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Abstract
Using the well known “displace, cut and reflect” method used to generate
disks from given solutions of Einstein field equations, we construct some
relativistic models of time dependent thin disks of infinite extension made
of a perfect fluid based on the Robertson-Walker metric. Two simple fa-
milies of models of disks based on Robertson-Walker solutions admitting
Matter and Ricci collineations are presented. We obtain disks that are in
agreement with all the energy conditions.
Key words: general relativity; thin disks; exact solutions; robertson-
walker metric.

Highlights
• We construct time dependent disks of infinite extension made of a perfect
fluid based on the well known Robertson-Walker metric. • The models
are interpreted as a disk-like matter distribution made of a perfect fluid
with negative pressure or tension immersed in a Robertson-Walker type
cosmological model. • The solutions satisfy all the energy conditions.
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Relativistic models of thin disks immersed in a Robertson-Walker type spacetime

Modelos relativistas de discos delgados inmersos en
un espacio-tiempo tipo Robertson-Walker

Resumen
Usando el método de “desplazamiento, corte y reflexión” se construyen al-
gunos modelos relativistas exactas de soluciones que representan discos
delgados de extensión infinita, dependientes del tiempo y hechos de un
fluido perfecto, basados en la métrica de Robertson-Walker. Se presentan
dos familias simples de modelos de discos basados sobre el espacio tiempo
de Robertson-Walker que admiten colineaciones de Ricci y de materia. Se
obtienen modelos de discos que satisfacen todas las condiciones de energía.

Palabras clave: relatividad general; discos delgados; soluciones exactas;
métrica de robertson-walker.

1 Introduction

Exact solutions of Einstein field equations describing relativistic thin disks
are of great astrophysical importance since they can be used as models
of certain stars, galaxies and accretion disks. Solutions for static thin
disks without radial pressure were first studied by Bonnor and Sackfield
[1], and Morgan and Morgan [2], and with radial pressure by Morgan and
Morgan [3]. Also disks with radial tension were considered by González and
Letelier [4]. Several classes of exact solutions of the Einstein field equations
corresponding to static thin disks with or without radial pressure have been
obtained by different authors [5]–[6].

Thin rotating disks that can be considered as a source of the Kerr metric
were presented in [7], while rotating disks with heat flow were studied in
[8]. Also thin disks in presence of electromagnetic field have been discussed
as sources for Kerr-Newman fields [9], magnetostatic axisymmetric fields
[10], and conformastationary metrics [11]. The nonlinear superposition of
a disk and a black hole was first obtained by Lemos and Letelier [5].

In all the above cases, the disks are obtained by an “inverse problem” ap-
proach, called by Synge the “g-method” [12]. The method works as follows:
a solution of the vacuum Einstein equations is taken, such that there is a
discontinuity in the derivatives of the metric tensor on the plane of the disk,
and the energy-momentum tensor is obtained from the Einstein equations.
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The physical properties of the matter distribution are then studied by an
analysis of the surface energy-momentum tensor so obtained. Another ap-
proach to generate disks is by solving the Einstein equations given a source
(energy-momentum tensor). Essentially, they are obtained by solving a
Riemann-Hilbert problem and are highly nontrivial [13]. A review of this
kind of disks solutions to the Einstein-Maxwell equations was presented by
Klein in [14].

The purpose of this paper is to consider time dependent thin disk of
infinite extension made of a perfect fluid, i.e., with radial pressure equal
to tangential pressure, immersed in a Robertson-Walker type cosmological
model. These models can be important in the study of the evolution of
some planar astrophysical objects such as galaxies or accretion disks. The
inclusion of the time to the disks add for example a more degree of reality
to the geometric models of galaxies since even though in first approxima-
tion the galactic disks can be considered independent of time (stationary or
static) which can be true on small time scales compared with the average
age of the galaxies, in reality its structures were several billion years ago
especially when we observe them to large distances, and consequently its
physical properties also must have changed over time. So in more realis-
tic models the time need be considered. On the other hand, even though
realistic disklike sources have thickness, in first approximation these as-
trophysical objects can be considered to be very thin, e.g., in our Galaxy
the radius of the disk is 10 kpc and its thickness is 1 kpc. Moreover, even
though the disks are of infinite extension, the solutions might lead to useful
local disk models, describing the spacetime in a vicinity of a disk.

The method used to generate the field of such disks is the well known
“displace, cut and reflect” method which was used first by Kuzmin and
Toomre [15] to constructed Newtonian models of disks, and later extended
to general relativity [6]–[11]. The method is an adaptation of the method
of images of electrostatic and consists of the following steps. First, choose
a surface that divide the usual space in two parts, one with no singularities
or sources and the other with the sources. Second, disregard the part of
the space with singularities. Third, use the surface to make an inversion
of the nonsingular part of the space. The jump in the normal derivatives
of the resulting potentials induces a matter distribution in the disk. The
procedure is mathematically equivalent to make the transformations z →
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|z|+ z0, with z0 constant.
The paper is structured as follows. In Sec. 2 we present a summary

of the procedure to obtain models of relativistic thin disks using the well
known “displace, cut and reflect” method and we apply it to the Robertson-
Walker metric. We also compute the main physical variables associated
with the disks and we analyses its physical properties. In Sec. 3 two simple
families of models of disks based on Robertson-Walker solutions admitting
Matter and Ricci collineations [16] are presented which satisfy all the energy
conditions. Finally, in Sec. 4, we summarize our main results.

2 Relativistic thin disks

The Robertson-Walker metric in stereographic coordinates is [17]

ds2 = −dt2 + S(t)2(1 +
1

4
kρ2)−2(dx2 + dy2 + dz2), (1)

where S is an arbitrary (non-zero) function of t, k = 0,±1 and ρ2 =
x2 + y2 + z2. The same metric in cylindrical coordinates (t, φ, r, z) reads

ds2 = −dt2 + S(t)2[1 +
1

4
k(r2 + z2)]−2(dr2 + r2dφ2 + dz2). (2)

The procedure above mentioned applied to the metric (2) gives us

gtt = −1, grr = gzz = S(t)2
[
1 +

1

4
k[r2 + (|z|+ z0)

2]

]−2

, gφφ = r2grr.

(3)
This metric can be named Robertson-Walker type metric and the spacetime
is not homogeneous nor isotropic [18]. Now assuming that the components
of the metric tensor are continuous across the disk but with discontinuous
first derivatives in the direction normal to the disks, the Einstein equations
in geometric units such that 8πG = 1 give us

Gab = Tab +Qabδ(z), (4)

where Tab is the momentum-energy tensor in the exterior of the disk, δ(z)
is the usual Dirac function with support on the disk and

Qa
b =

1

2
{bazδzb − bzzδab + gazbzb − gzzbab + bcc(g

zzδab − gazδzb )}
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is the distributional energy-momentum tensor of the disk. bab denote the
jump of the normal derivatives of the metric tensor on the plane z = 0

bab = [gab,z] = g+ab,z|z=0 − g−ab,z|z=0 = 2 g+ab,z|z=0 , (5)

and other quantities are also evaluated at z = 0. This procedure in prin-
ciple can be applied to any solution of the Einstein field equations with
or without source (momentum-energy tensor). So for example its appli-
cation to the Einstein-Maxwell equations yield a matter distribution with
electric current density. On the other hand, these disks are essentially of in-
finite extension. Finite disks can be obtained introducing oblate spheroidal
coordinates, which are naturally adapted to a disk source, and imposing ap-
propriate boundary conditions. These solutions, in the vacuum and static
case, correspond to the Morgan and Morgan solutions [2]. A more general
class of solutions representing finite thin disks can be constructed using
a method based on the use of conformal transformations and solving a
boundary-value problem [3, 4, 19].

For the metric (2), the nonzero components of Qa
b are

Qt
t = −

2kz0[1 +
1
4k(r

2 + z20)]

S2(t)
, (6a)

Qφ
φ = Qr

r = −
kz0[1 +

1
4k(r

2 + z20)]

S2(t)
. (6b)

The “true” surface energy-momentum tensor (SEMT) of the disk, Sab,
can be obtained through the relation

Sab =

∫
Qabδ(z) dsn =

√
gzzQab, (7)

where dsn =
√
gzz dz is the “physical measure” of length in the direction

normal to the disk.
Thus the surface energy density σ and radial and azimuthal pressures

or tensions P in the disk read

σ = −S0
0 =

2kz0
S(t)

, P = Pφ = Pr = S1
1 = S2

2 = − kz0
S(t)

, (8)

with non-zero S(t). We will now analyses the physical properties of the
disks for the models k = 0,±1. When k = 1 Eq. (8) shows that the surface
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energy density is positive in agreement with the weak energy condition.
The strong energy condition ϱ = ϵ+ Pφ + Pr ≥ 0, where ϱ is the effective
Newtonian density, is also satisfied. This last condition characterizes a disk
made of matter with the usual gravitational attractive property. Further-
more, P < σ and so the disks also satisfy the dominant energy condition.
Accordingly these solutions satisfy all the energy conditions everywhere on
the disks, however the disks present tension (negative pressure) rather pres-
sure. Therefore these disks can be interpreted as made of a perfect fluid
with negative pressure or tension immersed in a Robertson-Walker type
cosmological model. When k = −1 obtains the opposite case, that is disks
with positive stress (pressure) but with negative energy density in violation
of the weak energy condition. When k = 0 the metric (3) is the same that
the Robertson-Walker metric and no infinitely extended thin disk can be
allowed to exist from the homogeneity and isotropy. Nonetheless, finite
disks could exist for the model k = 0 since this model which is based on
cosmological principle applies on very large spatial scale (on scales of tens
of Mpc and in the case, e.g., of our Galaxy the radius of the disk is 10
kpc). The models k = 1 and k = −1 could be possible in an anisotropic
and inhomogeneous spacetime.

3 Disks from Robertson-Walker solutions admitting
Matter and Ricci Collineations

As an example of the above presented formalism, we consider the thin disk
models obtained by means of the “displace, cut and reflect” method applied
to Robertson-Walker solutions admitting Matter and Ricci collineations.
We consider the standard Robertson-Walker model with vanishing cosmo-
logical constant and comoving observers ua = S−1(τ)δaτ , where τ =

∫
dt
S(t) , t

being the standard cosmic time. For these observers the energy-momentum
tensor has a perfect fluid form i.e. Tab = (ρ+ p)uaub+ pgab, where ρ, p are
the energy density and the isotropic pressure in the exterior region of the
disk measured by the observers ua. Note that the spacetime (3) implies two
types of pressure. P denote the stresses (pressure or tension) in the disk,
Eq. (8), and p the pressure of the matter where is inmmersed the disk, Eq.
(9). Thus, p could be zero (a dust fluid) but not necessarily the stress in
the disk as shown by Eq. (8). Thus using the Einstein field equations we
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obtain

ρ = 3
S2
,τ + kS2

S4
, p =

−2SS,ττ + S2
,τ − kS2

S4
. (9)

Since there remains one variable free, S(τ), we need one additional con-
dition in order to solve the model. One possibility is a geometric equations
of state defined by requirement of existence of Matter or Ricci collineations.
Thus two possible forms of the scale factor S(t) for Robertson-Walker mod-
els with k = ±1 which admit Matter and Ricci collineations are [16]

SMC(t) = S0(t+ t0)
2/3, (10)

SRC(t) = S0(t+ t0)
1/3, (11)

where S0 and t0 are constants of integration. So for disks generate from
Robertson-Walker spacetimes with k = 1 admitting Matter collineations
we have

σ =
2α

(t̃+ 1)2/3
, P = − α

(t̃+ 1)2/3
, (12)

where t̃ = t/t0 and α = z0/[S0(t0)
2/3]. Equally for disks generate from

Robertson-Walker spacetimes also with k = 1 which admit Ricci collineations
we obtain

σ =
2α

(t̃+ 1)1/3
, P = − α

(t̃+ 1)1/3
, (13)

where again t̃ = t/t0 and α = z0/[S0(t0)
1/3].

In order to study the behavior of previous physical quantities in Fig. 1
we have plotted the surface energy density σ and the tension P for disks
with α = 1, 2, 3, and 4, as functions of t̃. We see that at t̃ = 0 the
energy density presents its maximum value and then decreases with the
time t̃, being always a positive quantity in agreement with the weak energy
condition. We also see that the energy density initial is greater as the
parameter α is increased. Finally, we observe that the tension P presents
the behavior opposite.
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Figure 1: For Robertson-Walker type fields with k = 1 which admit (a) Matter
and (b) Ricci collineations, we plot, as functions of t̃, the surface energy density σ
( curves above of t̃ axis) for disks with α = 1 (bottom curves), 2, 3, 4 (top curves
) and the tension P (curves below of t̃ axis ) for disks with α = 1 (top curves), 2,
3, 4 (bottom curves).

4 Conclusions

Using the well-known “displace, cut and reflect” method used to generate
disks from given solutions of Einstein field equations, we constructed time
dependent disks of infinite extension made of a perfect fluid based on the
well known Robertson-Walker metric. As far we know these are the first
disk models of this kind in the literature.

When k = 1 we obtained disks which satisfy all the energy conditions,
however these disks present tension (negative pressure) rather pressure.
Therefore these disks can be interpreted as made of a perfect fluid with
negative pressure or tension immersed in a Robertson-Walker type cosmo-
logical model. When k = −1 obtains the opposite case, that is disks with
positive stress (pressure) but with negative energy density in violation of
the weak energy condition. Two simple families of models of disks based
on Robertson-Walker spacetimes with k = 1 admitting Matter and Ricci
collineations were presented. We found that initially the surface energy
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density presents its maximum value and then decreases with the time, be-
ing always a positive quantity in agreement with the weak energy condition,
whereas the tension presents a behavior opposite. Finally, more realistic
models like thick disks, finite disks based on this same metric, and disks
based on other time dependent metrics are being considered.
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