ∈ NCut(X ) and q ∈ X − E(X ), with 
q ≠ p, then {p, q}does not make a hole in F2(X ). 

Proof. In light of  Proposition 8 of  (Anaya, 2007), it suffices 
to prove that there exist two connected and closed subsets 
A and D of  F2(X ) − {{p, q}}, which have property b) and 
the intersection of  them is connected. 

We may assume that p = 1
2 eλ0 for some eλ0 ∈ E(X ) and 

0 ≤ ǀǀqǀǀ < 1
4 . Since X is the cone over a compactum, there 

exist two disjoint subsets Λ0 and Λ1 of  Λ such that λ0 ∈ Λ0, 
Λ = Λ0 ∪ Λ1, {eλ : λ ∈ Λ0} and {eλ : λ ∈ Λ1}are open and 
closed in E(X ). Let A the set: 




F1(Y ) ∪ 

(λ,γ)∈Λ×Λ0
 

  


 



τ, 14eλ




, 





1
2eγ, eγ




  ∪ {eγ}, 





1
4eγ, eγ




 









minus the point {p, q}, where Y = λ∈Λ0
τeλ, and D the set: 




F2(X1) ∪ 

(λ,γ,ν)∈R 

  


 




1
4eλ, eλ




, 





1
2eγ, eγ




  ∪  





1
2eγ, eγ




, 





1
4eν, eν




 








 

minus the point {p, q}, where X1 = {reλ :(r, λ) ∈ [0, 1] × Λ1} 
∪ {reλ : (r, λ) ∈ [0, 1

2 ] × Λ0} and R = Λ1 × Λ0 × Λ0. 
It is easy to see that A and D are connected and closed 

subsets of  F2(X ) − {{p, q}}. 
We prove that F2(X ) − {{p, q}} = A ∪ D. Let {x , y} ∈ 

F2(X ) − {{p, q}}. 
We can suppose that {x , y} ∉ D . Then {x , y} * X1. Without 

loss of  generality we may assume that y ∉ X1. Hence, there 
exists γ ∈ Λ0 such that y ∈ [1

2 eγ, eγ] and, by the definition of  
D, x ∈ 

λ∈Λ
 [τ, 1

4 eλ]. So, {x , y} ∈ A. 
We are going to prove the connectedness of  A ∩ D. Let: 

Lλ,γ = 〈[τ, 14 eλ], {1
2
 eγ}〉 ∪ 〈{1

4 eλ}, [1
2
 eγ, eγ]〉 ∪ 〈{eγ}, [14 eγ, eγ]〉,

for each (λ, γ) ∈ Λ × Λ0. 
First, we prove that

A ∩ D = (F1(Y ) ∪ ({Lλ,γ : (λ, γ) ∈ Λ × Λ0})) − {{p, q}}. 

Clearly, F1(y) and 〈{eγ}, [1
4 eγ, eγ]〉 are subsets of  A ∩ D 

for each γ ∈ Λ0. 
Moreover, 〈[τ, 1

4 eλ], [1
2 eγ, eγ]〉 ∩ D is the set 

1
4

1
4

1
2

1
2























  

τ,   eλ ,    eγ    ∪      eλ ,    eγ, eγ   −{{p, q}},








for each (λ, γ) ∈ Λ × Λ0. Then 

A ∩ D = (F1(Y ) ∪ ({Lλ,γ : (λ, γ) ∈ Λ × Λ0})) − {{p, q}}. 

Now, let

B = F1(Y ) ∪ (A ∩ D − ({Lλ,γ : (λ, γ) ∈ Λ × Λ0 and λ0 ∈ 
{λ, γ}})). 

Using that Lλ,γ ∩ F1(Y ) ≠ ; and Lλ,γ is connected for 
each (λ, γ) ∈ Λ × Λ0 such that λ0 ∉ {λ, γ}, we have that B 
is connected. Now, consider (λ, γ) ∈ Λ × Λ0 such that λ0 ∈ 
{λ, γ}. Since p ∈ NCut(X ), Lλ,γ − {{p, q}} ⊂ ClF2(X )(B). So 
A ∩ D   ⊂ ClF2(X )(B). Then A ∩ D is connected. 

Now, we will prove that A and D have property b). In 
order to prove that A has property b), it suffices to show 
that there exists a deformation retract K of  A such that K 
has property b) (see Anaya, 2007. Proposition 9, p. 2001). 

Consider the following sets: 

Cγ = F1(τeγ) ∪ 〈[τ, eγ], {eγ}〉, 
 
Kγ = Cγ ∪  

λ∈Λ
 



τ, 14eλ




, {eγ} ,

for each γ ∈ Λ0, 

M = γ∈Λ0
 Cγ and K = γ∈Λ0

 Kγ. 

Notice that M is a closed subset of  K and K is a closed 
subset of  A. We need to prove that Cγ, Kγ, M and K have 
property b). 

Using the smoothness of  X, it can be shown that M is 
homeomorphic to Y. Thus M is contractible and, so it has 
property b) (see Anaya, 2007. Proposition 9, p. 2001). Let γ 
∈ Λ0. Since Cγ is an arc, it has property b). We see that 

λ∈Λ
 

[τ, 1
4 eλ], {eγ}  is homeomorphic to X. Hence, 

λ∈Λ[τ, 1
4 eλ], 

{eγ}  is contractible and, so it has property b) (see Anaya, 
2007. Proposition 9, p. 2001). Notice that Cγ ∩ 

λ∈Λ
[τ, 1

4
eλ], 

{eγ}  = [τ, 1
4 eγ], {eγ} . Then, Kγ has property b) (see Anaya, 

2007. Proposition 8, p. 2001). 
Now, we are going to prove that K has property b). 
Let g : K → S1 be a map and let t0 ∈ exp−1(g({τ})). Since, 

for each γ ∈ Λ0, Kγ has property b), there exists a map hγ : 
Kγ → R such that g|Kγ = exp°hγ and hγ({τ}) = t0. We define 
h : K → R by h({x , y}) = hγ({x , y}), if  {x , y} ∈ Kγ. We pro-
ve that h is a lifting of  g. Notice that, for each γ0, γ1 ∈ Λ0 
such that γ0 ≠ γ1, we have that Kγ0 ∩ Kγ1 = {{τ}}. Then h is 
well defined. Clearly, exp°h = g. In order to prove that h is 
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continuous, let {{xn, yn}}∞
n=1 be a sequence of  K and let {x0, 

y0} ∈ K such that {x0, y0} = lim{xn, yn}. We will prove that 
h({x0, y0}) = limh({xn, yn}). We consider two cases. 

Case 1. For each n ∈ N, {xn, yn} ∈ M. 
Since M has property b), there exists a map h1 : M → R 

such that g|M = exp°h1 and h1({τ}) = t0. Notice that, given 
γ ∈ Λ0, hγ|Cγ and h1|Cγ are liftings of  g|Cγ and hγ|Cγ({τ}) = t0 
= h1|Cγ ({τ}). Thus, hγ|Cγ = h1|Cγ (see Greenberg and Harper, 
1981, 5.1). Hence, h1 = h|M. 

Since M is a closed subset of  K, {x0, y0} ∈ M. Then 
h({x0, y0}) = h|M({x0, y0}) = h1({x0, y0}) = limh1({xn, yn}) = 
limh|M({xn, yn}) = limh({xn, yn}). 

Case 2. For each n ∈ N, {xn, yn} ∉ M. 
Given n ∈ N, let ηn ∈ Λ and γn ∈ Λ0 such that ηn ≠ γn and 

{xn, yn} ∈ 〈[τ, 14 eηn ], {eγn }〉. Since {eγ : γ ∈ Λ0} and E(X ) are 
compact, taking subsequences if  neccesary, we may assume 
that there exist eγ0

 ∈ {eγ : γ ∈ Λ0} and eη0 ∈ E(X ) such that 
eγ0

 = limeγn and eη0 = limeηn. 
Let U =  

n∈N∪{0} Un, where Un = Cγn
 ∪ 〈[τ, 1

4 eηn], {eγn}〉 for 
each n ∈ N ∪ {0}. 

Using the smoothness of  Y , it is easy to prove that U0 = 
limUn. Then {x0, y0} ∈ U0. We need to consider two sub-
cases. 

Subcase 1. For each m, n ∈ N, eγn = eγm
. 

Then, for each n ∈ N, eγ0
 = eγn. Hence, U ⊂ Kγ0 . By the 

definition of  h, h({x0, y0}) = limh({xn, yn}). 
Subcase 2. For each m, n ∈ N, eγn ≠ eγm

 
Using the smoothness of  Y , it is easy to prove that U 

is contractible. Then U has property b) (see Anaya, 2007. 
Proposition 9, p. 2001). If  we consider g|U : U → S1 and, 
for each n ∈ N ∪ {0}, Φn = hγn|Un, by Lemma 3.7, Φ0({x0, 
y0}) = limΦn ({xn, yn}). Hence, h({x0, y0}) = limh({xn, yn}). 

This proves that K has property b). 
Now, in order to prove that K is a deformation retract of  

A, let 
 

A1 =  

  



(λ,γ)∈Λ×Λ0

 〈[τ, 1
4 eλ], [1

2 eγ, eγ]〉



 − {{p, q}}

and let Ψ : A × [0, 1] → A defined by: 





Ψ({seλ, reγ}, t) =
{seλ, reγ},                    if {seλ, reγ} ∈ K,
{seλ, ((1 − r)t + r)eγ},   if {seλ, reγ} ∈ A1. 

Notice that Ψ|A1×[0,1] and Ψ|K×[0,1] are continuous, A1 is 
a closed subset of  A and A = A1 ∪ K. Moreover, if  ({seλ, 
reγ}, t ) ∈ (A1 × [0, 1]) ∩ (K  × [0, 1]), then r = 1 and Ψ|A1×[0,1]
({seλ, reγ}, t ) = Ψ|K×[0,1]({seλ, reγ}, t ). So Ψ is continuous. 
Thus A has property b). 

Now, in order to prove that D has property b), we are going 
to show that F2(X1) − {{p, q}} is a deformation retract of  
D and it has property b) (see Anaya, 2007. Proposition 9, 
p. 2001). 

Let:

F0 = F2(X1) − {{p, q}}, 

1
4

1
2

















eλ, eλ ,    eγ, eγ    ,
(λ,γ)∈Λ1×Λ0

F1 =

 
1
4

1
2

1
2

















eν,    eν ,    eγ, eγ    ,

(ν,γ)∈Λ0×Λ0

F2 =

and 

1
2

1
2

















eν, eν ,    eγ, eγ    .

(ν,γ)∈Λ0×Λ0

F3 =

Notice that each Fi is a closed subset of  D and D = 
3

i=0
Fi. 

We define F : D × [0, 1] → D by: 





where x(t, s) = 1
2  + (1 − t )s for each t, s ∈ [0, 1]. 

Clearly, each F|Fi×[0,1] is continuous. Notice that: 

F0 ∩ F1 =                       eλ, eλ ,      eγ   ,1
4

1
2


















(λ,γ)∈Λ1×Λ0

1
4

1
2

1
2


















(ν,γ)∈Λ0×Λ0

F0 ∩ F2 =                       eν,    eν ,     eγ   , 

1
2

1
2

















1
2

1
2


















(ν,γ)∈Λ0×Λ0

F2 ∩ F3 =                        eν ,     eγ, eγ

and 

F1 ∩ F2 = F1 ∩ F3 = ;. 

Clearly, if  G1, G2 ∈ {Fi : i ∈ {0, 1, 2, 3}} such that G1 ∩ 
G2 ≠ ;, then F|G1×[0,1]({x , y}, t ) = F|G2×[0,1]({x , y}, t ) for each 
({x , y}, t ) ∈ (G1 ∩ G2) × [0, 1]. Hence, F is continuous. Then 
F0 is a deformation retract of  D. 

By the definition of  X1 and since p is an end point of  X1, it 
can be shown that there exists a natural homeomorphism 
f  : X1 → X such that f (p ) ∈ E(X ). Then F0 is contractible 
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(see the proof  of  Theorem 3.6). By Proposition 9 of  (Anaya, 
2007. p. 2001), F0 has property b). 

Therefore, F2(X ) − {{p, q}} has property b).                 □

3.1. Classification 
Theorem 3.10. Let X be a fan which is homeomorphic 
to the cone over a compactum and {x, y} ∈ F2(X ). Then 
{x , y} makes a hole in F2(X ) if  and only if  x = y and x is the 
top of  X or y ≠ x and x , y ∈ Cut(X ) ∪ {τ}. 

Proof. Necessity, let {x , y} ∈ F2(X ) be such that {x , y} 
makes a hole in F2(X ). In the case that x = y, by Theorems 
3.4 and 3.8, we have x = τ. On the other hand, if  x ≠ y, by 
Theorems 3.6 and 3.9, x , y ∈ Cut(X ) ∪ {τ}. The sufficiency 
follows from Theorems 3.3, 3.2 and 3.5.                            □ 

Conclusions 

Intuitively, a connected topological space is unicoherent if  
it does not have holes. K. Kuratowski was the first author 
which used the unicoherence to obtain topological caracteri-
zation of  the sphere (see Kuratowski, 1926 and Kuratowski, 
1929). In (Borsuk, 1931), K. Borsuk introduce to use maps 
from a given space on S1 to study unicoherence. This tec-
nique was developed by the authors in (Eilenberg, 1936), 
(Eilenberg, 1935), (Ganea, 1952a) and (Ganea, 1952b)). 

Unicoherence has been useful to distinguish topological 
space. In (Illanes, 2002, 7, Lemmas 2.1 and 2.2, p. 348 and 
349) the author showed that C2([0, 1]) − {A} is unicoherent 
for each A ∈ C2([0, 1]) while C2(S1) − {S1}is not unicohe-
rent. As a consequence A. Illanes obtain that C2([0, 1]) and 
C2(S1) are not homeomorphics; this is in contrast to the 
fact that C([0, 1]) and C(S1) are homeomorphic. Thus the 
following problem arises: if  X is a continuum and H(X) is 
a hyperspace of  X, for which elements A ∈ H(X), A makes 
a hole in H(X). 

In this paper, we continue the works in the items (Anaya, 
2007), (Anaya et al., 2010) and (Anaya, 2011). We obtain 
the characterization of  the elements A ∈ F2(X ) such that 
A makes a hole in F2(X ), when X is either a dentrite or the 
cone over a compactum. Notice that dendrites and the cone 
over a compactum are smooth dendroids. So, we consider 
the following questions: 

1. Is it possible to obtain a characterization of  those A ∈ 
F2(X ) such that A makes a hole in F2(X ) when X is a smooth 
dendroid? 

2. Is there a particular arc-smooth dendroid for which 
it is impossible or very dificult to answer the Question 1? 

3. What happens with Fn(X ), for n ≥ 3. Is it possible to 
find an element A ∈ Fn(X ) such that A makes a hole in 
Fn(X )? 
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