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The use of different sampling grids in determining the
variability of soil physical attributes of Oxisol

Abstract

This study aimed to analyze the influence of different sampling grids in determining the spatial 
variability of physical attributes of Oxisol. It was used to study an area of approximately 90 hectares, 
where soil was sampled at depth from 0 to 0.20 meters, using a grid of 2 points per hectare (G1). 
Each soil sample was composed of four subsamples and obtained using a soil sampler Dutch type. 
The samples were sent to the laboratory to granulometric analysis. From the initial grid, the area 
was divided into sampling cells of 2.9 (G2) and 4.7 hectares (G3), and assigned a coordinate value 
representative of the center of each cell. Classical statistical and geostatistical methods were used 
to characterize the data and to model the spatial dependence. Spatial dependence was detected 
for all physical variables of the soil, regardless of the sampling grid used. The utilization of sampling 
grid of 1 point for each 2.9 hectares, and the sampling cell characterized by 12 subsamples, showed 
itself capable of detecting the spatial variability of the physical attributes of the soil, guaranteeing 
reliability in the estimates, even reducing the quantity of points when compared to the densest grid.
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O uso de diferentes grids de amostragem para determinar a
variabilidade dos atributos físicos do solo de Latossolo

Resumo

O presente estudo teve por objetivo analisar a influência de diferentes grades amostrais na 
determinação da variabilidade espacial dos atributos físicos de um Latossolo Vermelho distroférrico. 
Utilizou-se para o estudo uma área de aproximadamente 90 hectares, onde se amostrou solo na 
profundidade de 0 – 0,20 metros, utilizando grade de 2 pontos por hectare (G1). Cada amostra de 
solo foi composta de quatro subamostras e obtida utilizando um trado tipo holandês. As amostras 
foram encaminhadas ao laboratório para realização da análise granulométrica. A partir da grade 
inicial, a área foi dividida em células amostrais de 2,9 (G2) e 4,7 hectares (G3), sendo atribuído um 
valor de coordenada representativo do centro de cada célula. Métodos estatísticos clássicos e 
geoestatísticos foram empregados para caracterizar os dados e modelar a dependência espacial. 
Foi detectada dependência espacial para todas as variáveis físicas do solo, independente da 
grade amostral utilizada. A modelagem da dependência espacial dos atributos físicos do solo 
utilizando a grade amostral de 2 pontos por hectare foi a que apresentou, de forma geral, os 
melhores parâmetros de ajuste para validação cruzada. A utilização de grade amostral de 1 ponto 
para cada 2,9 hectares, sendo a célula amostral caracterizada por 12 subamostras, mostrou-se 
capaz de detectar a variabilidade espacial dos atributos físicos do solo, garantindo confiabilidade 
nas estimativas mesmo reduzindo a quantidade de pontos quando comparada a grade mais 
densa.
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Introduction
An important factor to be considered 

in the planning of agricultural production is 
the soil initial condition. Advanced analysis 
techniques have been employed to quantify 
and characterize the physical and chemical 
attributes. These analyses can be considered as 
the main cost component in the characterization 
of the productive area. In this context, soil 
sampling becomes an important factor. The 
number of samples used to characterize certain 
area directly influences in the cost with analyses, 
and in the ability to express their real, physical 
and chemical condition. Using a large number of 
soil samples, the accuracy of its characterization 
will be high; however, the cost will also be high. 
The reverse is also true.

In studies of spatial variability, an 
important technique, known as geostatistics, is 
widely used. This technique emerged through 
studies by Krige for mines reserves estimates. 
For their application, it is necessary to know 
the data variance and the distance between 
observations. In agriculture, geostatistics is widely 
used in the soil science field as an important tool 
used to characterize the spatial variability of 
physical and chemical properties of soil.

Corrêa et al. (2009) emphasize that until 
recently, agronomic area researchers studied 
the soil attributes variability through the classical 
statistics, which assumes that the observations of 
a given attribute are independent of each other, 
regardless of its location in the area. In this case, 
the experiments were conducted to minimize the 
spatial variability impact, ignoring the fact that 
observations can be spatially dependent. 

Li et al. (2002) emphasize that both 
spatial variability and temporal variability of soil 
attributes should be incorporated in procedures 
and technologies applied to agriculture. 
Amirinejad et al. (2011), studying the mapping 
and evaluation of the variation of soil physical 
health, stress the importance of a good sampling 
strategy for the characterization and monitoring 
of the soil quality variability.

In Brazil, precision agriculture has been 
restricting itself to the application of variable-
rate fertilizer. This technology has resulted in 
gains for the producer. However, fertilizers 

recommendations have been performed from 
soil analysis obtained by sampling grids that 
do not always accurately detect the spatial 
variability of the attributes analyzed. 

Li et al. (2007) point out that an optimal 
sampling system, in any study, should provide 
an estimate with lower sampling cost, while 
representing the existing variability. Sampling 
must be sufficient to detect the spatial variability 
of soil attributes; otherwise, a denser sampling grid 
(larger amount of points) should be deployed. 
When using denser grid, it is possible to know 
which variable presents the lowest range value. 

Vašát et al. (2010) stress the need for 
new sampling methodologies that optimize this 
process, not just for one soil variable, but also 
for several. The sampling grid should correspond 
to diverse requirements. Firstly, the number and 
spatial distribution of sampling points should 
ensure a minimum precision for estimates in non-
sampled locations. Secondly, the optimization 
technique should be numerically feasible. 

Based on the foregoing, it is emphasized 
the importance of the choice of the grid 
used for sampling of soil attributes. The ideal 
sampling grid is one that is able to characterize 
the spatial variability of the attributes of the 
field of production with a minimum number of 
points, ensuring reliability in the estimates. This 
study sought to evaluate the influence of using 
different sampling grids in characterization of 
the spatial variability of soil physical attributes 
in an agricultural area located in the Brazilian 
Savannah.

Material and Methods
Data collection were performed on 

a farm located in the city of Sidrolândia, Mato 
Grosso do Sul, UTM zone 21 south, with coordinates 
702879.040 m east and 7673084.461 m north, in 
datum SIRGAS2000. This property has a total area 
of 2,491.07 hectares destined to agriculture. The 
average altitude, compared to sea level, is 490 
meters. The relief is considered slightly undulating. 
The predominant soil is classified as Oxisol (Soil 
Survey Staff, 2006). On the farm, it is cultivated 
soybean (Glycine max), corn (Zea mays) and 
cotton (Gossypium hirsutum L.), in crop rotation 
system, performed through no-tillage. For the 
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study, it was used an area of   approximately 90 
hectares. 

For the mapping of the physical attributes 
of soil, grids with a density of 2 points per hectare 
(G1), 1 point for each 2.9 hectares (G2) and 1 
point for each 4.7 (G3) were used. The grids G2 

and G3 were obtained by dividing the study 
area in sampling cells of 2.9 and 4.7 hectares. In 
the middle of each sampling cell was created a 
representative point of the cell. In Figure 1, the 
different sampling grids used for the study are 
showed.

The sampling points were georeferenced 
using a Topographic GPS reception apparatus 
of centimetric accuracy with post-processed 
differential correction. For differential correction, 
data in the base of the Brazilian Network for 
Continuous Monitoring (RBMC) of the Brazilian 
Institute of Geography and Statistics (IBGE), 
located in the city of Campo Grande / MS, 
were used. It was used for corrections the datum 
SIRGAS 2000. The correction was performed using 
the computer program GNSS Solutions®, provided 
by GPS receiver manufacturer.

To the characterization of the physical 
attributes of the study area, soil was sampled 
in 181 points, using the sampling grid G1 as a 
reference (Figure 1). It was collected, at each 
point, a soil sample consisting of four other single 
samples, representative of the soil layer of 0.0-0.20 
meters depth. The single samples were collected 
in a radius of 3 meters of the georeferenced 
point using a soil sampler Dutch type. The four 
single samples were homogenized for withdrawal 
of approximately 300 g of soil. The composite 
samples were placed in plastic bags, identified 
and sent to the laboratory to determine the 
textural composition (total sand, silt and clay).

In order to obtain the values of physical 
attributes of soil, representative of the points of 
the sampling grid G2, it was calculated the mean 
values of 3 points of grid G1, located within each 
sampling cell of grid G2. The points were selected 

Figure 1. Sampling grids used in the study: 2 points ha -1 (G1), 1 point 2.9 ha -1 (G2) and 1 point 4.7 ha -1 (G3).

randomly and considered representative of 
sampling cell where they were located. The 
same procedure was used to obtain the values 
of soil physical attributes of each point of grid 
G3. Thus, each soil sample representative of the 
points of the grids G2 and G3 was composed of 
12 single samples.

The data of the physical attributes of 
soil were submitted to exploratory analysis to 
verify the presence of discrepant values (Libardi 
et al., 1996). In this analysis, the critical limit for 
discrepant values is defined from the interquartile 
dispersion (DQ). The upper limit was defined by 
(Q3 + 1.5 x DQ) and the lower limit by (Q1 - 1.5 
x DQ), where Q1 and Q3 are the first and third 
quartile, respectively. 

After discrepant analysis, the data 
were analyzed using descriptive statistics, 
calculating the mean, median, minimum value, 
maximum value, coefficient of variation, lower 
quartile, upper quartile, standard deviation, 
and coefficient of asymmetry and kurtosis, thus 
seeking to characterize the distribution of data. 
Normality was tested by Shapiro-Wilk's test (p 
<0.05). The spatial dependence of each variable 
was assessed by the variograms adjustments, 
presupposing the stationarity of the intrinsic 
hypothesis, defined by Equation 1.

      
(1)
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where )(ˆ hγ  = Semivariance in function 
of separation distance (h) between pairs of 
points; h = separation distance between pairs of 
points, (m); N(h) = number of experimental pairs 
of observations Z (xi) and Z (xi + h) separated by 
a distance h. 

The experimental semivariance is 
represented in the graph )(ˆ hγ versus h. It was 
adjusted the model that best represented the 
relationship between )(ˆ hγ  and h, and then, 
being able to determine the parameters: nugget 
effect (C 0), plateau (C 0 + C) and range (A). The 
spatial dependence index (SDI) was determined 
and classified according Zimback (2001), using 
Equation 2, and thus, assuming the following 
intervals: low spatial dependence for SDI < 25%, 
moderate for 25% < SDI < 75% and strong for SDI 
>75%.
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The degree of correlation between the 
maps of each variable, prepared after analysis 
of the different sampling grids was evaluated by 
calculating the Pearson correlation coefficient. 
It was selected 36 points randomly, common to 
all maps produced, regardless of the sampling 
grid used in the analysis. Montgomery & Runger 
(2009), emphasize that the number of points 
used in correlation analysis influences in a biased 
manner the hypothesis test, and the greater 
the number of points, the greater the chance 
of rejection of the nullity hypothesis. In Figure 
2, it is presented the distribution map of the 36 
points used in the analysis of correlation between 
the maps of the soil attributes, produced from 
different grades studied.

The correlation analyses and classical 
statistics were performed in the program Statistica, 
version 7. The adjustment of the semivariogram 
models and interpolation were performed 
using the computer program GS +, version 9 
(Robertson, 2008). The making of thematic maps 
was performed using the program Surfer, version 
8 (Golden Software, 2002).

The interpolation of maps was performed 
using ordinary kriging 16 near neighbors were 
used for the estimates, in a search radius equal 
to the value of the range found in the variogram 
adjustment. Regardless of the sampling grid used, 
the generated maps were composed of 15,483 
pixels. Thus, it was guaranteed that all maps have 
the same amount and location of points.

Results
It is presented, in Table 1, descriptive 

statistical analysis of soil physical properties for 
the different sampling grids studied. It was not 
detected the presence of discrepant values 
among the data used for the analysis. It is 
observed that, by using the sampling grid G2, the 
data tended to normality by the Shapiro-Wilk's 
test at 5% of probability. All variables analyzed 
showed values   of measures of close central 
tendency (mean and median), indicating that 
the data tend to symmetrical distribution.

The coefficients of variation (CV %) 
ranged from 3 to 16. The coefficient of variation, 
regardless of the sampling grid used was classified 
as medium (12 <CV% <60) for the variables: sand 
and silt. The variable clay, independent of the 
sampling grid used for analysis, showed a low 
coefficient of variation (CV% <12), according to 
the classification proposed by Warrick & Nielsen 
(1980). Similar results were observed by Valente 
(2010) in studies performed in a Red-Yellow Oxisol 
in mountainous area cultivated with coffee.

The adjustment parameters of theoretical 
models of semivariance of soil physical attributes, 
for the different sampling grids studied, are 
presented in Table 2. All variables, regardless 
of the sampling grid used, showed spatial 
dependence. The Gaussian model showed the 
best adjustment for the soil physical variables, 
regardless of the sampling grid used, except for 
the variable clay, adjusted to the spherical model 
when is used to analyze the sampling grid G3.

Figure 2. Distribution of sampling points used in the 
analysis of Pearson correlation.
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The minimum distance between points 
on the sampling grids G1, G2 and G3, were, 
respectively, 49.97, 103.42 and 170.77 meters. The 
highest range (1498 meters) was observed for the 
variable sand. The lowest range (711 meters) was 
observed for the variable silt. Both ranges were 
observed when using the grid sampling G3. 

The variable clay presented SDI classified 
as moderate (25% < SDI < 75%) when using 
the sampling grid G1 in the analysis. The other 
variables, independent of the sampling grid 
used, were classified as variables of strong spatial 

Table 1. Descriptive statistics and frequency distribution of soil physical properties for the different grids sampling 
studied

Variables(1) Mean Median Minimum Maximum Vc(2) LQ(3) UQ(4) s(5) Cs(6) Ck(7) w
2 points for hectare (G1)

Sand 12.64 13.00 9.00 20.00 16 11.00 14.00 2.05 0.86 1.17 *
Silt 23.94 24.00 16.00 41.00 16 21.00 27.00 3.96 0.31 0.94 *
Clay 63.42 64.00 48.00 70.00 5 62.00 65.00 2.91 -1.04 3.85 *

1 point for 2.9 hectares (G2)
Sand 12.62 12.33 10.00 17.00 13 11.33 13.33 1.59 1.11 1.59 *
Silt 23.54 23.33 17.00 28.33 13 20.67 25.67 3.13 -0.30 -0.85 ns
Clay 63.84 64.00 60.33 67.00 3 62.67 65.00 1.89 -0.14 -0.70 ns

1 point for 4.7 hectares (G3)
Sand 12.70 12.33 10.00 17.67 15 11.33 13.67 1.90 1.18 1.62 ns
Silt 23.96 23.67 18.33 33.00 16 21.00 27.00 3.88 0.49 -0.07 ns
Clay 63.33 63.67 56.00 67.00 4 62.00 65.33 2.56 -1.34 2.64 ns

(1)dag kg-1; (2)Variation coefficient (%); (3)Lower Quartile; (4)Upper Quartile; (5)Standard deviation; (6)Skewness coefficient; (7)Kurtosis coefficient *Shapiro-Wilk’s test 5% probability 
significant; ns Normal distribution

dependence (SDI > 75%), according to the 
classification proposed by Zimback (2001).

The highest valuesof nugget effect were 
observed for the adjustments using sampling grid 
G1. All coefficient of determination showed high 
values. The highest value observed was 0.99, for 
the modeling of the spatial dependence of the 
variable silt, using sampling grid G2. The lowest 
coefficient of determination (0.85) was observed 
for the variogram adjustment, in the modeling of 
spatial dependence of the variable clay, using 
sampling grid G3.

Table 2. Semivariance theoretical models adjusted to the physical attributes of soil

Variables*
Model Range (a)  (C0+C)(1)  (C0)(2) SDI(3) RSS(4) R²(5)

2 points for hectare (G1)
Sand Gaussian 856 9.55 1.27 87 1.21 0.98
Silt Gaussian 837 30.95 4.98 84 15.40 0.98
Clay Gaussian 842 12.33 4.72 62 5.92 0.94

1 point for 2.9 hectares (G2)
Sand Gaussian 680 6.14 0.01 100 9.29 0.86
Silt Gaussian 1011 41.20 0.10 100 8.68 0.99
Clay Gaussian 847 10.15 0.57 94 1.73 0.98

1 point for 4.7 hectares (G3)
Sand Gaussian 1498 21.61 0.81 95 2.02 0.96
Silt Gaussian 711 32.41 2.99 91 8.06 0.98
Clay Spherical 896 9.33 0.21 98 3.54 0.85

 *dag kg-1  ; (1)Structural variance sill; (2)Nugget effect; (3)Spatial dependence Index; (4)Residual sum square; (5)Determination coefficient.

The parameters of cross-validation 
of theoretical models of semivariance are 
presented in Table 3. The best estimates of 
values   of soil physical attributes were observed 
for the sampling grid G2. This grid was the one 

that presented estimates with the highest values 
of determination coefficient. Less accurate 
estimates were observed from the analyses using 
the sampling grid G1. 
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Figure 3 shows the maps of spatial 
variability of soil attributes. The maps were 
obtained through interpolation, using the method 
of ordinary kriging. The interpolation process was 
carried out taking into account the parameters 

Table 3. Cross-validation parameters of semivariance theoretical models

Variables*
Regression 

coefficient
Y Intercept 

Square error

(SE)

Prediction square 

error
R²(1)

2 points for hectare (G1)
Sand 1.05 -0.62 0.05 1.13 0.70
Silt 1.01 -0.32 0.06 2.34 0.61
Clay 0.99 0.42 0.11 2.24 0.30

1 point for 2.9 hectares (G2)
Sand 0.88 1.42 0.07 0.60 0.86
Silt 0.93 1.63 0.08 1.32 0.85
Clay 0.90 6.60 0.15 1.25 0.57

1 point for 4.7 hectares (G3)
Sand 1.07 -0.85 0.13 0.87 0.79
Silt 1.02 -0.38 0.10 1.50 0.82
Clay 0.93 4.37 0.21 1.73 0.54

*dag kg-1; (1)Determination coefficient

adjusted for the physical variables of the soil. It 
was observed that the maps presented loss of 
detailing with the reduction of the number of 
representative grid points of each sampling grid 
studied. 

Figure 3. Spatial variability maps of soil physical properties for the sampling grids: 2 points for hectare 
(G1), 1 point for 2.9 hectares (G2) and 1 point for 4.7 hectares (G3).



137

Com. Sci., Bom Jesus, v.5, n.2, p.131-139, Abr./Jun. 2014

Bottega et al. (2014) / The use of different sampling grids ...

The result of Pearson correlation 
analysis, between the maps of each physical 
attribute of the soil prepared from the use of 
different sampling grids, is presented in Table 
4. All correlations presented significance at 1% 
probability level. The highest Pearson correlation 
coefficients between the maps prepared from 
the grid G1 were observed for comparison, using 

maps prepared with the grid G2. The lowest 
correlation coefficient (0.72) was observed for 
the correlation analysis between the maps of 
silt, prepared from the sampling grids G1 and 
G3. The highest correlation coefficient (0.99) was 
observed between the maps of clay, prepared 
using sampling grids G1 and G2.

Table 4. Pearson correlation coefficient between the maps made from different sampling grids

Variables
Pearson correlation coefficient

G1 x G2 G1 x G3 G2 x G3
Sand (dag kg-1) 0.97** 0.97** 0.93**
Silt (dag kg-1) 0.96** 0.72** 0.79**
Clay (dag kg-1) 0.99** 0.92** 0.90**

** Significance at 1% probability

Discussion
Not all sampling grids that were used 

presented normality in the distribution of data 
variables. In classical statistics, it is required that 
the basic assumptions of normality of errors, 
homogeneity of variances and independence of 
errors be considered for their efficient application; 
when they are not considered it will probably 
lead to inferences that lack confidence and 
precision (Guimarães, 2000). However, Cressie 
(1993) emphasizes that geostatistics does not 
require normality of the data to be applied; it 
is only advisable that the distribution does not 
present very long tails.

The variogram adjustment to the 
spherical model for the variable clay, using the 
grid G3 in the analysis, indicates loss of efficiency 
of the sampling grid of the spatial detection 
variability of this variable. The spherical model 
represents a low spatial continuity, unlike the 
Gaussian model, representative of the extremely 
continuous phenomena. Isaaks & Srivastava 
(1989), emphasize that the Gaussian model 
represents smooth variations over small distances 
of observation. 

All physical variables of the soil presented 
range values much higher than to the shortest 
distance between points of each sampling grid 
used. Range is important for the interpretation of 
the semivariograms, to indicate the distance to 
where the sample points are correlated among 
themselves, i.e., points located in an area whose 
radius is the range, are more similar than those 

are that are separated by greater distances. 
According to Corá et al. (2004), estimates 
made with ordinary kriging interpolation, using 
greater range values,   tend to be more reliable, 
presenting maps that better represent reality. 
When considering as distance between sampling 
points half of the range value, it is guaranteed 
the detection of the spatial variability of the 
attribute under study without losing precision in 
the estimates, because the spatial continuity of 
the variable is maintained (Carvalho et al., 2002). 

In addition to the range value, other 
parameters of the variogram can assist in 
choosing the model that best represents the 
spatial variability of the variable analyzed. It 
can be cited as examples the number of pairs 
of points that compose the representative points 
of the semivariance based on distance, the 
relationship value between the nugget effect 
and plateau, and the value of coefficient of 
determination of the theoretical model adjusted 
to empirical semivariance of the data. Journel 
& Huijbregts (1978), point out that, to ensure the 
reliability of the theoretical model adjusted, it is 
important to observe if the points that compose 
the semivariogram are representative of the 
variance between at least 30 pairs of points. 
Guimarães (2004) points out that the smaller 
the proportion of nugget effect to the plateau 
of the variogram, the greater the continuity 
of the phenomenon, the smaller the variance 
of the estimate and the greater confidence 
that one can have in the estimate. The value 
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of the coefficient of correlation can serve as a 
parameter in the choice of theoretical model 
that best represents the semivariance of data; 
however, the analysis of cross-validation is 
necessary to ensure the accuracy of the model 
chosen.

According to Montes et al. (2005), the 
idea of cross-validation is to validate the ability 
of the model adjusted of the semivariogram 
uncertainty associated with the uncertain of the 
attribute non-sampled. For this, one withdraws 
the sampled value and obtains the estimate by 
kriging, using the values of neighboring points. This 
process is performed for all the sampled points. 
At the end, for each point, there will exist the true 
value and the estimated value, and therefore, 
the estimation error.

The inferiority of the coefficient of 
determination, observed for cross-validation 
using sampling grid G1, rather than the 
coefficient of determination of the other grids 
G2 and G3, indicates increased estimation error. 
Soares (2006) reports that several factors may 
contribute to the increase of the estimation 
error, highlighting the high nugget effect values 
regarding the total variance. The nugget effect 
reflects the non-explained variability according 
to the distance of the sampling used, as local 
variations, errors in analysis, sampling errors and 
other. It is observed that, in adjustment of the 
variograms, using for analysis the sampling grid 
G1, the nugget effect values were higher than 
those observed for adjustment using the others 
sampling grids. 

The loss of detail observed by comparing 
the maps of Figure 3, is the effect of attenuation 
in estimating extreme values  , which generally 
leads to an underestimation of the proportion of 
values   above average, and an overestimation 
of the proportion of values   below the average 
(Soares, 2006). The quantity of observations to 
be used in the kriging process should not be too 
high because it results in interpolated values   
very close to, or correlated to, the nearest point. 
However, the quantity of points should not be 
too small because it smoothes excessively the 
interpolated value, resulting in loss of the result 
sought (Andriotti, 2003).

In order to improve the sampling process, 

it is necessary the choice of the size of the 
sampling cell to be used in the characterization 
of the spatial variability of soil attributes. It is 
suggested, before starting the sampling process, 
the discussion with the producer, about which 
size of sampling cell is economically viable to be 
managed, i.e., which size of area this producer is 
able to handle differently. This decision implies in 
costs with analysis and precision in the detailing 
of the spatial variability of soil attributes.

After choosing the sampling cell 
to be used to the characterization of the 
spatial variability of soil attributes, it should 
be recognized the quantity of single samples 
capable to characterize the cell chosen. Based 
on these questionings, new studies are suggested 
regarding the minimum number of single samples 
able to characterize different sizes of sampling 
cell.

Conclusions
The utilization of sampling grid of 1 

point for each 2.9 hectares, and the sampling 
cell characterized by 12 subsamples, showed it 
capable to detect the spatial variability of soil 
physical attributes, guaranteeing reliability in the 
estimates, and even reducing the quantity of 
points, when compared the densest grid. 
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