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Abstract

This paper addresses the issue of how in practiee might predict given that the data
generating process is a dynamic spatial panel madeé period ahead predictions are
calculated using various alternative predictorsneof which are misspecified, and their
relative performance evaluated.
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1. Introduction

Prediction based on spatial panel models has fgcemine to the forefront as a technically
feasible and useful contribution to spatial ecorcanand regional science. Baltagi, Bresson
and Pirotte (2012) write about forecasting withtspganel data with spatial error correlation
where the DGP is a simple error components regnessiodel with an autoregressive or
moving average spatial dependence process. Monte @aalysis shows that the “dynamic”
predictor performs well in comparison to prediciowhich ignore the endogeneity, the
spatial correlation in the disturbances and/or ignindividual heterogeneity. Baltagi,
Fingleton and Pirotte (2013) consider a dynamicciigation with spatial dependence
coming from two sources, an endogenous spatigtagan autoregressive error process, and
give the appropriate linear predictor based on Claalain (1984) and Sevestre and Trognon
(1996). In this paper various prediction equatians compared given dynamic and static
spatial panel data generating processes.
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2. The spatial panel data generating process
The (dynamic) data generating process (DGP) is

Yie = VYit—1 + P1 D=y Wij¥je + XieB + €1 i=1..,N;t=1,..,T, (1)

in which y;; denotes the value of the dependent variable ftivicual (location)i at timet,
andx;; is the(1 x K) vector of exogenous variables with x 1) coefficient vectoiB. Also
w;; is the value in théth row andj’'th column of predetermined matri&y of known spatial
weights with dimensioN x N). Conventionally this matrix has 0s on the mairgdraal and

y and p; are scalar parameters to be estimated. Obsertethiee are some conditions
defining an appropriate parameter space. Tlys- p;Wy) with Iy the (N x N) identity
matrix must be non-singular and therefore have magvo determinant, which is the case

whenp, is within the intervaﬂ ! ! [ wherer,,;, IS the most negative real characteristic

Tmin Tmax
root of Wy andr,,,, is the maximum and witi, typically row normalised so that each row
sums to 17,,, = 1. Similarly stationarity requires thdy| < 1 and dynamic stability is
achieved if the largest absolute eigenvalu@lpf- p; Wy )1y is smaller than one.

The random error process also involves a contempors spatial autoregressive
mechanism such that

Eit = P2 jeq MijEjr + Use (2)

in whichm;; is equivalent to, but not necessarily the samevgsand accordingly matrii
has the same properties as maltix. The conditions fop, are equivalent to those fpg but
with respect to the real eigenvaluesMyf not W, (which could be identical). The remainder
u;; has two components, ong;) is time invariant and individual-specific and tbéher
transient component is denotedipy. Thus

Ui = W + Vig, (3)

and it is assumed that each component is indep#pdelentically distributed so that
u~iid(0,02) and the remaindev is distributed as(0,07). Also both components are

internally independent and independent of eachrothe
This equation is equivalent to a recurrent equatianatrix form, thus

Ve =VYe-1 + PiWnYe + X8 + & 4)
with
& = poMyéer + uy, (5)
Us = [+ V. (6)
So that
Yt = Gﬁl[y}’tﬂ +x:6 + Bﬁlut] (7)

in which y, is an (N x 1) vector, x; is an (N x K) matrix of exogenous explanatory
variables, u, is the (N x 1) remainder termg, is an (N x 1) vector of errors,Gy =
(Iy — p1Wy) andBy = (Iy — p2My). In order to obtain a simulated series consisiattt the
assumed DGP this can be solved recursively ferl, ..., T + t starting withy, and giveru
andv,. To enable realisations of this process, in thi&ance the spatial matrix ahead
behind" given by Kelejian-Prucha (1999) is adoptelderej is a maximum of 5. The result is
an (N x N) matrix with non-zero weights equal to 0.1 summiagdlL both across rows and
down columns. For simplicity, it is assumed thromgihthatM,, = W),.
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One approach to obtaining initial valugg, following Baltagi, Fingleton and Pirotte
(2013), is based on realised values of the unobbévndividual effectg andv. In order to
obtain such values, we draw at random from assumeanal distributions, where

u~iid(0,02) andv~iid(0,02), thus obtainindN x 1) vectorsy andv,. Thert

1 1
Yo = 15 Putt + 5= Puvo. (8)
Also with Py = [ByGy]~! the variance-covariance matrix is
0'2 5 ’
Vivel = (52 + 25 PP ©)

The lagged endogenous variable is correlated vghindividual effects. So, in order to
obtain individual effects; = E*[u;]¥].j = 1, ..., N, one calculates

E[you;] = %PNIJ-. (10)
in which; is thej’th column of the(N x N) identity matrix and
A = VIyol E[you;]. J11
So that
W = Ai[yo — Elyol]- (12)

The DGP can produce data consistent with eithgmardic process, in which # 0, or a
static process whene= 0. For the dynamic process, it is assumed hat0.5, p; = 0.333,
p, =025, g = O.S,Jf, =0.2 and ¢’ =0.04. The data series is generated by solving (7)

recursively overt =1, ...,T + t with u, = u* +v, andT = 11. In this it is assumed that
X_10 IS an(N x 1) vector of Os and discarded the first 10 obsemati@andx; = 0.9x,_, +

e;; with e, drawn at random from aN(0,1) distribution. For the static process, we raim
the same assumptions with the exception that 0. These assumptions are retained
throughout the simulations used in the paper, antthe results are necessarily conditional on
these.

3. Dynamic panel estimation

Given data acrosN locations and times, the estimator for this dynamic specificatgven

by Baltagi, Fingleton and Pirotte (2013) has besmws to outperform rival estimators. This
estimator follows the path of Anderson and Hsia68(@, 1982) and Arellano and Bond
(1991) which by differencing eliminates the indivad effectsy; and which adopts a GMM
approach with, in this case, appropriate spatial @on-spatial instruments satisfying
moments conditions. This provides consistent ihiéstimates ofy, f and p; leading to
consistent residuals which are the basis of themastdp,, o ando;. To obtain the latter, a
modified version of the Kapoor, Kelejian and Pru¢B@07) is adopted, so that consistent
estimates are obtained of the autoregressive p#eanoé the error process and error
component variances. In the final stages accoutdkien of the error process dependence
leading to a final two-step spatial GMM estimatbyof andp; .

! This specification implicitly assumes that the titmition of initial values of the explanatory vabie is zero
and that the DGP of, is the same as the oneypft > 0.
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Given a single realisation of the dynamic DGP, ggime data fot = 1, ..., T, and hence
not basing estimation on the final realisatibr- 7, a typical outcome using the Baltagi,
Fingleton and Pirotte (2013) estimator is as inl@db

Table 1. Parameter estimates: dynamic DGP and dgrestimator

Parameters Estimates Standard errors t-ratios
y=0.5 0.4992 0.0069 72.3858
0, =0.332 0.3591 0.0315 11.3867
B=05 0.4988 0.0055 90.7613
0,=0.25 0.2155

0,=0.2 0.2250

o2 =0.04 0.0899

With the static DGP, it is anticipated that= 0. As an illustration, Table 2 gives the
outcome for a single realisation of the (static)®G

Table 2. Parameter estimates: static DGP and dynestimator

Parameters Estimates Standard errors t-ratios
y=0 0.0020 0.0134 0.1482
£, =0.332 0.3444 0.0436 7.8913
B=05 0.5059 0.0073 68.8296
0, =0.25 0.5935

0.=0.2 0.1567

o2 =0.04 0.0376

4. Static panel estimation

We are generating both static and dynamic spa#ia€pdata, and therefore a brief outline is
given of the static panel estimatgr=£ 0) with a spatial lagq; # 0) and spatial error process
p2 # 0. As with the dynamic estimator the core of thehndtis Kapoor, Kelejian and Prucha
et al. (2007), although their approach does ndudethe endogenous spatial lag, focusing on
the spatial error process. It is a simple stepntooduce the spatial lag into the estimation
procedure, as outlined in various papers (FingleR008; Baltagi, Fingleton and Pirotte,
2011). There are three stages. First, given theepee of the endogenous spatial lag,
instruments are used to give consistent initialmees of § and p; leading to consistent
residuals. Second, these are the basis of theatstim,, g7 anda; via GMM. Third, these
parameter estimates then allow elimination of emependencevia a Cochrane-Orcutt
transformation, leading to final estimatessoAndp, and appropriate standard errors.

Given data fort =1,...,T produced by a dynamic DGP, one expects the paemmet
estimates to be biased. In contrast with data meduia a static DGP process, the static
panel estimator will typically lead to unbiasedimesttion. Typical outcomes for single
realisations of the dynamic and static DGPs arsgmted in Tables 3 and 4.
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Table 3. Parameter estimates: dynamic DGP and ststimator

Parameters Estimates Standard errors t-ratios
y=0.5 - - -

0, =0.33¢ 0.5065 0.0671 7.5445
£=05 0.8810 0.0356 24.7775
p,=0.25 0.2770 0.0834 3.2602
Jﬁ =0.2 0.8969

UVZ =0.04 0.2680

* Based on 100 Bootstrap replications, equal tarest minus Bootstrap mean in units of standard tewia

Table 4. Parameter estimates: static DGP and stsiiimator

Parameters Estimates Standard errors t-ratios
y=0 - : :

£, =0.332 0.3715 0.0699 5.3180
£B=05 0.5090 0.0153 33.2112
0,=0.25 0.2997 0.0776 3.9111
0/21 =0.2 0.1834

0’ =0.04 0.0394

* Based on 100 Bootstrap replications, equal tarest minus Bootstrap mean in units of standard tewia

5. Prediction for dynamic and static panel data

Prediction is carried out using 5 methods, labelledo E. Method A comes from the
published literature, but relies on knowledge ofnmally unknown initial values. Method B
approximates the initial values by the values olestrat time 1. Method C also uses the
observed data for initial values, but in additidtempts to estimate individual effectsfrom

the residuals. Method D is a prediction methodrayppate to static panel data, as is method
E, but E is minus the contribution due to interdegence of disturbances.

Prediction Method A

The source of this method is Baltagi, Fingleton &ucbtte (2013), which is derived from
Chamberlain (1984) and Sevestre and Trognon (199%).approach uses the same equations
as used in the dynamic DGP and relies on the santal ipredetermined values across

individuals yo = (y10, ..., ¥no) leading to an estimate ofs; = A;[y, — E[y,]] . The linear
predictory;, of y;, is conditional ory, and on the whole sequence of an exogenous variable
(X11) we» XN1) wer X175 -0r XnT), @Nd IS given by

* t - l - D«
Yit = vt Z?]=1 hl(j) Yjo +Zf=1 yit ?’:1 hgj) Xjt-1+1B +th=1)/l ! ?’:1 pi(j) Hj (13)

in which hg.) denotes celi) of matrix (Gy1)" andpi(]l.) is cell@,j) of ((GyY)!ByY). Given
estimates ofy, p;, p, and 8, we can proceed to calculag,, given y;, and u;. The
assumption is that initial valueg;, and individual effectuy; is uncorrelated with the

explanatory variable;;, Vi, t.

2 For ease of exposition, we consider just a siegEgenous variable.
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Therefore to proceed, the estimates (similar toléfdbbut re-estimated for each Monte
Carlo simulation) are substituted into the lineadictor

5, =G| PiatxB+BIA | 114

which is solved fot = 1,...,T + 7; T = 1,wherey, = y,,G, =(I, = OW,),

~ ~ A A -1

By =(Iy~AM,) and withR, =[B,G, | , this gives

s [[ % % \s 51 "

A = [((1—@2 * (1—?'0) PnP N]
For a single realization, and for= 1, in Figure 1 a comparison is made of the resulting

(N x 1) vectors with the vectors created by the dynamid atatic DGPs. Table 5
summarises Method A prediction errordg'at t; T = 1 from 500 replications.

62 3 - ~K bY
ﬁPNlj leading tqi; = A [yo - E[yo]] :

Figure 1. Prediction method A: one period aheadiptiens

Dynamic DGP Static DGP
Method A: One Period Ahead Predictions Method A: One Period Ahead Predictions
6 T T T 4 T T T T
4t 3r
x 2
2r %
ol X £
a g L = 1} %\;»kx *
o X o X% K
Eo e Z < S
ji x x 8 0f X %
o Fo ® o 3
2 x 30X X
o K 1 e
X ek %
e &
x
ar i 5 x

Prediction Method B

This is identical to prediction method A exceptttimstead of using,, which in practice will

be unknown, one can usg, the observed data at time 1, assuming it wilkineilar to y, .
Thus one can solve equation (14) wiff} = y,as the initialy observation. Debarsy, Ertur and
LeSage (2012: pp. 161) argue that it is reasentbkondition on the initial period, since
their focus is on “interpretation not estimationtibése models”, and likewise here one is not
concerned with parameter estimation, but with petation based on extant parameter
estimates. For a single replication, and for tithe ;7 = 1, Figure 2 plots the resulting
(N x 1) vectors against the DGP vectors, showing a veltipoor performance for these
single realizations. Table 5 summarises predictioors for method B & + 7; T = 1 from
500 replications.
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Figure 2. Prediction method B: one period aheadiptiens
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Prediction method C

Method B uses proxy initial valueg;so that /; :j;[yl—E[yl]],Dj. In method C an

attempt is made to estimate individual effegiérom the residuals observed over time. To
show this we commence with the single cross-section

Ve = VYe-1+ P1iWnYe + X8 + &. (16)
So that
BI\_Ilut =Y = VYVi-1 — P1IWNY: — X:B. (17)
and
Ur = {+ Ve = By[ye = vye-1 — p1Wnye — x¢B1, (18)
U= BylGyye — VYe—1 — Xt B] — Ve, (19)
ve~N(0,07). §20

In order to calculat@, one uses observed data (from the DGP) for thaese® ofys in
equation (19) together with the parameter estie(alﬁ[?, etc.) , using the data for the period
t =2,..,T, on each occasion drawing &NV x 1) vectorv, at random from th&v(0,52)
distribution. This gived” — 1 (different) estimates qf, so we take the across time mean as an
estimate of the time-invariafiv x 1) vectoru, givenE[v,] = 0. Also the estimate is scaled
so that its variance is equal&ﬁ.

This estimatedk, denoted byz, is then used in the recurrent equation withahibbserved
valuesy; thus

Ve = Gﬁl[?ytﬂ + xt,é + Bﬁlﬁ] (21)
which solves recursively over= 2, ..., T + .
Figure 3 shows that the approach works well fordjppeamic DGP, and also for the static

DGP. Of course these are single realizations, gosbiould look at 500 replications (Tables 5
and 6) to confirm these initial observations.
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Figure 3. Prediction method C: one period aheadigtions
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Prediction method D

The static model prediction equation is the BLUBdxtor of Goldberger (1962), which for
y = p; = 0 is given by

" A BE N .
Vit+r = XiT+0 + a_izL (LT ® li)g (22)

wherex; 4, is the(1 x K) vector of explanatory variable values for indival i at time
T + 1, of = Ta; + oy andl; is thei'th column ofly, whereg} is the variance of the time-
constant random process for individuals arfdis the variance of the idiosyncratic errors
varying across individuals and across time. Thisamsethat for individual, one adds
(T62/6%)&;, whereg; = ¥T_, &,/T. Thus the usual GLS forecast is modified by adding
fraction of mean of the GLS residuals correspondmghei’th individual. Interestingly,
Baltagi, Bresson and Pirotte (2012) show that #ig&o applies even ip, # 0 but where
Yy =p1=0.

In the case wherp, # 0, following Fingleton (2009) and Baltagi, Fingletand Pirotte
(2011) the linear predictor becomes

~ P 52 ' N
Pree = Cu* (xr4cB + 35 (ir ® I )é) (23)

in which; is a(T x 1) vector of 1s. Thisis equal to

~ 5 ~ TG} ~

Pirsr = et P Xi=1 hijXijree + aif” i hijé (24)
in which h;; is thei j'th element ofGy*' (Baltagi, Fingleton and Pirotte, 2011, 2013). Give
either a dynamic DGP or a static DGP, the staticepastimator for each Monte-Carlo
simulation of a dynamic or static process (givirgiireates similar to Tables 3 and 4) is
appled. The relative performance of (24) comparid ether prediction equations is given in
Fingleton (2009). Figure 4 suggests (in a singldization) that Method D is (slightly) better
at predicting outcomes from a static rather thdgreamic DGP.

% A proof that this is a Best Linear Unbiased Preti¢BLUP) is available at
www.spatialeconomics.ac.uk/textonly/SERC/publicasiolownload/sercdp0095.pdf

2E8BL 314), 194207, 2014 120



Bernard Fingleton

Figure 4. Prediction method D: one period aheadiptiens

Forecasting with dynamic spatial panel data
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Prediction method E
This is simply the static panel estimator minus@uwtdberger (1962) correction, hence

gli,T+r = é&l(Xi,Tﬂé) (25)

Comparing Figures 4 and 5 one can see an evidssloprecision due to the absence of
the Goldberger correction.

Figure 5: Prediction method E: one period aheadigtiens
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Summary of prediction outcomes

The foregoing comparisons were simply indicative.pfovide more valid evidence, Tables 5
and 6 summarise outcomes of 500 Monte-Carlo sinonisitfor each prediction method with
both dynamic and static DGP. In the Appendix thenglete distribution of the prediction

error from the Monte-Carlo simulations is shown gnen

. . * 2
prediction error = Z?’Zl(yi,rﬂ - yi,Tﬂ) (26)

Table 5 shows that method C provided the most ateyredictions for the data obtained
via the dynamic DGP. Method A is not a practicatiap in that the true initial values are
typically unobserved, but it does provide a yarksfor comparison. The contrast between
methods A and B shows that proxying the true, mkinown, initial values by the observed

L4
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data in this case by itself leads to a severe temu accuracy. However this is not strictly

due to the initial values used per se, but ishkattable to the effect it has on the individual
effects. This is shown by the optimal method C,chHike B also uses the observed data for
the initial values, but which uses residuals toaobtestimates of the individual effects.

Methods D and E are relatively poor predictors¢aithey are misspecified for the dynamic
DGP. Despite this, method D is preferable to metBod

Table 5. Summary statistics for out-of-sample préain errors with Dynamic DGP, 500 replications

Method Mean Median RMSE
A 38.9423 28.9348 0.5925
B 161.128 147.473 1.2556
C 23.8635 22.5812 0.4800
D 55.3232 52.9774 0.7391
E 198.214 191.547 1.3985

Table 6 shows outcomes for the static DGP. Mwogxpectedly, method D is clearly the
best approach. Interestingly, method C (overpananeet for the static DGP) proved superior
to method E, which omits the Goldberger correction.

Table 6. Summary statistics for out-of-sample preain errors with Static DGP, 500 replications

Method Mean Median RMSE
A 10.1216 9.8257 0.3164
B 60.1664 60.1281 0.7741
C 7.6827 7.4247 0.2756
D 5.3960 5.3775 0.2314
E 30.5929 29.9836 0.5506

6. Conclusions

The conclusions are prefixed with the warning thase results are merely an initial,
provisional foray into the problem, in that they aonditional on assumed parameter values
and interaction matrices used in the DGP and outsaaeross a range of alternatives have not
yet been explored. For example, it would be intergsto explore the effect of assuming a
higher level of temporal persistence, such)as0.9. Thus the contribution is essentially
methodological, pointing to the relevant literatared bringing into focus issues of relevance
and how one might wish to proceed in studying treblem, rather than being definitive or
final interpretations. With this important caveatmind, it is suggested that given data of
unknown provenance, one should estimate the dynanudel in order to test the null
hypothesisy = 0and thus see whether the dynamic specificatioppsagriate. If it is, then it

seems that the best approach appears to be Methddviaver if we fail to rejecy = Othen
Method D is the best.
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Bernard Fingleton Forecasting with dynamic spatial panel data

Note however that for a dynamic DGP, Method C camaheays be guaranteed to perform
better than Method A, it depends on how closelyabsumed initial valuesy, correlate to

the unknown initial valuesy,. In the case of the simulations reported here ctireelations

are quite high, with a mean equal to 0.67, soith#tis instance Method C is more accurate
than Method A. However if one maximises the cotretaby replacingy, by y, in Method

B, then Methods A and B are effectively identig@liso using y,in place of y,in Method C
produces even superior predictions. In practicéhaut knowledge ofy,, one does not know
how good the correlation is betwegn and y,. However one way to improve predictions via

Methods B and C would be to remain open to opti@taiting values rather than remain
rigidly with y,. This could be achieved by holding back data amdipting the data ex post,

choosing starting values which optimize the ex gwediction. With those optimal starting
values, then one might proceed with greater contiddo make ex ante predictions. However
this is beyond the scope of this present papervamdeave this to further research. To
summarize, because it uses additional informatiethod C appears to be less vulnerable to
the influence of poorly correlated starting valtiesn is Method B, so on the current evidence
is the preferred choice, although it will not alwaye as accurate as Method A, which cannot
however be used in practice.

Acknowledgements. Professor Alain Pirotte provided some suggestiansriting this paper, but | am
solely responsible for any errors it may contain.
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Appendix

Al. Distribution of outcomes from Monte-Carlo siratibns with dynamic DGP
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A.2 Distribution of outcomes from Monte-Carlo simtibns with static DGP
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