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Haciendo hoyos en los segundos productos
simétricos de dendritas y algunos abanicos
Resumen. Sea X un continuo métrico tal que
el segundo producto simétrico de X, Fo(X) es
unicoherente. Sea A € F,(X), A se dice que
hace un hoyo a F5(X), si F5(X) — {A} noes
unicoherente. En este articulo, caracterizamos
alos elementos A € F»(X) tales que A hace
un hoyo a F»(X), donde X es una dendrita o
un abanico homeomorfico al cono sobre un
espacio métrico compacto.
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Abstract. Let X be a metric continuum such
that the second sym~metric product of X,
F>(X), is unicoherent. Let A € F,(X), A is said
to make a hole in F5(X), if Fo(X) — {A} is

not unicoherent. In this paper, we characterize
the elements A € F5(X) such that A makes a
hole in F,(X), where X is either a dendrite or a
homeomorphic fan to the cone over a compact
metric space.
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property b), unicoherence.

propiedad b), unicoherencia.

Introduction

A connected topological space Z is unicoherent if whenever
Z =AU B, where A and B are closed, connected subsets of Z,
we have A N B is connected. Let Z be a unicoherent topolo-
gical space and let Z be an element of Z, we say that Z makes
a hole in Z if Z — {z} is not unicoherent. A compactum is
a nondegenerate compact metric space. A continuum is a
connected compactum. Given a continuum X, we define its
hyperspaces: Fp(X) as the set of all nonempty subsets A of X
such that A has at most N points, for each positive integer N.
Such hyperspaces are considered with the Hausdorff metric.

S. Macias, in (Macias, 1999. Theorem 8), proved that, if Xis
a continuum and N is an integer bigger than two, then Fp(X)
is unicoherent. E. Castafieda in (Castafieda, 1998) gave a uni-
coherent continuum X such that F»(X) is not unicoherent.

The following problem arises in (Anaya, 2007):
Problem. Let H(X) be a hyperspace of X. For which ele-
ments A € H(X), A makes a hole in H(X).

Some partial solutions of this problem are presented in

(Anaya, 2007), (Anaya, 2011) and (Anaya et al. , 2010). In the

current paper, we are presenting the solution to this problem
when X is either a dendrite or a fan homeomorphic to the

cone over a compactum and H(X) = Fp(X).
1. Notation and auxiliary results

We use N and R to denote the set of positive integers and
the set of real numbers, respectively. Let Z be a topological
space and let A be a subset of Z, the symbol cl(A) denotes
the closure of A in Z. An arc is any space homeomorphic
to [0, 1]. A free arc in a continuum X is an arc p(, where
p and q are the end points of pq, such that pq — {p, q} is
open in X. A point Z in a connected topological space Z is a
cut point of (non-cut point of ) Z provided that Z — {z}
is disconnected (is connected). A map f : Z — S!, where Z
is a topological connected space and S! is the unit circle
in the Euclidean plane R?, has a lifting if there exists a
map h: Z — R such that f = expoh, where exp is the map
of R onto S! defined by exp(t) = (cos(2at), sin(2at)). A
connected topological space Z has property b) if each f :
Z — S! has a lifting,
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Let Y be a continuum arcwise connected, by an end point of
Y, we mean an end point in the classical sense, which means
a point p of Y that is a non-cut point of any arc in Y that
contains P, the set of all end points of Y is denoted by E(Y).
A point p of a continuum X is a ramification point provided
that p is a point which is a common end point of three or
more arcs in X that are otherwise disjoint and the set of all
ramification point of X is denoted by R(X).

A metric space X is called Peano space provided that for
each p € X and each neighborhood V of p, there exists
a connected open subset U of X such thatp e U c V. A
Peano continuum X is said to be a dendrite if X contains no
simple closed curve. A fan is an arcwise connected, heredi-
tarily unicoherent continuum with exactly one ramification
point (hereditarily unicoherent means each subcontinuum
is unicoherent).

A subspace Y of a topological space Z is a deformation
retract of Z if there exists a map H: Z x [0, 1] = Z such
that, for each X € Z, H(X, 0) =X, H{Z x {1}) =Y and, for
each y € Y, H(y, 1) =y. We say that a topological space, Z,
is contractible if there exists Z € Z, such that {z} is a defor-
mation retract of Z.

Let Z be a topological space. Given two subsets K1 and Ky of
Z, we define (K1, Ko )= {{x,y} cZ:x € Ky and y € Ky}.

The following proposition is easy to prove.

Proposition 1.1. If X is a continuum and Ky, Ky are sub-
continua of X, then (K1, Ky) is a subcontinuum of F,(X), and
it does not have cut points, when K1, Ky are nondegenerate.

Proposition 1.2. Let X be a Peano continuum and let p €
X be such that X — {p} has at least three components. Then
there exist two nondegenerate subcontinua Y and Y, of X
such that p is a cut point of either Yy or Y, Y1 N Y, = {p}
and Y1 U Y, =X

Proof. Let F( be a component of X — {p} and let Ko =U{C
c X—{p} : Cis a component of X — {p} and C # Fy}. We
consider Y1 =Fgu {p} and Y, =K U {p}. Itis easy to see that
Y, and Y, satisfy the required properties. i

Proposition 1.3. Let X be a Peano continuum and let p
and q be different cut points of X. Then there exist three
nondegenerate subcontinua Qq, Q; and Q3 of X such that
p and q are non-cut points of Q, P € Q,, 9 € Q3, Q1 N Q>
={p5, Q1 NQ3=1{a},QNQ3=0and X=Q; U QLU Qs.

Proof. Let Cy be the component of X — {p} such that
q € Cy. Notice that C U {p} is a subcontinuum of X. Since
q is a cut point of X, g is a cut point of Cy U {p}. Let Dy be
the component of (Cy U {p}) — {q} such that p € D,.

We consider Q1 =Dy U {q}, Q;=U{CcX—{p}:Cisa
component of X — {p} and C# Cyp} U {p} and Q5 =U{D <
(Cou {p})—{q} : Disacomponentof (Cyu {p} —{q} and

D =Dy} v {q}. It is not difficult to show that Q, Q, and Q3
satisty the required properties. O

2. Dendrites

Given a dendrite X. Itis known that F»(X) is unicoherent (see
Ganea, 1954). In this section, we characterize those elements
A of F»(X) such that A makes a hole in F»(X).

Given X € X. The order of X in X we mean the Menger-
Urysohn order, see (Kuratowski, 1968, 851, I, p. 274), or
equivalently (see, for example Kuratowski, 1968, 851, I, p.
274) the classical sense, i e, the number of arcs emanating
from X and disjoint out of X (see Charatonik, 1962, p. 229
and Lelek, 1961, p. 301), we will denote it by ord(X, X). This
number is equal to the number of components of X — {X}
(see Whyburn, 1942: 11, (1.1), (iv), p. 88). Notice that the
points of order 1 are end points of X, the points of order
2 or more are cut points of X and the points of order 3 or
more are ramification points of X. The symbol Ry(X) denotes
the set of all points of X of order 2. Notice that, X = E(X)
U Ry(X) U RX).

Throughout this section, X will denote a dendrite.

Theorem 2.1. Let p be a ramification point of X. Then
{p} makes a hole in F5(X).

Proof. By Proposition 1.2, there exist two nondegenerate
subcontinua Yy and Y, of X'such that X=Y; U Y, Y N Y, =
{p} and p is a cut point of either Yy ot Y,. Suppose that p is
a cut point of Y. Let Ay =F5(Yq) — {{p}} and A, = (F2(Y>)
VY1, Y2) — {{p}}.

Note that Ay = Fa(Y1) N (FoX) — {{p}}), Az = (Fa(Y2) v
(Y1, Y2) N (Fo(X) = {{p}}). Then, by Proposition 1.1, A; and
A, are closed subsets of Fo(X) — {{p}}. Letq € Y, — {p}.
Then {p, 4} € (Fa(Y2) A (Y1, Y2) — {{p} 1.

Given i € {1, 2}. Note that F5(Y,) — {{p}} =(Y,, Y;) —
{{p}}. Then, by Proposition 1.1, F5(Y)) — {{p}} and (Yq,
Y,) — {{p}} are connected. So A; and A, are connected.
Clearly, Fo(X) — {{p}} = A; U A,. Notice that 41 N A, =
({p}, Y1) — {{p}} and {p} is a cut point of ({p}, Y1). So A
N Aj is not connected. Hence, F5(X) — {{p}} is not uni-
coherent. o

Theorem 2.2. Let p and  be different cut points of X.
Then {p, g} makes a hole in F5(X).

Proof. By Proposition 1.3, there exist three nondegenerate
subcontinua Qq, Q; and Q3 of X such that p and q are non-
cut points of Q1,p € Q2,9 € Q3, QM Q2=1{p},Q1 N Qs
=1{0},Q2NQ3=0and X=Q; U QU Qs.

We consider the sets Ay = (F2(Q) U F»(Qy) U F,(Q3)) —

{{p,a}} and A> = ((Q1,Q2) W (Q1,Q3) w(Q2,Q3)) — {{p, a} }.
Cleatly, Fo(X) — {{p, q} } = A U Aj,. Using Proposition 2.1,
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it can be proved that A; and A, are closed and connected
subsets of Fo(X) — {{p, q}}. Since A; N A, = ({({p}, Q1 U
Q2w ({a}, Q1 v Q3) — {{p,a}}, A M Ay is disconnected.
Therefore Fo(X) — {{p, q} }is not unicoherent. o

Theorem 2.3. Let p be an end point of X and let g € X.
If p ¢ cl(R(X)), then {p, q} does not make a hole in F»(X).

Proof. Since p ¢ Cl(R(X)), there exists an arc | contained in
Ro(X) U {p}such thatp € E(l) and | # X. Letv € E(l) — {p}.
Letf: 1 — [0, 1] be a homeomorphism such that f(p) =1 and
f(v) = 0. We define the function g : | x [0, 1] — I by g(X, )
=f-1((1 - Hf(x)). Notice that g is a map such that, for each t
€ [0, 1], g(v, t) =V, for each X € 1, g(X, 0) = X and g(X, 1) = V.

Moreover,
g(x,t) =pif and only if Xx=pandt=0. o)

We define the function h: X x [0, 1] — X by

_Jox b, ifxel,
hx, 1) = { (x) 1ifxicI(X—l).

Since cI(X = 1) = (X = 1) U {v}, it is easy to prove that h is
a map. Notice that, for eachy € cI(X - 1), h(y, 1) =y and, for
each x € X, h(x, 0)=xand h(x, 1) € cI(X—1). Thencl(X - 1)
is a deformation retract of X.

Now, we define G : (Fo(X) — {{p, q}}) x [0, 1] > F>(X) —
{{p,q}} by

G({x, ¥}, t) = thx, 1), h(y, 1)}

By (1), Gis well defined. Itis easy to prove that G is continuous.
Notice that, for each {X,y} € Fo(X)— {{p,q}}, G({X,y},0) =
1%, ¥}, G((Fa(X) - {{p, A}}) x {1}) = Fafcl(X — 1)) and, for
each {u,v} € Focl(X - 1)), G({u, v}, 1) = {u, v}. Hence,
Focl(X — 1)) is a deformation retract of Fo(X) — {{p, q}}.
Since cl(X — 1) is a dendrite (see Nadler 1992, 10.6 Corollary,
p. 167), Fol(X — 1) is unicoherent. So, Fo(X) — {{p, q}} is
unicoherent (see Eilenberg, 1936, 83. Theotem 7, p. 73). O

Given a continuum X, 2X and C(X) will denote the hy-
perspace of all closed and nonempty subsets of X and the
hyperspace of all nonempty subcontinua of X, respectively.
Let K(X) € 2X. A Whitey map for (X)) is a map p: IC(X)
— [0, 1] that satisfies the following two conditions:

1. or any A, B € K(X) such that A < B and A # B, u(A)
< u(B);

2. u(A) =0 1if and only if A € LX) N {{X} : x € X}.

Letw e X. Then X is arc-smooth at W provided that there
exists a continuous function oy : X = C(X) that satisfies the

following conditions:
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Loaw(W) = {w},

2. foreachy € X — {w}, ay(y) is an arc from W to Y, and

3.if X € awl(y), then oy (X) < aw(y).

Theorem 2.4. Let p be an end point of Xandletq € X.
If p e cl(R(X)), then {p, q} does not make a hole in F5(X).

Proot. We can consider Wy € X such that it is cither any
point of R(X), if p =0, or an element of R(X) such that p
and q belong to different components of X — {w}, if p #q.
Let | be the atrc joining p and Wy in X. Given W € R(X) N
I — {wp}. Since X is arc-smooth at W (see Illanes and Nadler
1999. p. 2206), there exists ayy as above. Let W(W) be the
subcontinuum of X such that Ww) N I = {w} and X — W(w)
has two component. Let g be a Whitney map for C(X) (see
Illanes and Nadler 1999. Theorem 13.4, p. 107). We define
the following functions Ly : W(W) — [0, 1] and gy, : W(W) x
[0, 1] = W(w) by Ly(X) = s(@w(x)) and

X’
the unique pointy € ay(X)
such that Ly(y) =1 -1,

if Ly(X) <1-t,

Ow(X, t) =
Ly >1-t,

respectively. We are going to prove that gy is continuous. Let
{(Xn, tn) =1 be sequence in W(W) x [0, 1] and let (X, tp) € W(W)
x [0, 1] be such that lim (Xp, ty) = (X, to). Taking subsequences
if necessary, we may consider the following two cases:

Case 1. Lyy(Xp) <1 -t for each n.

Since Lyy is a map and limt, = t, Ly(Xg) < 1 — ty. Hence,
lim@w(Xn, th) = limXn = Xo = Gu(Xo, to).

Case 2. L(Xp) > 1 — t,, for each n.

Let Yp € oyy(Xn) be such that Ly (yp) = 1 — t,. Taking sub-
sequences if necessary, we may suppose that there exists
Yo € X such that limyp = Y. Then ogy(Yo) = limay(Yn) <
limoyy(Xp) = aw(Xg). Hence, Yo € aw(Xp). Since Ly, is a map,
Lw(Xo) 2 1 =ty and L(yp) = limL(y,) =lim(1 - t)) =1 —t,.
Therefore gyw(Xo, to) = Yo = limy, = imgy(Xp, tp).

We conclude that gy is a map. Notice that, for each X €
W(Ww), gw(X, 0) = X and gw(X, 1) =w, and for each t € [0, 1],
OwW, 1) =w. Then {W} is a deformation retract of W(W).

Let Y be the subcontinuum of X such that Y n = {wg}
and X — Y has one component. We define the function
g:Xx10,1] > Xby

gu(x, 1), if x € W(w) for some w € R(X) N 1) — {wp},
X, ifxe YUL

g, t) ={

Clearly, g is well defined. In order to proof that g is con-
tinuous, we consider {(Xn, tn)}ne1 a sequence in X x [0, 1]
and (X, to) € X x [0, 1] such that lim (Xp, tp) = (Xo, tp). Taking
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subsequences if necessary, we may consider the following
three cases:

Case 1. x5 € Y U | for each n.

Since Y U | is a closed subset of X, X5 € Y U I. So,
limg (Xg, tn) = 90X, to).

Case 2. There exists W € (R(X) N 1) — {wy} such that
Xn € W(W) for each n.

Since W(W) is a closed subset of X, Xg € W(W). Then
Himg(Xp, th) = limGw(Xn, tn) = Gw(Xo, to) = I(Xo, 1)

Case 3. For cach n, there exists Wy € (R(X) N 1) — {wg}
such that X, € W (Wp) and W # W, if n=m.

We may assume that there exist A € C(X) and y € |
such that imW(Wwp) = A and limw, =Y. Theny € A. We
prove that A = {Xg}. Let Z € A. Then there exists a se-
quence {Z}ne1 of X such that limzp = z and z, € W(wy)
for each n. We consider ay and @; as above (see Illanes
and Nadler 1999. p. 226). By the continuity of @y and
o 1Y} = ayy) = limay(Wy) and limay(zn) = 0u(2) = {2
Since X is a dendrite, oty (Wp) < ¢(Zp) for each n. Hence, z =
y. Since Xy € A, A = {Xo}. Then limW(wy) = {X,}. Since
9w, (Xn, th) € W(wy) for each n, img(Xp, tn) = imQyw, (Xn,
th) = Xo = 9(Xo, to)-

Hence, g is a map. Since for each X € X, g(X, 0) = X and
gx,1) e Yul,and foreachy e YU LLg(y,)=y,YuUlis
a deformation retract of X. Notice that

gx,t) =pif and only if X=p @
and
g(y,t) =qif and only if y=q 3

We consider the function G : Fo(X) — {{p,q}}) x [0, 1] =
Fa(X) = 11p, 4j }by

G(ix, ¥}, 1) = {9(x, ), g(y, )}

By (2) and (3), G is well defined. It can be proved that G
is a map. Notice that, for each {X, y} € Fo(X) — {{p, a}},
G({%, ¥}, 0) = (X, Y}, G((Fa(X) — {{p, @} }) x{1}) = Fa(Y U
1) and, for each {u,v} € Fo(Y U l), G({u, v}, 1) = {u,v}.
Then Fp(Y U 1) — {{p, q}} is a deformation retract of
Fo(X) — {{p, q}}. Since Y U | is a dentrite (see Nadler 1992,
10. 6 Corollary, p. 167) and p ¢ cl(R(Y U |), by Theorem
2.3, Fo(Y U l) = {{p, q}} is unicoherent. Therefore Fy(X)
— {{p, q}} is unicoherent (see Eilenberg, 1936, 83, Theo-
rem 7, p. 73). g

The proof of the following Corollary follows from the
Theorems 2.3 and 2.4.

Corollary 2.5. Let p be an end point of X and letq € X.
Then {p, g} does not make a hole in F,(X).

Theorem 2.6. Let p € X such that ord(p, X) = 2. Then
{p} does not make a hole in F5(X).

Proof. It can be proved that there exist two nondegenerate
subcontinua F and K of X such that p € E(F) n E(K) and X
—F UK. So, FxX) - {{p}} = (FaF) — {{p}}) L (FalK) -
(P} U (F, K)— {{p}}) . By Corollary 2.5, Fa(F) — { {p}}
and Fo(K) — {{p}} are unicoherent.

We can prove that (F, K) — {{p}} is homeomorphic to
F x K- {(p, p)}. Since F and K are dendrites (sece Nadler
1992, 10.6 Corollary, p. 167) and p € E(F) N E(K), it can be
proved that F — {p} and K — {p} are contractibles. Then
F — {p} and K — {p} are unicoherent (see Eilenberg, 1936,
83, Theorem 7, p. 73). By Theorem 5 of (Eilenberg, 1936,

83,p. 72), (F = {p} x (K= {p}), (F = {p}) x {p} and {p}x
(K = {p}) are unicoherent. Hence, ((F — {p} x (K — {p}))

U ((F={pH) > {p}) © ({p} x (K= {p})) =F xK—{(p, p)}
is unicoherent (see Eilenberg, 1936, 83, Theorem 4, p. 72).

Since F(F) — {{p}}, Fo(K) — {{p}} and (F, K) - {{p}}
are unicoherent, Fy(X) — {{p} } is unicoherent (see Eilenberg,
1936, 83, Theorem 4, p. 72).

2.1. Classification

Theorem 2.7. Let X be a dendrite and let {X,y} € Fy(X).
Then {X, y} makes a hole in F5(X) if and only if X #y and
neither X nor Y is an end point of X, or X =y and X is a
ramification point.

Proof. Necessity, let X and Y be elements of X such that
{X, y} makes a hole in F5(X). If x =y, by Theorem 2.6 and
Corollary 2.5, X is a ramification point of X. On the other
hand, if X # Y, by Corollary 3.5, neither X nor y is an end
point of X.

The sufficiency follows from Theorems 2.1 and 2.2. O

3. Fans

In this section, we characterize those elements A of Fy(X)
such that A makes a hole in F»(X), when X is a fan homeomor-
phic to the cone over a compactum.

The unique ramification point of a fan X is called the top
of X, 7 always denotes the top of a fan.

Whenever X is a fan homeomorphic to the cone over a
compactum, S. Macfas proved that, for each n > 2, Fy(X) is ho-
meomorphic to the cone over a continuum (see Macias, 2003).
Then, for each n = 2, F(X) is contractible (see Rotman, 1998.
Theorem 1.11, p. 23). Hence, given N > 2, Fy(X) has property
b) (see Anaya, 2007. Proposition 9, p. 2001), and so it is unico-
herent (see Eilenberg, 1936, Theotems 2 and 3, pp. 69 and 70).
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Let X be a fan which is homeomorphic to the cone over a
compactum. We may assume that X is embedded in R? (see
Eberhart, 1969, Corollary 4, p. 90 and Charatonik, 1967,
Theorem 9, p. 27), 7= (0, 0) is the top of X, the legs of X
are convex arcs of length one (see Macias and Nadler 2002,
4.2). Let E(X) = {&)}p.ea- Then Xis the cone over E(X) (see
Macfas and Nadler 2002, 4.2). Given two points @ and b of
[R?, [a, b] denotes the convex arc in R? whose end points are
a and b, and ||a|| denotes the norm of a in R Each leg of
X, [z, €3], is parameterized for {rey : r € [0, 1]}. Note that
forr=0,rep =1

A fan X with top 7 is said to be smooth provided that if
{Xn}n1is a sequence in X converging to a point X € X, then
the sequence {7Xn}ne1 of the arcs in X convetges, in the hy-
perspace of subcontinua of X, to the arc 7X. For example,
the cone over a compact totally disconnected metric space
is casily seen to be a smooth fan. Conversely, it is shown in
(Eberhart, 1969) that every smooth fan is homeomorphic
with a subcontinuum of the Cantor fan.

Throughout this section, X will denote a fan which is ho-
meomorphic to the cone over a compactum.

We denote Cut(X) = {x € X = {7} : X is a cut point in X}
and NCut(X) = {x € X — E(X): X is a non-cut point in X}.

It is convenient to have the following proposition in order
to write and prove some of the subsequent theorems below.

Proposition 3.1. If p € X — ({r} U E(X)), then:

a) p € Cut(X) if and only if p belongs to some free convex
arc of length one in X,

b) p € NCut(X) if and only if p belongs to some convex
arc of length one, Z, such that each q € Z — {r} is a limit
point of X —Z.

Proof. The proof follows from X is a fan homeomorfic
to the cone over a compactum. o

The proof of the following two theorems may be modeled
from the proofs of Theorems 2.1 and 2.2, respectively.

Theorem 3.2. {7} makes a hole in F5(X).

Theorem 3.3. If p and g are different elements of Cut(X),
then {p, q}makes a hole in F»(X).

Theorem 3.4. If p € Cut(X), then {p} does not make a
hole in F(X).

Proof. Consider a free arc Z in X such that {p} belongs to
the interior of F»(Z) in F»(X). Thus, F»(Z) is a closed neigh-
borhood of {p}.Itis notdifficult to prove that the boundary
of F(Z) in F»(X) is connected. Since F»(Z) is homeomorphic
to a 2-cell and {p} is an element of its manifold boundary,
then Fy(Z) — {{p}} is contractible. Then Fy(Z) — {{p}} has
property b) (see Anaya, 2007. Proposition 9, p. 2001). By
Proposition 2.4 of (Anaya, 2011), we have Fp(X) — {{p}}
has property b). i
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Theorem 3.5. If p € Cut(X), then {7, p} makes a hole
in Fy(X).

Proof. Let Z be a leg of X such that p € Z. Let Ay =
Fa@) - {{5.P}} and Ay = (Fo(Y) (Y, Z))  { {5, p}}, where
Y=X-2)u {7}.

It is easy to prove that A; U A, = Fo(X) — {{z, p}}, and
Ay, A; are connected closed subsets of Fo(X) — {{7, p}}.
Since A; N Ay is the set {{7, X} : X € Z — {p}} and it is
disconnected, F5(X) — {{7, p}} is not unicoherent. i

Theotem 3.6. If Ay € Fy(X) is such that Ay N E(X) # 0,
then Ay does not make a hole in F(X).

Proof. By Theorem 3.1 from (Macias, 2003), F»(X) is ho-
meomotphic to the cone over the set B = U{{A € F5(X) :
e, € A} : L € A}. Therefore, Fy(X) — {Ap} is homeomorphic
to the cone over the set B minus the element {(A(, 0)}. Then,
Fo(X) — {Ap} is contractible. Hence, Fo(X) — {Ag} has propet-
ty b). Therefore Fo(X) — {Ap} is unicoherent (see Eilenberg,
1936, Theorems 2 and 3, pp. 69 and 70). m

The last result is true for any hyperspace of X that appears
in Theorem 3.1 from (Macias, 2003).

Lemma 3.7. Let X be a continuum. We suppose that the-
re exists a connected subset A in 2X that has property b),
a sequence of subcontinua {Ap}n-gin A, B enfjo Ap and a
sequence {Anp}nzo of 2X such that Ay = limA,, and, for each
ne Nu {0}, A, € A,

If f: A — S'isamap, ty € exp~1(f(B)) and, for each
n e N U {0}, there exists a map hp : Ay — R such that f| 4
= expehy, and hy(B) =1, then hy(Ag) = limh,(Ap).

Proof. Since A has property b), there exists a map h: A —
R such that f = expoh and h(B) = t). Given n € N U {0}.
Since hp and h[ 4 are liftings of f[4 and h|4_ (B) =hn(B),
by (Greenberg and Harper, 1981, 5.1), h[ 4 = hp. Hence,
ho(Ag) = limhi(Ap). =

Theorem 3.8. If p € NCut(X), then {p} does not make
a hole in Fp(X).

Proof. By Proposition 8 of (Anaya, 2007), we only need
to prove that there exist two connected and closed subsets
of Fo(X) — {{p}}, A and D, which have property b) and the
intersection of them is connected.

Suppose that p = %e;m, for some €;,, € E(X). For any A,
vy € A let

A= <{% & ek} ! E & GYD Y {{t% te,}:te {o, %H

and

A=Y A - e
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LetY= U [z,

ek], for any AeNletDy = Y, [%e;u eﬂ)
reA
and let

N[

D=Fy(Y) U [}\LEJADK}

Cleatly, F (X) - {{p}} =AU D.

Since, for any A,y € A, {7} € Ay, we obtain that A is
connected. Also, since for any A € A, {%ek} e D) N Fy(Y),
we have that D is connected.

Notice that

(] o) )

Hence, A N D is connected.

Since X is embedded in R?, with 7= (0, 0) and its legs are
convex arcs of length one, it is easy to prove that A and D
are closed subsets of Fo(X) — {{p}}.

We are going to prove that D has property b). Since Y is a
fan homeomorphic to the cone over a compactum, F,(Y) is
homeomorphic to the cone over a continuum (see Macias,
2003). By Theorem 1.11 of (Rotman, 1998), F5(Y) is con-
tractible. Therefore, F,(Y) has property b). Since F»(Y') is
a deformation retract of D, D has property b) (see Anaya,
2007. Proposition 9).

We will prove that A has property b). Let f : A — S! be
a map. We do the proof in two steps. First we are going to
prove that there exist two contractible subsets of A whose
union is A and after that we will define the lifting of f.

Let B=(A - Ay, ) Y {7}

Notice that A =B U (Ay, », — {{P}})-

Now we are going to show that Band Ay, 3, — {{p}} are
contractible. Notice that

et~ g o
efinelore b

and {% e, ) belongs to the manifold boundary of
Fz([% €30 €2,])- Hence, Aj,, 5, — 11P}} is contractible.
If we define the following map H : B x [0, 1] — B by:

{a(r, ey, ofs, t)ey} 1fte[0,2] and r, s€5, 1

1
> 1]
2
(B Der, B Deyh, if te[31] and 7, sefL, 1]
{rey, sey} , iftel0 ,l] and r=s5€|0, %]

B(r, ey, Bls, ey}, if te % and r=s¢€|0, l]

H({re;,se, },t) =

where a, f: [0, 1] x [0, 1]— [0, 1] defined by a(x, t) = 2x (
% —t) +tand B, t) =2x(1 —t), we have {{r}} is a defor-
mation retract of B. Then B is contractible.

Now, we will define a lifting of the map f. Since B and
Ajs 2 — {{P}} have the property b), there exist two lif-
tingshy : B> Rand hy: Ay, 2, — {{p}} = Rof f|gand
fla5, 20— {{p}}> tespectively, such that hy({7}) = hy({7}). We

define h: A— R by:

hy (1%, 1), if {X,y} € B,

h({x, y}) :{hz (X YD, if Xy} € A, o —

Py

We will prove that h is a lifting of f. Cleatly, expoh =T.

In order to prove that h is continuous, we consider a
sequence {{Xn, Yn} }ne1 in A and an element {X, Yo} of A
such that {Xo, Yo} = lim {Xp, Yn}. We only need to consider
three cases:

Case 1. {{Xn, ¥n} : n € Nu {0}} < B. Since hy is conti-
nuous, N({Xo, Yo}) = limh({Xn, Yn}).

Case 2. {{Xn,¥n} :n e NU{0}} = Ay, 5, — {{P}}.

Since hy is continuous, h({Xy, Yo}) = imh({Xp, Yn})-

Case 3. {X), Yo} € Arp o~ 1P}, {7} } and, foreachn e N,
{Xn, Yn} € B. We want to use Lemma 3.7, to prove that h({X,
Yo}) =limh({Xp, Yn}). Given n € N U {0}, there exist tp, S, €
[0, 1] such that Xy =they,, and Yp = Spey,. We can suppose that,
{Ans Yt # {m, Y}, if N m. Since X is a fan homeomorphic
to the cone over a compactum, we have Xg = limXp, Yo = limyp,
lime;, = €, =lime,,, So = limS, and t; = limty,.

We ate going to prove that, for each n € N U {0}, there
exists an arc o, in A such that ap < B, if n#0, ay < Ay,

— Pt annam= {HT}}, if nem, {Xg, Yo} and {7} are
the end points of oy, {p} & U on, oo =limay and U o is
contractible. We consider two cases

Case 1. For each n € N U {0}, tn, sp < [0, %].
Then ty = S, and, for each n € N U {0}, we consider

an={{re;,, rey} 1 0<r<tp}

Case 2. For cach n € N, ty, s, € (%, 1] and sg, ty € [%, 1].
Given n € N U {0}, consider

al,n:{{Xn,[E%—Sn]l’+Sn]eYn}:OS r< 1},
- 14 Lo l.o<r<1
azin = 2 n r+tn e}\‘n, Eeq{n . <r< 5

a3 n ={{rekn, rey} :0<r< %}
and
Qn=0a1 n\Y az nY asn

(notice that yo = Ag).
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Since p € NCut(X), it can be shown that {an}® , satisfies
the required pr%)erties.
Notice that nl‘—Jo on has property b). If we consider, for

each n € N, @, = hy[y, and @y = hy|g,, by Lemma 3.7, h,
({X0, Yo}) =limh{({Xpn, Yn}). Hence h is a map. Therefore A
has property b). o

Theorem 3.9. If p € NCut(X) and q € X — E(X), with
g # p, then {p, q}does not make a hole in F(X).

Proof. In light of Proposition 8 of (Anaya, 2007), it suffices
to prove that there exist two connected and closed subsets
A and D of Fy(X) — {{p, q}}, which have property b) and
the intersection of them is connected.

We may assume that p = %ek0 for some €, € E(X) and
0<ligll < % Since X is the cone over a compactum, there
exist two disjoint subsets Ag and A1 of A such that A € A,
A=AgU Ay, {&, : L e Ay} and {e) : L € Aq}are open and
closed in E(X). Let A the set:

00 o {4 o]

minus the point {p, q}, where Y = U 7€, and D the set:

Ao

0 Sl e o [ e

minus the point {p, }, where X; = {rey :(r,x) € [0, 1] x Ay}
w {re,: (r,\) € [0, 2] x Ag} and R= A1 x Ag x A,.

It is easy to see that A and D are connected and closed
subsets of Fo(X) — {{p, q}}.

We prove that Fo(X) — {{p, q}} = A U D. Let {X,y} €
FaX) = {4p, 0} .

We can suppose that {X,y} & D. Then {x,y} Z X;. Without
loss of generality we may assume thaty ¢ X;. Hence, there
exists Y € Ay such thaty e [—ey, e,] and, by the definition of
D,x e U [ ex] So, {x,y} € A

We are gomg to prove the connectedness of A N D. Let:

4

Ly=(ngal dehuirel Geehudieh e,
for each (A, 7) € A x Ay.

First, we prove that
AND=F(Y) o U{Lyy: A v) € AxAo}) - {{p, a}}.

Clearly, Fy(y) and ({e,}, [%ev, e,]) are subsets of AN D
for each y € Ay,
Moteovet, {[7, %ex], [%ey, e,]) N Dis the set

(ek{3ed) o (el Jen e -0,

CIENCIA ergo sum, Vol. 19-1, marzo-junio 2012.

Ciencias HumanAs Y DE LA CoNDUCTA

for each (A, v) € A x Ag. Then
AnD=F(Y)V Uilry: Rav) € AxAgh) = {{p, A} }-

Now, let

B=F(Y)UAND-
5 )-

(U{Lny: (M, 7) € Ax Agand &g €

Using that £;, N F(Y ) # () and L)y is connected for
each (A, y) € A x Ag such that Ay ¢ {A, v}, we have that B
is connected. Now, consider (A, y) € A x A such that A €
{A, v}. Since p € NCut(X), Ly, — {{p, d} } < Clg,x)(B). So
AN D < Clg,xy(B). Then A N D is connected.

Now, we will prove that A4 and D have property b). In
order to prove that A has property b), it suffices to show
that there exists a deformation retract K of A such that K
has property b) (see Anaya, 2007. Proposition 9, p. 2001).

Consider the following sets:

CY = Fl(TeY) V(s ey]a {ey}>a

1
foreach y € A,

U

_ U _
M_yercYand’C_yer "

Notice that M is a closed subset of K and K is a closed
subset of A. We need to prove that C,, Ky, M and K have
property b).

Using the smoothness of X, it can be shown that M is
homeomorphic to Y. Thus M is contractible and, so it has
property b) (see Anaya, 2007. Proposition 9, p. 2001). Let y
€ Ay. Since Cy is an arc, it has property b). We see that <kgA
[z, %ex], {ey}> is homeomorphic to X. Hence, <ng[ 1e;L]
{ey}> is contractible and, so it has property b) (see Anaya,
2007. Proposmon 9, p. 2001). Notice that Cy N QU (7, Les],
{ey}> < T, 4(9y 1€y} . Then, IC, has property b) (see Anaya
2007. Proposition 8, p. 2001).

Now, we are going to prove that K has property b).

Letg: K — S! be amap and let t) € exp~1(g({7})). Since,
for each y € Ay, Ky has property b), there exists a map h, :
Ky — R such that g|, = expohy and hy({7}) = to. We define
h: K — R by h({x,y}) =h,({x,y}), if {X,y} € K. We pro-
ve that h is a lifting of g. Notice that, for each yo, 71 € Ay

such that v # v, we have that IOy, N Ky, = {{7}}. Then h is

well defined. Cleatly, expoh = g. In order to prove that h is
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continuous, let {{Xn, Yn} }ne1 be a sequence of K and let {X,
Yo} € IC such that {Xo, Yo} = lim{Xp, ¥n}. We will prove that
h({Xo, Yo}) = limh({Xn, yn}). We consider two cases.

Case 1. For ecach n € N, {Xp, yp} € M.

Since M has property b), there exists a map hy : M — R
such that g| o = expohy and hy({7}) =ty. Notice that, given
Y € Ag, hyle, and hy|c, are liftings of g|c, and hyle,({7}) =1ty
=hyle, ({7}). Thus, hylc, =N|e, (see Greenberg and Harper,
1981, 5.1). Hence, hy = h| 4.

Since M is a closed subset of IC, {Xq, Yo} € M. Then
h({Xo, Yo}) = hl m (X0, Yo}) = M1({Xo, Yo}) = limhy ({Xn, Yn}) =
imh| A¢({Xn, Yn}) = limh({Xn, Yn}).

Case 2. For each n € N, {xp, yn} ¢ M.

Givenn € N let nn € A and vy, € A such that 1, # v and
{Xn, ¥n} €[5 4 €15 18y, - Since {€,:y € Ag} and E(X) are

compact, taking subsequences if neccesary, we may assume
that there exist &y € {€,:y € Ao} and €;,, € E(X) such that
ey, = limey and e, =lime,.

LetU = nEN%{O} Un, where U =C,, U ([7, 7€
eachn e Nu {0}.

Using the smoothness of Y, it is easy to prove that U =
limUp. Then {Xo, Yo} € Uy. We need to consider two sub-
cases.

Subcase 1. For eachm,n € N, e, =e, .

Then, for each n € N, e, = e, Hence, Y = Ky, . By the
definition of h, h({Xo, Yo}) = imh({Xp, yn}).

Subcase 2. For eachm,n € N, e, #e,

Using the smoothness of Y ,
is contractible. Then U has property b) (see Anaya, 2007.
Proposition 9, p. 2001). If we consider gl : U — S! and,

for each n € N U {0}, ®p = hy |y, by Lemma 3.7, @o({Xo,

yO}) = hmq)n ({Xn, yn}) HCI’ICC, h({x()a yO}) = hmh({xnr yn})
This proves that K has property b).

mnl> {8y} for

it is easy to prove that U

Now, in order to prove that K is a deformation retract of

A, let
A= [(M)gAon (. 381, [5e ey]>] - {{p,q}}
and let ¥ : A x [0, 1] —> A defined by:

if {se;,re,} € K,
if {se;,re,} € Aj.

_ [{sen, rey,
Fltser, reyh, ) = {{sek, <(§ —nt+ e},
Notice that W] 4,011 and ¥|jcxjo,1) are continuous, A; is
a closed subset of A and A = A; U K. Moreover, if ({Se),
re,}, 1) € (Ay x [0, 1) A (K x [0, 1), then =1 and ¥| 4 xpo.y
({sex, rey}, 1) = Wliexpo,11({S€x, rey}, t). So ¥ is continuous.
Thus A has property b).

Now;, in order to prove that D has property b), we are going
to show that Fo(X;) — {{p, q}} is a deformation retract of
D and it has property b) (see Anaya, 2007. Proposition 9,
p- 2001).

Let:

Fo=F(Xp) — {{p, a}},

U Loy &) |le, e,
(Ay)eAxAy \|4 2

el i 4]

(V1) EAgxAg 4

Fi=

and

e 1)
W) eAgxh, (2 2

3
Notice that each Fj is a closed subset of D and D = iL=JO]:i'
We define F : Dx [0, 1] = D by:
{rex, sey}, if {rey, se,} € Fo,
y = {rex, x(t, s)ey},
{rex, x(2, s)ey}, if {rey, se,} € P,
{x(t, rey, x(t, s)ey}, if {rey, sey} € Fs.

F({rep sey}, if {rey, se,} € Fy,

where X(t, s) =5 L4 (1 —t)s for each t, s € [0, 1].
Clearly, each F| Fix[0,1] is continuous. Notice that:

b (o] o)
FonFr= (vyerxA0<{leV’1 H }>

foﬂfs—{{lev,g }

.7:2 M .7:3 = U <{% ev}, l

FonFi=

Vv,V € Ao},

(V1) EAgxA

and
f1ﬁF2=f1ﬁF3:®.

Cleatly, if Gy, G, € {Fj:i € {0, 1,2, 3}} such that Gy N
Go# 0, then Fg «jo.1j(1X, ¥ }, 1) = Flg,xjo,1j(1X, ¥}, 1) for each
({x,y},t) € (Gy N Gy) x [0, 1]. Hence, F is continuous. Then
Fo is a deformation retract of D.

By the definition of Xj and since p is an end point of Xy, it
can be shown that there exists a natural homeomorphism

f : Xy = X such that f(p) € E(X). Then F is contractible
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(see the proof of Theorem 3.6). By Proposition 9 of (Anaya,
2007. p. 2001), Fy has property b).
Therefore, F5(X) — {{p, q} } has property b). o

3.1 Classification

Theorem 3.10. Let X be a fan which is homeomorphic
to the cone over a compactum and {X, Y} € F»(X). Then
{X, y} makes a hole in F5(X) if and only if X =y and X is the
top of Xory#xandx,y e Cut(X) U {r}.

Proof. Necessity, let {X, Y} € F5(X) be such that {X, y}
makes a hole in Fp(X). In the case that X =Y, by Theorems
3.4 and 3.8, we have X = 7. On the other hand, if X #Y, by
Theotrems 3.6 and 3.9, X,y € Cut(X) U {r}. The sufficiency
follows from Theorems 3.3, 3.2 and 3.5. |

Conclusions

Intuitively, a connected topological space is unicoherent if
it does not have holes. K. Kuratowski was the first author
which used the unicoherence to obtain topological caracteri-
zation of the sphere (see Kuratowski, 1926 and Kuratowski,
1929). In (Borsuk, 1931), K. Borsuk introduce to use maps
from a given space on S! to study unicoherence. This tec-
nique was developed by the authors in (Eilenberg, 19306),
(Eilenberg, 1935), (Ganea, 1952a) and (Ganea, 1952b)).

Ciencias HumanAs Y DE LA CoNDUCTA

Unicoherence has been useful to distinguish topological
space. In (Illanes, 2002, 7, Lemmas 2.1 and 2.2, p. 348 and
349) the author showed that C,([0, 1]) — {A} is unicoherent
for each A € Cy([0, 1]) while C»(S") — {S'}is not unicohe-
rent. As a consequence A. Illanes obtain that C,([0, 1]) and
C,(S!) are not homeomorphics; this is in contrast to the
fact that C([0, 1]) and C(S!) are homeomorphic. Thus the
following problem arises: if X is a continuum and H(X) is
a hyperspace of X, for which elements A € H(X), A makes
a hole in H(X).

In this paper, we continue the works in the items (Anaya,
2007), (Anaya et al, 2010) and (Anaya, 2011). We obtain
the characterization of the elements A € F,(X) such that
A makes a hole in F5(X), when X is either a dentrite or the
cone over a compactum. Notice that dendrites and the cone
over a compactum are smooth dendroids. So, we consider
the following questions:

1. Is it possible to obtain a characterization of those A €
F>(X) such that A makes a hole in F»(X) when Xis a smooth
dendroid?

2. Is there a particular arc-smooth dendroid for which
it is impossible or very dificult to answer the Question 17

3. What happens with Fy(X), for n > 3. Is it possible to
find an element A € F,(X) such that A makes a hole in

FaX)? M

=
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