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Abstract

Asset correlations are of critical importance in quantifying portfolio credit risk and economic capi-
tal in financial institutions. Estimation of asset correlation with rating transition data has focused
on the point estimation of the correlation without giving any consideration to the uncertainty
around these point estimates. In this article we use Bayesian methods to estimate a dynamic
factor model for default risk using rating data (McNeil et al., 2005; McNeil and Wendin, 2007).
Bayesian methods allow us to formally incorporate human judgement in the estimation of asset
correlation, through the prior distribution and fully characterize a confidence set for the correla-
tions. Results indicate: i) a two factor model rather than the one factor model, as proposed by
the Basel II framework, better represents the historical default data. ii) importance of unobserved
factors in this type of models is reinforced and point out that the levels of the implied asset cor-
relations critically depend on the latent state variable used to capture the dynamics of default,
as well as other assumptions on the statistical model. iii) the posterior distributions of the asset
correlations show that the Basel recommended bounds, for this parameter, undermine the level
of systemic risk.

JEL Classification: G32, G33, C01.
Keywords: Asset correlation, non-Gaussian state space models, Bayesian estimation techniques,
zero-inflated binomial models.

Conjuntos de confianza para la correlación de activos en el
riesgo de crédito de un portafolio

Resumen

Las correlaciones entre los activos de un portafolio crediticio, son parámetros de suma impor-
tancia para la estimación del riesgo crediticio y capital económico de una institución financiera.
La literatura especializada en la estimación de las correlaciones entre los activos, que utiliza in-
formación de migraciones entre las calificaciones de riesgo, se ha concentrado principalmente
en la estimación puntual de los parámetros, desconociendo la incertidumbre alrededor del esti-
mador puntual. En este articulo utilizamos métodos bayesianos para estimar el modelo factorial
dinámico para riesgo de quiebra utilizando datos de calificaciones de riesgo sobre un portafolio
crediticio (McNeil et al., 2005; McNeil and Wendin, 2007). Los métodos bayesianos nos permiten:
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20 Confidence sets for asset correlations

incorporar formalmente la información experta en el proceso de estimación de las correlaciones
mediante la distribución a priori y obtener intervalos de confianza alrededor de los parámetros
de interés. Los resultados indican: i) un modelo de dos factores se ajusta mejor a la información
histórica de quiebras, que el modelo de un factor (recomendado en Basilea II), ii) resalta la im-
portancia de la introducción de factores no-observables en la especificación del modelo, en par-
ticular, las propiedades estadı́sticas de los factores no-observables puede tener un efecto impor-
tante sobre la magnitud de las correlaciones estimadas, iii) las distribuciones a posteriori de las
correlaciones entre los activos indican que los intervalos sugeridos por el documento de Basilea
subestiman el riesgo sistémico.

Clasificación JEL: G32, G33, C01.
Palabras clave: Correlación de activos, modelos espacio estado no gausianos, téncicas de esti-
mación bayesiana, modelo binomial con inflación cero.
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1 Introduction

Asset dependence in portfolio credit risk management is a topic of growing
importance for practitioners and academics. Changes in the most common
form of dependence (correlation) across assets transfer some of the risk from
the mean towards the tail of the loss distribution. Any increase in correlation
between the assets fattens the tail of the loss distribution and therefore re-
quires a greater amount of capital set aside to cover unexpected losses. Hence
asset correlation is a cornerstone parameter in the estimation of a bank’s cap-
ital requirements. Tarashev et al. (2007) show that misspecified or incorrectly
calibrated correlations can lead to significant inaccuracies in the measures of
portfolio credit risk and economic capital.

The Basel accord of 1988 was a first attempt to establish an international
standard on a bank’s capital requirements. However a significant drawback
was the accord’s crude approach to determine the risk weights assigned to
different positions in a bank’s portfolio. For example, a private firm with
a top rating would receive a weight a hundred times higher than any type
of sovereign debt, regardless of the rating of the former. The second Basel
(henceforth Basel II) corrected the imbalance by accounting for the relative
credit quality of the issuers.1 Under Basel II regulators gave more leeway to
banks with the hope that they are able to perform a more accurate measure of
the risk heterogeneity of their portfolio. Hence bank managers have greater
freedom to calibrate the assigned risk weights and derive more accurate loss
distributions for their portfolios.

In general, techniques to derive the loss distribution for the portfolio re-
quire simulation. Considering the dependence across all individual names
would be very cumbersome, hence factor models provide simple ways to map
the dependence structure in the portfolio. Under the internal-rating-based
(IRB) approach to determine the risk weights, proposed in Basel II, the un-
derlying structure behind default dependence is a one factor model. Basel II
suggests a value for the correlation parameter, the unique dependence param-
eter of this one factor model, between 0.12 and 0.24. The literature proposes
various estimates for these values in the ranges (0.01-0.1) Chernih et al. (2006)
and (0.05-0.21) Akhavein et al. (2005).

The risk factor model, used extensively in the literature on dynamic mod-
eling of default risk, provides the structure to estimate asset correlations with
rating data. This model decomposes credit risk into systematic (macro re-
lated) and idiosyncratic (issuer specific) components. In this context (McNeil
et al., 2005; McNeil and Wendin, 2007) and Koopman and Lucas (2008) pro-
vide estimation methods to fit the dynamics of default. The former explores
heterogeneity among industry sectors and also across rating classes whereas
the later only explores heterogeneity across ratings. Both articles recognize
two difficulties inherent to rating data and, particularly, default: i) rating tran-
sitions are scarce events and ii) defaults are extremely rare events. These two

1The recommendations from the Basel II accord are contained in a document published by
the Basel Committee on banking supervision (2006).
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elements make statistical inference more difficult. However, rating transition
data is a preferred proxy for changes in the creditworthiness of issuers be-
cause it is more direct than using other proxies such as equity or spread data.
Moreover, equity based correlation is not readily available for some types of
issuers. For example, for sovereigns and structured products there is no infor-
mation available for equity or debt. Therefore, it is not possible to link equity
and assets through the option-theoretic framework due to Merton (1974).

The aim of this article is twofold: First, estimate asset correlations within
and across different identifiable forms of grouping the issuers. Second, pro-
vide a sensibility analysis of these estimates with respect to the model as-
sumptions. We use Moody’s rating data for Corporate defaults and Structured
products. The Corporate default database contains information on 51,542 rat-
ing actions affecting 12,292 corporate and financial institutions during the pe-
riod 1970 to 2009. The Structured products database contains information on
377,005 rating actions affecting 134,554 structured products during the period
1981 to 2009. The database contains information on group affiliation of the
issuers such as type of product, or economic sector and country where a firm
carries out its business.2 According to the group affiliation, firms are orga-
nized into 11 sectors, 7 world regions and 6 structured products (Table 1).

The disaggregated approach (first objective), with respect to a world aggre-
gate, contributes to the existing literature on asset correlation since most of the
literature has focused on estimating these models on aggregate data (in partic-
ular aggregate US default count). With respect to world region affiliation and
structured products, the results in this article are a novelty. Furthermore, if ac-
counting for heterogeneity in a bank’s portfolio is an important part of Basel
II, it is senseless estimating models based on the aggregated data. By mov-
ing away from the aggregated data, the few historical observations that are
available on rating transitions (especially default) become even more sparse.
Therefore the existing methodologies encounter problems due to the sparsity
of the data.

The sensibility of the estimates of asset correlation with respect to the
model assumptions (second objectives) goes beyond the Basel II benchmark:
the one factor model. The elements of the model that are analyzed, with re-
gard to their effect over the parameters of interests, are the following: i) in-
troduction of additional group specific factors (i.e. a two factor model), ii) the
nature for the factors (i.e. observed or unobserved), iii) the data generating
process of the factors, iv) the functional form of the default probability (i.e.
probit or logit), and v) for a given rating system, the implications of migrating
from different ratings to default (i.e. correlation asymmetry).

We use a generalized linear mixed model (GLMM hereafter) for estima-
tion. This model considers the observed number of firms that perform some
migration (possibly to the default state), out of a total number of firms within

2The main unit of analysis throughout the paper is an issued financial obligation that has
some particular rating. The financial obligation can take many forms: On one hand it can be a
corporate bond, issued by a firm. On the other hand it can also be a financial product such as a
structured product. Therefore, it is important to note that when we refer to firms or issuers, we
implicitly refer to the entity which is liable for such financial obligations.
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a given group (say an economic sector or world region), as a realization of a
binomial distribution conditional on the state of some unobserved systematic
factor. A one or two factor model (1-F, 2-F, henceforth) allows the decompo-
sition of default risk into the estimated factor(s) and the idiosyncratic compo-
nent. A set of identifying assumptions on the model allows for the estimation
of both the factor(s) and the factor(s) loading(s). The state space model built
from this setup has a measurement equation that has the form of a binomial
distribution (making the model non-Gaussian and non-linear).

We find that the loading parameters of the factors across the 11 sectors,
7 world regions and 6 structured products are in general statistically signifi-
cant. We recover the asset correlations from the factor loadings and observe
that in some cases, the asset correlations are higher than the Basel II recom-
mended values. For most models there is even a null or very small probability
that the asset correlation parameter is within the bounds recommended in the
Basel II document. Asset correlation is in particular very sensitive to the as-
sumptions of the statistical model; for instance if the unobserved component
is autoregressive, as opposed to i.i.d.. Moreover, the two factor model with
AR(1) dynamics for the global factor and with a local systemic factor (called it
sectorial, regional, or product) is able to reproduce better the observed num-
ber of defaults than the 1-F framework recommended by Basel II.

The results have two direct implications on the measurement of economic
capital. First, they show that the one factor model is too restrictive to account
in a proper manner for the dependence structure in the data and hence the
portfolio. A two factor model provides a hierarchical structure to the banks
portfolio while still being parsimonious in terms of the parameters. This
model includes a global systemic factor plus a local systemic factor in addi-
tion to the idiosyncratic component. The set of local systemic factors account
for significant difference across identifiable grouping characteristic within the
portfolio such as economic sectors and world regions. Second the estimates of
the dependent structure are strongly reliant on modeling assumptions, hence
they convey significant model risk. This source of model risk should be taken
into account in the process of model validation by the regulators.

The outline of the paper is as follows: Section 2 presents the dynamic de-
fault risk model. Section 3 describes the data. Section 4 presents the estimation
methods, the results and the implications on the estimation of economic capi-
tal. Sections 5 provides methodological solution to the common data scarcity
problem found in default models. Section 6 concludes.

2 Dynamic factor model of default risk

The default risk model has its roots in the work by Merton (1974). In the last
10 years this model has been at the center of the literature on portfolio credit
risk modeling. The most general version of the Merton model considers the
asset value of a firm i = 1, .., N at time t = 1, .., T , Vi,t as a latent stochastic
variable. Let Vi,t follow a standard normal distribution. If Vi,t falls below a
predetermined threshold µi,t (related to the level of debt) then a particular
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event is triggered. This event refers to a transition between states defined un-
der some rating system. For capital adequacy purposes, the most important
event is default. However, since historically this is a rare event, it is also inter-
esting to consider a larger state-space to account for all possible transition in a
given rating system.3 These firms belong to the portfolio of an investor (say a
bank) that wishes to model the default dependence across the portfolio. With
this in mind, the investor considers a F-factor model (F-F, henceforth) as the
underlying structure behind the dynamics and dependence structure of the
asset value for the firms that belong in the portfolio:

Vi,t :=

F∑
f=1

af,iBf,t +

√√√√1−
F∑
f=1

a2f,iei,t,∀t ∈ T. (1)

In equation (1) the asset value of the firm is driven by F common factors Bf,t
(common to all firms) and a firm-idiosyncratic component, ei,t (Demey et al.,
2004). Let Bt = (B1,t, ..., BF,t) and et = (e1,t, ..., eN,t) be two F × 1 and
N × 1 vector of factors and idiosyncratic components. We assume that both
components follow a multivariate normal distribution, Bt ∼ N(0, IF ), et ∼
N(0, IN ), and are orthogonal to each other, E[ei,t, Bj,s] = 0 ∀t, s, i ̸= j. The
elements af,i make up the factor loading matrix A (of dimension N × F ). The
weighting scheme of the F-F model along with the distributional assumptions
on the factors and idiosyncratic components guarantees that the asset values
are standard normally distributed. Furthermore, under these conditions, the
entire dependent structure is determined by AA′ = Σ (a N ×N matrix).

Although the model is indexed for a particular firm, in practice estimation
of the parameters is performed on a more aggregate scale. If the parameters
are indexed at the firm level then there are a total ofN(N+1)/2 parameters to
estimate the dependence structure. This model is therefore computationally
expensive for a large set of firms. One way to reduce dimensionality is to
define a set of homogeneous risk classes, i.e. group firms by some identifiable
characteristic, economic sector or the world region they belong to. Note g =
1, . . . , G as group indicator where G << N (much smaller that N ), with the
following implications for the model parameters:

1. Default threshold is unique within each group and across time, µi,t = µg
∀i ∈ g.

2. Constant correlation between firms in same group, ρi,j = ρg ∀i, j ∈ g.
3. Unique correlation between firms in different groups, ρi,j = ρg,d ∀i ∈
g, j ∈ d.

These assumptions imply a symmetric G×G correlation matrix Σ

Σ =


ρ1 ρ1,2 . . . ρ1,G

ρ1,2 ρ2
. . .

...
...

. . . . . . ρG−1,G

ρ1,G . . . ρG−1,G ρG

 .

3An example of a rating system is Moody’s ratings on long term obligations (broad version):
Aaa, Aa, A, Baa (investment grade), Ba, B, Caa, Ca, C(speculative grade or non-investment grade).
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With the previous assumptions and if Σ is positive and definite, the F-factor
model with G(G+ 1)/2 parameters is:

Vi,t :=

F∑
f=1

af,gBf,t +
√
1− ρgei,t, ∀i ∈ g. (2)

We introduce an additional restriction so as to further reduce the param-
eter space to G + 1 correlations. This restriction implies that the correlation
among two groups is unique among all the groups, ρg,d = ρ ∀g ̸= d, which
implies

Σ =


ρ1 ρ . . . ρ

ρ ρ2
. . .

...
...

. . . . . . ρ
ρ . . . ρ ρG

 .

where ρ denoted inter correlation and ρi j = 1, ..., G intra correlations. We can
be show that this new dependence structure is equivalent to the dependence
structure derived from a 2-factor model (2-F, henceforth), instead of the F-F
model:

Vi,t :=
√
ρBt +

√
ρg − ρBg,t +

√
1− ρgei,t, ∀i ∈ g, (3)

where Bt represents a global systemic factor and Bt,g represent a local sys-
temic factors that determines the default process.

One further restriction is possible so that there is only one relevant risk
class: ρg = ρ , hence the model reduces to a 1-factor model (1-F, henceforth)

Vi,t :=
√
ρBt +

√
1− ρei,t∀i. (4)

In this case, the dependence structure across a set of firms (in the bank’s port-
folio) is determined entirely by the parameter ρ. This model reflects the Basel
II framework and considered to be an oversimplified representation of the fac-
tor structure underlying default dependence, particularly for internationally
active banks (McNeil et al., 2005). The main pitfall of the 1-F approach is that
it does not detect concentrations or recognize diversification (the dependence
structure of the whole portfolio is described by one parameter).

Once a particular dynamic structure for the asset value Vi,t is chosen as
satisfactory (F-F, 2-F, or 1-F), the next step is to link this setup to the observed
rating transitions in order to estimate the parameters of interest i.e., the ele-
ments of the Σ matrix. The rating information on the firms, such as the one
provided by Moodys, provides the count data to characterize default risk in
terms of the number of firms that went into default for a particular period. Let
kg,t be the number of firms in group g at time t, and yg,t the number of firms
that made some transition between the two states (non-default and default)
between t and t+ 1. We assume that the number of defaults are conditionally
independent across time given the realization of the latent factors. Then yg,t
has the following conditional distribution

yg,t|Bt ∼ Binomial(kg,t, πg,t), g = 1, .., G; t = 1, .., T, (5)
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where πg,t is the conditional probability of default and Bt = (Bt, B1,t, . . . , BG,t)
is the vector of global and local systemic factors. Equation (3) constitutes the
measurement equation of a state space model.

As mentioned previously, default occurs if the asset value of the firm Vi,t
falls bellow threshold µg,t. Therefore, this probability can be expressed as
a probability function P : R → (0, 1), depending on the threshold and the
dynamics (F-F, 2-F, 1-F) that describe the evolution of the asset value of the
firms that belong to the portfolio:

πg,t = P (Vi,t ≤ µg | Bt)

= P

(
ei,t ≤

µg −
√
ρBt −

√
ρg − ρBg,t√

1− ρg

)

= Φ

(
µg −

√
ρBt −

√
ρg − ρBg,t√

1− ρg

)
.

The factors are the main drivers of the credit conditions, often considered as a
proxies for the credit cycle, Koopman et al. (2009). We consider multiple dy-
namics for the unobserved factors (autoregressive, random walk, white noise).
For now assume that the factor(s) follow an VAR(1) process:

Bt = ΨBt−1 +Θηt, (6)

where ηt ∼ N(0, I), and Ψ = diag(ψ,ψ1, . . . , ψG),
Θ = diag(

√
1− ψ2,

√
1− ψ2

1 , . . . ,
√
1− ψ2

G). The weighting scheme of the
VAR(1) process guarantees that each factor is standardized (Bg,t ∼ N(0, 1)),
as required. This normalization of the factors is important in order to be able

to identify the loading parameters (
√
ρ√

1−ρg
,

√
ρg−ρ√
1−ρg

) and the parameters of in-

terest the implied correlations (ρ, ρg). Equation 6 constitutes the state equation
of a state-space model.

In the portfolio credit risk literature various authors (Gordy and Heitfield,
2002; Demey et al., 2004; Koopman and Lucas, 2008; Wendin and McNeil,
2006; McNeil and Wendin, 2007) propose similar types of factor models for
default risk, the so called structural type models that follow the Mertonian
framework. All the underlying models, as well a the model proposed in ex-
pressions 5 and 6, are special cases of the generalized linear mixed model
(GLMM) for portfolio credit risk, see Wendin (2006).

There are two considerations that border on the theoretical and the em-
pirical with respect to the factors, (Bt), that make up the state equation of
the model 6. The first issue is whether the factor(s) in the default risk model
should be considered as unobserved, observed or both. The factor(s) repre-
sent the main driver (systemic component) behind the possibility that a firm
goes into default or not. Systematic credit risk factors are usually considered
to be correlated with macroeconomic conditions. Nickell et al. (2000), Bangia
et al. (2002) Kavvathas (2001), and Pesaran et al. (2006) use macroeconomic
variables as factors in default risk models. However, there are some doubts
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whether there is an adequate alignment between the credit cycle (implied by
rating and default data) and the macroeconomic variables. Koopman et al.
(2009) indeed show that business cycle, bank lending conditions, and finan-
cial market variables have low explanatory power with respect to default and
rating dynamic. Das et al. (2007) find that US corporate default rates between
1979 and 2004 vary beyond what can be explained by a model that only in-
cludes observable covariates. Such results give a strong motivation for the
introduction of unobserved components in default risk models. Furthermore,
Wendin and McNeil (2006); McNeil and Wendin (2007) and Koopman and Lu-
cas (2008) show that there are gains in term of the fit of the model and forecast-
ing accuracy, when both observed macroeconomic covariates and unobserved
components are considered.

The last issue is the dynamic characterization of the factors. In some of the
earliest articles that focus on the estimation of asset correlations, the factors
were considered as (i.i.d.) standard normal random variables.4 However, Ban-
gia et al. (2002) and Nickell et al. (2000) have empirically shown that changes
in the macroeconomic environment have some effect over rating transitions
and default, which suggest that the credit default process is serially correlated.
Furthermore, the source of this serial correlation is the autocorrelation present
in the factor (observed macro covariates and/or the unobserved component).
The existence of serial correlation also points to the fact that rating procedures
within the rating agencies are more through-the-cycle than point-in-time.

3 Data and Stylized Facts

3.1 Data

We use Moody’s Corporate Default database on issuer senior rating, which
contains information on 51,542 rating actions affecting 12,292 corporate and
financial institutions during the period 1970 to 2009. 5 We also use Moody’s
database on Structured Products that contains information on 377,005 rating
actions affecting 134,554 structured products (only the super senior trench)
during the period 1981 to 2009.

Moody’s database considers 9 broad ratings (Aaa, Aa,..) for the period
1970 to 1982 and 18 alphanumeric ratings (Aaa, Aa1, Aa2,..) from 1983 on-
wards. For consistency the 9 broad ratings are considered throughout the
sample. Although Moody’s does not have an explicit default state, it does
have a flag variable that indicates when an issuer can be considered in default
or close to it. Since there are different definitions of default (e.g. missed or
delayed disbursement of interest and/or principal, bankruptcy, distressed ex-
change) Moody’s keeps rating the issuer according to their rating grades. We
use the flag variable to determine a unique date of default irrespective of the
fact that Moody’s still gives a broad grade.

Additional to the rating information for each issuer there is an assigned
country and economic sector codes (two and four digits SIC codes and Moo-

4See Gordy and Heitfield (2002) and Demey et al. (2004).
5The last observation in the database is April 2009.
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Table 1. Description of independent variables

Moodys Code yg kg

Sectors

Banking BAN 63 17, 260
Capital industries CAI 370 19, 477
Consumer industies COI 291 11, 974
Energy & environment EAE 108 7, 429
Finance, insurance & real estate FIR 47 11, 360
Media & publishing MED 46 1, 791
Retail & distribution RET 137 4, 797
Sovereign & public finance SOV 26 6, 364
Technology TEC 181 9, 970
Transportation TRA 82 4, 229
Utilities UTL 28 11, 087

World Regions

Western Europe WEP 80 16, 717
Eastern Europe EEP 12 806
North America NOA 1, 104 74, 229
Central & South America SCA 63 4, 194
Asia & Oceania AOC 45 8, 695
Middle East MDE 2 298
Africa AFK 4 170

Structured Products

Asset-backed security ABS 75 53, 558
Collateralized debt obligations CDO 975 31, 087
Comm and other mortgage backed security CMBS 116 35, 361
Home Equity Loans HEL 157 47, 993
Other Structured Products OSP 131 107, 831
Residential mortgage backed security RMB 2, 032 135, 313
Note: Organization of the Moody’s databases according to groups of economic sectors,
world regions and structured product types. yg denotes the total number issuers that
have defaulted within each group over the sample period. kg denotes the total number
of issuers within each group across the entire period.
Source: Author’s compilation.

dy’s own sector codes). We recode the countries into 7 world regions and use
Moody’s 11 classification as the relevant set of economic sectors (Table 1). We
organize the structured products by the type of deal.

The data in the models are the yearly time series of: i) the total number
of firms in group g that at time t hold some particular rating, kg,t, and ii) the
number of firms belonging to that same group g that at the end of time t have
defaulted, yg,t. These two variables are the only observables in the state space
models considered at the end of the previous section.
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As mentioned previously, the event of default is an extremely rare event,
inference on this type of event is complex. In particular the time series of
defaults suffer of overdispersion or zero-inflation. This zero inflation is exac-
erbated when we disaggregate the data into groups (i.e. sectors, regions and
products). Since default is already a rare event in the aggregate, then when we
make a subgroup of this aggregate, the observed defaults become even fewer
within each group. The problem of zero-inflation affects the model since it de-
viates from the assumption that the default counts have a binomial behavior.
In other words, an increasing number of zeros may degenerate the distribu-
tion. In order to overcome the problems due to overdispersion, a zero-inflated
binomial model for the default counts is developed and estimated in Section
5.

3.2 Stylized Facts

The database on long term corporate issuers is to a great extend (especially in
the first part of the sample) composed of US issuers. The US data represents
about 65% of the potential data on rating transitions. Figures 1 illustrates
the number of defaults for five sectors, consumer industries, and technology,
which have a significant number of defaults, banking, finance/insurance/real
estate and sovereign/public finance, which have few rating movements. The
later illustrates the problem of zero-inflation. Consumer industries have an
important participation on defaults throughout all the sample, while technol-
ogy is a late starter and shows increasing activity in 2002 and 2001, which
was a very volatile period for the industry (the burst of the telecommunica-
tions bubble that had its peak in the late 2000). Although sectors are believed
to show their own dynamics, there are periods of general turmoil (clustering
effects) that are evident in the sample, especially at the end of the nineties.

For structured products (Figure 2), the information available has increased
with the rapid expansion of the market for these types of securities. Most
of the relevant information is at the end of the sample. It is also evident the
increasing number of defaults in 2008 and the preliminary data of 2009, espe-
cially in collateralized debt obligations and residential mortgage backed secu-
rities.

In general the figures on sectors and structures products show a great deal
of heterogeneity in default events. In the estimation part, the objective is to try
to capture the intra and inter correlations due to rating movements. Further-
more, since rating movements are closely related to creditworthiness, results
will give some idea of the asset correlations.
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Figure 1. Number of Defaults for some sectors.
Source: Author’s compilation.

Figure 2. Number of Defaults for some structured products.
Source: Author’s compilation.

Revista de Economı́a del Rosario. Vol. 15. No. 1. Enero - Junio 2012. 19 - 58



Castro 31

4 Estimation

The model in section 3 is a non-linear and non-Gaussian state space model
because of the binomial form of the measurement equation. Furthermore the
model incorporates an unobserved component. In this context, standard lin-
ear estimation techniques are not appropriate. The estimation of such model,
has been performed on credit rating data, either using a Monte Carlo maxi-
mum likelihood method (Koopman and Lucas, 2008; Durbin and Koopman,
1997) or using Bayesian estimation, in particular Gibbs sampling (Wendin,
2006; McNeil et al., 2005; McNeil and Wendin, 2007). This article follows the
second approach mainly on two accounts: it provides greater flexibility in
dealing with the over dispersion (zero-inflation) and, it is possible to derive a
distribution for the asset correlations (parameter of interest).

Denote ψ := (ψ1, . . . , ψG) as the relevant set of parameters. This set nat-
urally includes the unobserved components. Bayesian inference considers
the unknown parameters ψ as random variables with some prior distribu-
tion P (ψ). The prior distribution along with the conditional likelihood of the
observed data x := {(yg,t, kg,t)}G,Tg=1,t=1 are used to derived the posterior dis-
tribution for the unknown parameter: P (ψ | x) ∝ P (x | ψ)P (ψ). In some
cases the posterior distribution is unattainable analytically. Hence the eval-
uation of the joint posterior requires the use of Markov chain Monte Carlo
(MCMC) algorithms, such as the Gibbs sampler. The Gibbs sampler is a spe-
cific componentwise Metropolis-Hastings algorithm that performs sequential
updating of the full conditional distributions of the parameters in order to
reproduce the joint posterior of the parameters. In other words, the algo-
rithm proceeds by updating each parameter ψj by sampling from its respec-
tive conditional distribution, given the current values for all other parameters
ψ−j := (ψ1, .., ψj − 1, ψj + 1, .., ψJ ) and the data. This conditional distribution
is the so-called full conditional distribution (see appendix). With a sufficiently
large number of repetitions, it can be shown that, under mild conditions, the
updated values represent a sample from the joint posterior distribution.

Each model is estimated using three parallel Markov chains that are initi-
ated with different starting values. Convergence of the Gibbs sampler is as-
sessed using the Gelman and Rubin (1992, 1996) scale-reduction factors. The
autocorrelations of sample values are also checked to verify that the chains
mix well. Only after convergence, the Deviance Information Criterion (DIC)
is used to choose among the different models fitted to the data, following
Spiegelhalter et al. (2002). The different model characterize different assump-
tions for the dynamic factor model for default risk (e.g. 1-F vs 2-F, dynamics of
unobserved factors). This criterion resembles the Akaike’s Information Crite-
ria, since it is expected to choose the model which has the best out-of-sample
predictive power.6 The DIC is defined as follows. First recall the usual defini-
tion of the deviance, dev = −2logP (x | ψ). Let dev denote the posterior mean
of the deviance and d̂ev the point estimate of the deviance computed by sub-

6The estimation was performed using WINBUGS Release version 1.4.3, http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml.
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stituting the posterior mean of ψ̂. Thus d̂ev = −2logP (x | ψ̂). Denote by pD
the effective number of parameters (elusive quantity in Bayesian inference)
defined as the difference between the posterior mean of the deviance and the
deviance of the posterior means, pD = dev − d̂ev. The DIC is defined as fol-
lows: DIC = dev + pD. The model with the smallest DIC value is considered
to be the model that would predict a dataset of the same structure as the data
actually observed. Since the distribution of the DIC is unknown (no formal
hypothesis testing can be done) it is a difficult task to define what constitutes
an important difference in DIC values. Spiegelhalter et al. (2002) propose the
following rule of thumb: if the difference in DIC is greater than 10, then the
model with the larger DIC value has considerable less support than the model
with the smallest DIC value.

As mentioned previously, a further advantage of using a full Bayesian ap-
proximation is that the parameters of interest, the asset correlations, and es-
pecially the uncertainty about them can be directly obtained from the MCMC.
The parameters of the statistical model are the factor loadings, but we know
that through a series of identifying restrictions in the economic model, we can
establish a functional relationship between the factor loadings and the asset
correlations. We can include such function in the Monte Carlo procedure so
as to derive directly the parameters of interest and, in particular, derive a con-
fidence set for the implied correlations.

An informative prior is used for the autoregressive coefficient that deter-
mines the dynamics of the unobserved factor, ψ ∼ U(−1, 1). According to
this prior the unobserved factor follows a stationary AR(1) process. Diffuse
but proper priors are considered for all other parameters (the factor loadings√
ρg−ρ√
1−ρg

∼ U(0, 10), and the default threshold µg ∼ N(0, 103)), however other

priors are also possible if specific prior information is available for some pa-
rameters.78 The sampling method used for the distributions is a Slice sampler.
The sampler was run for 10,000 iterations, with the first 5,000 iterations dis-
carded as a burn-in period.

The aggregate data only has a one factor representation (4), which we de-
note as Model A in the tables. In such one factor representation the unob-
served factor Bt has two possible dynamics a stationary and univariate AR(1)
process or a white noise,i.i.d. N(0, 1).

Models which we denote B, C and D, in the tables, are based in the panel
structure for sectors, regions or structured products. These models have both
a one or two factor representation (4, 3). In the two factor representation, the
second factor can be thought as a local systemic factor.

The main difference between models C and D is that in the former the first
factor Bt ∼ N(0, 1) is a stationary AR(1) process. This factor represents the
so-called global systemic factor. The second factor of each of the groups is a

7This range for the factor loading captures all the possible values for the asset correlation
ρ ∈ (0, 1). Larger interval values, such as an improper prior like U(−200, 200) or N(0, 103) only
improve decimal point accuracy. The value is also restricted to be positive in order to prevent
label switching.

8See Tarashev et al. (2007) for some possible informative priors for the some of the parameters.
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white noise Bt,g ∼ iidN(0, 1) ∀g. Note that this second factor represents the
local systemic factor and is drawn from a distribution that is unique across all
of the groups; whereas in Model D all of the factors are considered to be white
noise, therefore the state equation is uniquely determined by the following
expression Bt = ηt. It is important to note that in every case the unobserved
factors are orthonormal, guaranteeing that the factor(s) loading(s) are identi-
fied.

4.1 Results

With the aggregate default data from the US, we estimate model A. The value
of the persistence parameter ϕ of the AR(1) specification is 0.91 and indicates a
strong persistence, as found by Koopman and Lucas (2008), whereas Wendin
and McNeil (2006) find smaller values 0.68.9 The value of the loading param-
eter is 0.56 and it is close to the estimate obtained for the same specification
by Koopman and Lucas (2008). The value of the parameter gives an estimate
for asset correlation of 0.24. In general, the estimated parameters are very
close to those obtained from a similar set up by Koopman and Lucas (2008).
If the unobserved component is assumed to be i.i.d. the asset correlation falls
to 0.10. The information criteria, DIC, indicates no significant difference with
respect to the response function. Furthermore, the model with an AR(1) type
unobserved factor performs better than the i.i.d. according to the information
criteria.10 Both the AR(1) specification as well as the i.i.d. for the unobserved
component provide an adequate fit to the aggregate US default data.

Correlation asymmetry is a phenomenon found consistently in the liter-
ature irrespective of the data or methodology used in obtaining estimates of
asset dependence with defaults (Das and Gengb, 2004). This phenomenon has
a further intuitive appeal since it indicates that high graded issuers (in many
cases large firms) have a larger exposure to systemic risk, whereas low graded
issuers (medium and small firms) face more idiosyncratic risk. Using the ag-
gregate data for all world regions (not only US) the estimated asset correla-
tions, from model A for the AR(1) and i.i.d. specifications for the unobserved
component are 0.18 and 0.09, respectably (Figure 3).

Three separate exercises were also considered using model A. The first
only considers defaults from non-investment grade issuers. The second only
considers defaults from investment grade issuers (Table 2). Results are consis-
tent with correlation asymmetry, as they indicate an inverse relation between
correlation and the quality of the issuer. In other words correlation is larger for
investment grade issuers (ρIG = 0.4) than for non-investment grade issuers
(ρNIG = 0.17) issuers (Figure 3).

9The majority of the Moody’s data comes from the US specially the data before 1990.
10Higher order autoregressive process of the unobserved factor were tested at some point but

provide no improvement over the AR(1). Results are available under request.
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The last exercise based on the model A, provides a simplified approach
to capture the effects of tail risk. Since model A is a 1-F model tail risk is
naively introduced by changing the standard assumption on the distribution
of the unobserved factor.11 The unobserved factor, for the sole purpose of this
exercise, follows a standardized Student-t distribution with two degrees of
freedom, Bt ∼ iid t(0, 1, 2). The results indicate no significant gain with re-
spect to the standard assumptions on the dynamics of the unobserved factor,
according to DIC. However, the estimated value for the correlation is approx-
imately half the value obtained when using the standard assumptions on the
dynamics of the unobserved factor. These results imply that by considering a
distribution with thicker tails than the standard Gaussian, this model is able
to capture the same default dynamics as the standard model, requiring on
average a smaller estimate of the asset correlation.

Different types of factor models (models A through D) are considered for
the panel data of sectors (3), regions (table 4) and structured products (table 5).
The tables report the posterior means and the standard errors for the model
parameters using the Probit type response function.12 For the parameters in
each model, on average convergence of the Markov chains was reached after
4,000 to 6,000 iterations.

In general, the parameters indicate that the global systemic factor loading
is statistically significant in all the models (Tables 3 to 5), except for model D
in the sectors and regions. On the other hand, the local systemic factor weight
is not always statistically significant. For example, the extreme case is model
D for regions, where the overall factors (except in the case of Western Europe)
do not play a role in the dynamics of defaults.

Once convergence is obtained, the DIC indicates that the most appropriate
model is model C for sectors and regions, and model D for products. Model C
is a two factor model that has an autoregressive global unobserved factor and
a unique i.i.d. component for the local systemic factor. This previous specifi-
cation is the same as model 4 of McNeil and Wendin (2007) and it is one of the
models used to derived the asset correlations (Table 6). Model D has the same
structure as the model estimated in Demey et al. (2004) and the asset correla-
tions derived from it are presented in Table 7. There is a striking difference
between the asset correlations derived from both models. Asset correlations
derived from model C are much higher than the ones derived from model D,
particularly in the case for sectors and regions. While the asset correlations
of model D are within the range of the Basel II (2006) recommended values
(0.12,0.24), even lower in some cases, model C proposes much higher values,
with a possible range of 0.3 to 0.5. Another way to look at it is to determine the
probability that the estimated asset correlation is within the Basel II bounds,

11Accounting for tail risk would also require to change the distribution of the firm-
idiosyncratic component, ei,t. This has an effect on the choice of link function. In order to avoid
this additional complication only the distribution of the unobserved factor is modified. It is im-
portant to note that the change is enough to loose the tractability of the distribution of the asset
value, Vi,t.

12There were no significant differences between the response functions, only the Probit results
are presented, but the Logit results are available upon request.
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Figure 3. Estimated Bounds vs. the Basel II recommended bounds. Posterior
distribution of implied asset correlations from a one-factor model.
Note: Implied asset correlation depends critically on model assumptions.
Source: Author’s estimation.

P (0.12 ≤ ρ ≤ 0.24), using the posterior distribution. Whereas in model C the
probabilities is well below 7% for regions, and for sectors and products they
are zero, in model D these same probabilities are 11% for regions and sec-
tors and 5% for products. These results indicate that the Basel recommended
bounds are overoptimistic with respect to uncertainty surrounding asset de-
pendence. Furthermore, in most of the models considered in this Section, the
Basel recommended bounds are located in the left tail of the posterior distri-

Revista de Economı́a del Rosario. Vol. 15. No. 1. Enero - Junio 2012. 19 - 58



Castro 37

Table 3. Estimation Results from the desegregated panel of economic sector
default data from 1970 to 2009.

Model A B C D

0.878a 0.845a 0.170c

(0.117) (0.147) (0.094)
Specific Loadings

BAN 0.809a 0.467a 0.446a

(0.128) (0.118) (0.110)
CAI 0.773a 0.071c 0.074

(0.0989) (0.041) (0.045)
COI 0.723a 0.101b 0.178a

(0.104) (0.051) (0.060)
EAE 0.765a 0.412a 0.128c

(0.126) (0.096) (0.077)
FIR 0.577a 0.177c 0.087

(0.163) (0.100) (0.064)
MED 0.463b 0.292c 0.120c

(0.181) (0.158) (0.070)
RET 0.636a 0.106 0.082

(0.123) (0.069) (0.058)
SOV 0.774a 0.108 0.203a

(0.152) (0.089) (0.060)
TEC 0.908a 0.259a 0.225a

(0.075) (0.056) (0.068)
TRA 0.517a 0.272b 0.095

(0.139) (0.108) (0.067)
UTL 0.706a 0.236c 0.192b

(0.162) (0.136) (0.093)
ψ 0.962a 0.950a 0.956a

(0.0223) (0.020) (0.036)
DIC 1520.5 1522.1 1341.8 1360.9

Note: Results are presented only for the Probit response function. The Monte Carlo
standard errors of the mean are shown in parentheses. c, b, and a denote signifi-
cance at the 10%, 5%, and 1% levels, respectively.
Source: Author’s estimation.

bution of asset correlation hence they seem to be consistent with a low level
of systemic risk (figure 4).

The differences in the implied asset correlations due to the dynamics of
the unobserved factors do not seem to be only an empirical issue, but theoret-
ical as well. It also makes intuitive sense because even though the factors are
stationary, the fact that there is persistence (in some cases it is very strong),
implies that any shocks in the short run will not dissipate from year to year.
This also can explain the clustering phenomenon (across sectors and regions)
of the number of defaults that is observed in the stylized facts. The asset corre-
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Table 4. Estimation Results from the desegregated panel of world region de-
fault data from 1970 to 2009.

Model A B C D

Global 0.781a 0.792a 0.178c

(0.163) (0.182) (0.107)
Specific Loadings

WEP 0.553a 0.271b 0.244b

(0.139) (0.113) (0.115)
EEP 0.746a 0.281 0.113

(0.180) (0.205) (0.084)
NOA 0.588a 0.052 0.081

(0.115) (0.039) (0.053)
SCA 0.685a 0.238b 0.109c

(0.155) (0.102) (0.065)
AOC 0.787a 0.308b 0.154c

(0.141) (0.150) (0.093)
MDE 0.380 0.589b 0.114

(0.259) (0.256) (0.081)
AFK 0.806a 0.615b 0.173c

(0.167) (0.241) (0.104)
ψ 0.952a 0.929a 0.948a

(0.034) (0.035) (0.046)
DIC 543.1 562.1 494.8 509.4

Note: Results are presented only for the Probit response function. The Monte Carlo
standard errors of the mean are shown in parentheses. c, b, and a denote signifi-
cance at the 10%, 5%, and 1% levels, respectively.
Source: Author’s estimation.

lations (Tables 6 and 7) also indicate (consistently across methods) that there
are some sectors that are more volatile than others such as banking, energy
and technology.

4.2 Implications on economic capital

As briefly mentioned in the introduction very strong modeling assumptions in
credit portfolio models carry an important impact on economic capital. Tara-
shev et al. (2007) present an empirical procedure for analyzing the impact of
model misspecification and calibration errors on measures of portfolio credit
risk. A large part of the analysis presented in Tarashev et al. (2007) is focused
on the Basel II benchmark for the IRB approach to determine determine the
risk weights: the Asymptotic single-risk factor model (ASRF). It is well known
that this model has two very strong assumptions that are often criticized as
sources of misspecification errors. First, the model assumes that the systemic
component of credit risk is governed by a single common factor. Second, the
model assumes that the portfolio is perfectly granular such that all idiosyn-
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Table 5. Estimation Results from the desegregated panel of structured prod-
ucts default data from 1982 to 2009.

Model A B C D

Global 0.949a 0.943a 0.754a

(0.044) (0.050) (0.229)
Specific Loadings

ABS 0.008 0.446a 0.617a

(0.007) (0.124) (0.140)
CDO 0.193a 0.335a 0.446a

(0.011) (0.099) (0.136)
CMBS 0.155a 0.317c 0.647a

(0.020) (0.165) (0.149)
HEL 0.146a 0.645a 0.364

(0.016) (0.170) (0.241)
OSP 0.066a 0.354b 0.827a

(0.012) (0.156) (0.118)
RMB 0.985a 0.818a 0.741a

(0.015) (0.127) (0.213)
ψ 0.918a 0.641a 0.932a

(0.021) (0.061) (0.018)
DIC 593.0 464.6 301.1 298.7

Note: Results are presented only for the Probit response function. The Monte Carlo
standard errors of the mean are shown in parentheses. c, b, and a denote signifi-
cance at the 10%, 5%, and 1% levels, respectively.
Source: Author’s estimation.

cratic risk are diversified away. Furthermore, even if the model is well speci-
fied there are additional sources of uncertainty that stem form the calibration
of the correlation among the assets. Large uncertainty over the estimated fac-
tor weights can induced large variations over the implied economic capital.
Their results indicate that errors in calibration, as opposed to errors in spec-
ification, of the ASFR model are the main sources of potential uncertainty of
credit risk in large portfolios. Where as the single factor specification and the
granularity effect under predict the target capital by less than 5%, calibration
errors may induce over(under)predict the target level by 8% for each percent-
age point over(under)estimation of the average correlation coefficient.

Using a similar procedure as in Tarashev et al. (2007) this section evaluates
the effects over economic capital that arise from two sources: First, the effect of
considering a 1-F model rather than a 2-F model. Second, the uncertainty with
respect to the estimated asset correlations. Since we are not interested in the
granularity effect, we stay in the asymptotic factor model framework. Recall
expression 3, the specification of the 2-F model, such expression determines
the dynamics of the asset value of a firm that belongs in group g. The 2-F
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Table 6. Asset correlations obtained from the default risk model. Model type
C and Probit response function.

Model C 2.5 Mean 97.5

Global 0.150 0.329 0.396

Banking 0.283 0.482 0.583
Capital industries 0.182 0.415 0.500
Consumer Industies 0.187 0.417 0.501
Energy & Environment 0.267 0.469 0.560
Finance, Insurance & Real Estate 0.198 0.427 0.516
Media & Publishing 0.230 0.447 0.555
Retail & Distribution 0.189 0.418 0.503
Sovereign & Public Finance 0.188 0.419 0.506
Technology 0.215 0.436 0.520
Transportation 0.221 0.441 0.534
Utilities 0.206 0.437 0.538

Global 0.088 0.301 0.392

Western Europe 0.154 0.412 0.534
Eastern Europe 0.139 0.420 0.582
North America 0.105 0.383 0.498
Central & South America 0.148 0.406 0.521
Asia & Oceania 0.153 0.421 0.553
Middle East 0.227 0.499 0.642
Africa 0.241 0.506 0.643

Global 0.310 0.367 0.391

ABS 0.442 0.523 0.593
CDO 0.442 0.502 0.552
CMBS 0.430 0.502 0.577
HEL 0.476 0.567 0.651
OSP 0.415 0.507 0.591
RMB 0.514 0.608 0.660
Source: Author’s estimation.

model can be expressed such that it nest the 1-F model:

Vi,t :=
√
ρBt +

√
∆ρgBg,t +

√
1− (ρ+∆ρg)ei,t,∀i ∈ g, (7)

where ∆ρg = ρg − ρ measures the difference between inter and intra correla-
tion. By definition ∆ρg ≥ 0. This implies that there is some diversification af-
fect by holding positions in different groups (sectors or world regions) rather
than concentrating all exposures in a particular group. The limit of the diver-
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Table 7. Asset correlations obtained from the default risk model. Model type
D and Probit response function.

Model D 2.5 Mean 97.5

Global 0.000 0.032 0.093

Banking 0.080 0.193 0.348
Capital industries 0.002 0.042 0.111
Consumer Industies 0.013 0.066 0.146
Energy & Environment 0.003 0.055 0.138
Finance, Insurance & Real Estate 0.002 0.046 0.123
Media & Publishing 0.003 0.053 0.134
Retail & Distribution 0.002 0.045 0.119
Sovereign & Public Finance 0.018 0.075 0.153
Technology 0.022 0.083 0.174
Transportation 0.003 0.047 0.124
Utilities 0.032 0.076 0.146

Global 0.000 0.036 0.112

Western Europe 0.010 0.099 0.233
Eastern Europe 0.002 0.057 0.153
North America 0.001 0.048 0.133
Central & South America 0.002 0.054 0.142
Asia & Oceania 0.004 0.068 0.157
Middle East 0.002 0.057 0.150
Africa 0.010 0.076 0.158

Global 0.025 0.277 0.386

ABS 0.229 0.489 0.624
CDO 0.143 0.437 0.572
CMBS 0.276 0.501 0.620
HEL 0.056 0.416 0.615
OSP 0.341 0.556 0.655
RMB 0.299 0.538 0.642
Source: Author’s estimation.

sification effect is determined by the global systemic risk (non-diversifiable
risk). If ∆ρg = 0 then we obtain the 1-F model and this means that there
are no further gains obtained by holding positions across different groups of
firms.

Following Tarashev et al. (2007), let 1Vi,t≤µg denote an indicator variable
that is equal to 1 if firm i ∈ g is in default at time t and, 0 otherwise. By taking
expectations over the indicator variable and assuming that the asset value
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dynamics is given by 7, we arrive at the conditional probability of default,

E
[
1Vi,t≤µg

]
= P (Vi,t ≤ µg)

= P

(
ei,t ≤

µg −
√
ρBt −

√
∆ρgBg,t√

1− (ρ+∆ρg)

)

= ∆

(
µg −

√
ρBt −

√
∆ρgBg,t√

1− (ρ+∆ρg)

)
.

Under the ASF model (perfect granularity), the Law of Large Numbers im-
plies that the conditional total loss on the portfolio, TL|B,Bg , is deterministic
for given values of the state variables, B,Bg :13

TL|B,Bg =
∑
i

wiE [LGDi]E
[
1Vi,t≤µg

]
=
∑
i

wiE [LGDi] Φ

(
µg −

√
ρBt −

√
∆ρgBg,t√

1− (ρ+∆ρg)

)
,

where wi is the weight of the exposure to firm i, LGDi is the Loss Given De-
fault for firm i and Φ(.) is the cumulative distribution function of a standard
normal random variable. The unconditional loss distribution can be obtained
from the previous expression by recalling the distributional assumption on
the conditioning factors. From section 2 we know that all of the factors are
distributed as standard normal random variables. Therefore, the 1 − α level
credit VaR or the (1− α)th percentile of the distribution of total losses is:

TL1−α =
∑
i

wiE [LGDi] Φ

(
µg −

√
ρΦ−1(α)−

√
∆ρgΦ

−1(α)√
1− (ρ+∆ρg)

)
,

where Φ−1(α) is the αth percentile in the distribution of the factors. To cover
unexpected losses with probability (1 − α) the capital for the entire portfolio
is:

κ = TL1−α −
∑
i

wiE [LGDi]PDi

=
∑
i

wiE [LGDi]

[
Φ

(
µg −

√
ρΦ−1(α)−

√
∆ρgΦ

−1(α)√
1− (ρ+∆ρg)

)
− PDi

]
,

where PDi is the expected probability of default for exposure i.
Since the interest of the exercise is on how different values for ρ and ∆ρg

capture either specification issues (i.e. 1-F vs. 2-F) or the uncertainty regard-
ing the estimation of asset correlation, some simplifications are in order. We

13For convenience from this point on all time subscripts are suppressed and the respective link
function is assumed to be of the probit type.
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eliminate the weights wi by assuming equal exposure, LGD’s and PD’s across
firms, LGDi = 45% and PDi = 1% ∀i. Therefore the percentage of capital,

κ = E [LGD]

[
Φ

(
µg −

√
ρΦ−1(α)−

√
∆ρgΦ

−1(α)√
1− (ρ+∆ρg)

)
− PD

]
,

where the threshold µg = −2.37 is consistent with PD. ρ ∈ [0.15, 0.396] and
∆ρg ∈ [0, 0.187], these values are consistent with the 2.5th and 97.5th quantiles
of the correlations for sectors presented in table 8.14

The results are presented in figure 5. First, as also indicated by Tarashev
et al. (2007), in this particular type of default risk models the economic capital
implied by a 2-F model is strictly larger than the economic capital implied by
the 1-F model. Since the 2-F model nest the 1-F model (when ∆ρg = 0) we
observed that for any feasible value of the asset correlations the capital mea-
sure is larger in the 2-F specification. Second, the diversification effects from
holding different groups of exposures are exhausted as the intra asset corre-
lation belonging to a particular group reaches the limit given by the (non-
diversifiable) systemic risk. Finally, uncertainty regarding inter and intra cor-
relation in such framework of credit portfolio models leads to a large and
significant variation on the capital measure. Furthermore, the uncertainty im-
plicit in the Basel II recommended bounds (ρBaselII ∈ [0.12, 0.24]) for asset
correlation can lead to a very extreme underestimation of the capital measure
(lower left section of the figure).

14The value ∆ρg = 0 is included in the interval so as to nest the 1-F model in the 2-F specifi-
cation.
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Figure 4. Posteriors distributions for implied asset correlations (Model C).
Source: Author’s estimation.
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Figure 5. Implications on economic capital of the uncertainty over the esti-
mate of asset correlations in a dynamic factor model of default risk.
Source: Author’s compilation.
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5 Attenuating over-dispersion in the data with a zero-inflated binomial
model

The model in section 4 is affected by the large numbers of zeros across the time
series of cross sectional units (zero-inflation). Banking, finance/insurance/real
estate, sovereign/public finance, and utilities, have 26, 22, 30, 27 years (out of
40), respectively where there are no observed defaults. This excessive number
zeros places a shadow of doubt over the properness of the binomial distribu-
tion as the right distribution for the default counts yg,t. Following Hall (2000),
we develop a model that explicitly accounts for a high frequency at zero by
mixing discrete distributions with a degenerated distribution with point mass
of one at zero.

Under the zero-inflated binomial (hereafter, ZIB) representation, the pro-
cess generating the data has two states. A zero state from which only zero val-
ues are observed, and a binomial state from which all of the non-zero values
and a few zero values are observed. The zero state has probability pt. These
assumptions have the following implications for the number of defaults:

yg,t|Bt ∼

{
0, pt

Binomial(kg,t, πg,t), 1− pt,
(8)

yg,t|Bt =


0, pt + (1− pt)(1− πg,t)

kg,t

zg,t, (1− pt)

(
kg,t

zg,t

)
π
zg,t
t (1− πg,t)

kg,t−zg,t ,
(9)

where zg,t is the realization of the random variable yg,t at time t for group
g. The probability of observing at least one default pt depends on the total
number of observed firms or products, pt = P (τkg,t). We select this particular
functional form because of the direct link between the number of firms and
the zero-inflation. In other words, the US data (since Moody’s corporate and
structured product data come predominantly from the US) shows no over-
dispersion at all and it also represents a large part of the sample. Therefore the
total number of observed firms or products is considered as a good predictor
that there will be at least one default.

We apply the ZIB model to specification type C for the different groups of
data in order to determine if there are significant gains in model fit of explicitly
accounting for the over dispersion. As indicated by the information criteria
there is some slight improvement in the fit. Furthermore, Table 8 presents a
tally of the number of defaults predicted by each type of model, taking explic-
itly into account overestimation or underestimation of defaults in each time
period. The last column indicates the total number of observed defaults per
group. Results indicate that the ZIB improves on the other models for sec-
tors, regions and products. The worst performing model is indeed the one
factor approach (model A or B). Model C and the ZIB version of this same
model provide and adequate fit to the default data (showing highest accuracy
for regions and products), and they are able to capture the over-dispersion as
well as the clustering of defaults observed in the corporate and the structured
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product data. Asset correlations derived from the ZIB model are presented in
Table 9, they are slightly higher for sectors and regions and lower for prod-
ucts than those of model C (Table 6) but, the variation within each group is
maintained. For example, as was observed in Section 4, the more volatile sec-
tors and products are banking, energy, technology, and residential mortgage
backed securities, respectively.
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Table 9. Asset correlations obtained from the default risk model. Zero-
Inflated model (ZIB) of type C and Probit response function.

Model ZIB 2.5 Mean 97.5

Global 0.147 0.322 0.396

Banking 0.241 0.441 0.540
Capital industries 0.184 0.409 0.503
Consumer Industies 0.182 0.406 0.501
Energy & Environment 0.216 0.425 0.519
Finance, Insurance & Real Estate 0.184 0.409 0.506
Media & Publishing 0.182 0.411 0.510
Retail & Distribution 0.178 0.404 0.499
Sovereign & Public Finance 0.179 0.406 0.500
Technology 0.216 0.426 0.517
Transportation 0.176 0.404 0.500
Utilities 0.179 0.406 0.501

Global 0.065 0.242 0.391

Western Europe 0.088 0.312 0.500
Eastern Europe 0.093 0.328 0.525
North America 0.080 0.303 0.495
Central & South America 0.096 0.319 0.504
Asia & Oceania 0.096 0.323 0.508
Middle East 0.139 0.416 0.622
Africa 0.135 0.414 0.621

Global 0.280 0.347 0.390

ABS 0.405 0.499 0.597
CDO 0.397 0.481 0.556
CMBS 0.382 0.475 0.576
HEL 0.398 0.496 0.609
OSP 0.393 0.483 0.570
RMB 0.480 0.553 0.646
Note: The table presents the number of predicted defaults (at the relevant
point in time) (ŷg,t) by the different models as well as the total historical
number of observed defaults (last column in the table) for the sectors,
regions and structured products.
Source: Author’s estimation.
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6 Conclusions

An important change form the Basel I to the Basel II accord, with respect the
technicalities associated to the estimation of capital requirements, addresses
the issue of accounting for as much of the heterogeneity as possible in the de-
termination of the risk weights associated with each position in a portfolio.
This has been a topic of ongoing research. However, there are some issues
so far unresolved: First, the professional tools that are available concentrate
on equity data to measure dependence (correlation) across groups of issuers
(industries, countries); even thought changes in equity data may not be an
adequate proxy of the changes in credit quality. A good example of these
methodologies is CreditMetrics and Moody’s KMV.15 Second, when rating
data has been used to characterize dependence the authors (with some ex-
ceptions) have dealt with the problem of estimating the parameters of interest
on aggregated data. In part this is due to the difficulties of working with the
rating data where the rare events (defaults in particular) are the most interest-
ing but making inference on them is complex.

This paper complements research on asset correlation estimates across sec-
tors using rating data and presents some new results on regions and struc-
tured products.16. We use the methodology developed by Wendin (2006);
Wendin and McNeil (2006) and McNeil and Wendin (2007), along with pub-
licly available software WINBUGS. With the aggregate data and in the one
factor framework, results are very similar to the ones obtained by the previ-
ous authors.

With Bayesian methods, we offer results for a large number of disaggre-
gated units (11 sectors, 7 world regions and 6 structured products). Bayesian
methods make it possible to obtain estimates even with over dispersion of
the data (Zero-Inflation), they also allow for a straightforward set up of ad-
ditional mixtures in order to properly account for the zeros through a Zero-
Inflated Binomiam model (ZIP). This ZIP provides in some cases substantial
improvement in fitting the time series of defaults.

The loading parameters of the factors across the sectors, regions and struc-
tured products models are in general statistically significant. From these fac-
tor weights it is possible to recover the asset correlations. Asset correlations
are in most cases higher than the Basel II recommended values. They are
also higher if the unobserved component is autoregressive as opposed to i.i.d.
The two factor model with AR(1) dynamics for global factor and with a local
systemic factor is able to reproduce better the observed number of defaults
than the one factor framework recommended by Basel II. In the panels, the
US data determines most of the global factor dynamics. This is expected since
the database is predominately composed of US firms.

Overall this chapter presents a set of asset correlation estimates for eco-
nomic sectors, world regions and structured products that can be used for
credit portfolio modeling. It also indicates some caution in the use of the Basel

15See Gupton et al. (1997) and Crosbie (2005).
16See Gordy and Heitfield (2002); Demey et al. (2004); Servigny and Renault (2003); Wendin

and McNeil (2006); McNeil and Wendin (2007)

Revista de Economı́a del Rosario. Vol. 15. No. 1. Enero - Junio 2012. 19 - 58



Castro 51

recommended bounds for asset correlation in portfolio risk models. First,
these bounds in general tend to be over optimistic with respect to the de-
pendence structure that is consistent with the historical default data (figures
3 to 5). Second, with some certainty these bounds do not hold equally for
all exposures (there are differences observed in the estimates of asset correla-
tions between sectors, regions and structured products. Third, the modeling
assumptions used in the estimation of these implied asset correlations carry
substantial model risk to the measurement of economic capital. Therefore, a
transparent and proper sensibility analysis to the assumptions that give rise
to the dependence structure should be an integral part of the portfolio credit
risk model validation process.
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Appendix

A.1 Derivation of the full conditional distributions for Bayesian estimation.

We obtain Bayesian estimates of the parameters of interest through the use of
a Markov Chain Monte Carlo algorithm such as the Gibbs sampler. Imple-
mentation of the Gibbs sampler requires the derivation of the full conditional
distributions of the elements of the models. This set of full conditional distri-
butions are sampled in a way so as to derive the joint posterior distributions of
the parameters of interest. Borrowing notation from Gilks et al. (1996) and Mc-
Neil and Wendin (2007), [X] denotes the (unconditional) density of X, [X|Y ]
the conditional density of X given Y and [X|.] the full conditional of X.

We derive in the following subsections the full conditional distributions
for model A (univariate model), C (multivariate model) and the zero-inflated
binomial model.

A.2 Model A (univariate one factor model)

In the univariate case X := (X1, ..., XT ). First recall the main elements of this
state space model: The measurement equation,

yt|Bt ∼ Binomial(kt,Φ

(
µ−

√
ρ

√
1− ρ

Bt

)
), t = 1, .., T,

the state equation,Bt = ψBt−1+
√
1− ψ2ηt, ηt ∼ N(0, 1). With prior distribu-

tions for the unknown parameters ψ ∼ U(−1, 1), ϱ(ρ) :=
√
ρ√

1−ρ ∼ U(0, 10) and
µ ∼ N(0, σ2

µ = 103). Note that the unobserved component has a multivariate
Gaussian distribution, B ∼ N(0,Ω).

Ω =
1

1− ψ2


1 ψ . . . ψT−1

ψ 1
. . . ψT−2

...
...

. . .
...

ψT−1 ψT−2 . . . 1

 .

The multivariate Gaussian density of B is

fB(ψ) = (2π)−T/2 | Ω−1 |1/2 exp
[
−1

2

(
B′Ω−1B

)]
.

A first step in deriving the full conditional distribution is to write out the joint
distribution function of the data and the unknowns (parameters and unob-
served components). This joint distribution can be further simplified given
the conditional independence and unconditional independence across some
of it elements. For example, assumptions on the model determine that de-
faults (yt) are independent across time conditional on the unobserved compo-
nent Bt. Furthermore, the parameters of interest (ψ, ϱ(ρ), µ), are themselves
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independent

[y, k,B, µ, ϱ(ρ), ψ] = [y | k,B, µ, ϱ(ρ)][B | ψ][µ][ϱ(ρ)][ψ],

=

(
T∏
t=1

[yt | kt, Bt, µ, ϱ(ρ)][Bt | ψ]

)
[µ][ϱ(ρ)][ψ],

this expression represents a form of fragmentation of the joint distribution of
the data and the unknowns. In particular there are five relevant fragments
(conditional and unconditional distributions). The final step of deriving the
full conditional distribution of any of the parameters of interest is to apply the
conditional probability formula and pick out only the fragments that depend
explicitly on the parameter of interest. The sign ∝ denotes a form of equiva-
lence (proportional to), during the process of selecting the relevant fragments.

The full conditional for ψ is:

[ψ | .] =
[y, k,B, µ, ϱ(ρ), ψ]

[y, k,B, µ, ϱ(ρ)]
∝ [y, k,B, µ, ϱ(ρ)] ∝ [B | ψ][ψ],

∝ | Ω−1 |1/2 exp
[
−1

2

(
B′Ω−1B

)] 1
2
1(−1≤ψ≤1).

An expression for the conditional distribution of defaults is required for
all of the other full conditional distributions:

T∏
t=1

[yt | kt, Bt, µ, ϱ(ρ)] ∝
T∏
t=1

Φ(µ− ϱ(ρ)Bt)
yt [1− Φ(µ− ϱ(ρ)Bt)]

kt−yt .

The full conditional for ϱ(ρ) is:

[ϱ(ρ) | .] =
[y, k,B, µ, ϱ(ρ), ψ]

[y, k,B, µ, ψ]
∝ [y, k,B, µ, ϱ(ρ), ψ]

∝
T∏
t=1

[yt | kt, Bt, µ, ϱ(ρ)][ϱ(ρ)],

∝
T∏
t=1

Φ (µ− ϱ(ρ)Bt)
yt [1− Φ (µ− ϱ(ρ)Bt)]

kt−yt 1

10
1(0≤ϱ(ρ)≤10).

The full conditional for µ is:

[µ | .] =
[y, k,B, µ, ϱ(ρ), ψ]

[y, k,B, ϱ(ρ), ψ]
∝ [y, k,B, µ, ϱ(ρ), ψ]

∝
T∏
t=1

[yt | kt, Bt, µ, ϱ(ρ)][µ],

∝
T∏
t=1

Φ(µ− ϱ(ρ)Bt)
yt [1− Φ(µ− ϱ(ρ)Bt)]

kt−yt(2πσ2
µ)

−1/2

exp

(
−1

2

µ2

σ2
µ

)
.
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Since the unobserved component Bt is a T dimensional process then each
component must be treated individually. It is also important to take into
account that since Bt is AR(1) then the realization of such process depends
on its immediate neighbors. Denote the vector B without the t element as
B−t := (B1, . . . , Bt−1, Bt+1.., BT ). Under these assumptions the full condi-
tional for Bt is:

[Bt | .] =
[y, k,B, µ, ϱ(ρ), ψ]

[y, k, ϱ(ρ), ψ]
∝ [y, k,B, µ, ϱ(ρ), ψ],

∝
T∏
t=1

[yt | kt, Bt, µ, ϱ(ρ)][Bt | Bt−1, Bt+1, ψ].

An smooth estimate (two-sided filter) is obtained for the conditional dis-
tribution ofBt givenB−t, with a forward and backward looking element (one
sided filter) at the origin and at the end, respectively,

[B1 | B1, B2, ψ] =

(
2π

1

1− ψ2

)−1/2

exp

(
−1

2

(B2 − ψB1)
2

1
1−ψ2

)
,

[Bt | Bt−1, Bt+1, ψ] =

(
2π

1

1− ψ2

)−1/2

exp

(
−1

2

(Bt − ψ
2 (Bt−1 +Bt+1))

2

1
1−ψ2

)
,

[BT | BT−1, BT , ψ] =

(
2π

1

1− ψ2

)−1/2

exp

(
−1

2

(BT − ψBT−1)
2

1
1−ψ2

)
.

Because of the structure of the state-space model, it is not possible to re-
duced analytically the full conditional likelihood derived previously in order
to get a closed-form distribution. The current setup requires the use of effi-
cient algorithms (such as adaptive rejection sampling or Metropolis-Hastings)
to sample the distributions, Gilks et al. (1996).

A.3 Model C (multivariate two factor model)

In the multivariate case X := (X1,1, ..., XT,G). First recall the main elements
of this state space model: The measurement equation,

yg,t|Bt ∼ Binomial(kg,t,Φ(µg − ϱ(ρ)Bt − ϱ(ρ)gBt,g)), g = 1, .., G; t = 1, .., T,

the state equation, Bt = ΦBt−1 + Θηt, ηt ∼ N(0, I). Φ = diag(ψ,ψ1, ..., ψG),
Θ = diag(

√
1− ψ2,

√
1− ψ2

1 , ...,
√
1− ψ2

G). With prior distributions for the

unknown parameters ψ,ψg ∼ U(−1, 1), ϱ(ρ) :=
√
ρ√

1−ρg
,ϱg(ρ) :=

√
ρg−ρ√
1−ρg

∼

U(0, 10) and µg ∼ N(0, σ2
µ = 103), g = 1, ...G. Note that the unobserved com-

ponent has a multivariate Gaussian distribution, Bt ∼ N(ΦBt−1,Ω). Then the
multivariate Gaussian density of B is

fBt|Bt−1
(Φ) = (2π)−(G+1)/2 | Ω−1 |1/2 exp

[(
(Bt − ΦBt−1)

′Ω−1(Bt − ΦBt−1)
)]
.
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The fragmentation of the joint distribution of the data and the unknowns,
under this model, is:

[y, k,B, µ, ϱ(ρ), ψ] = [y | k,B, µ, ϱ(ρ)][B | ψ][µ][ϱ(ρ)][ψ],

=

(
T∏
t=1

G∏
g=1

[yg,t | kg,t,Bt, µ, ϱ(ρ)][Bt | ψ]

)
[µ][ϱ(ρ)][ψ],

where µ := (µ1, ..., µG),ϱ(ρ) := (ϱ(ρ), ϱ(ρ)1, ..., ϱ(ρ)G), ψ := (ψ,ψ1, ..., ψG).
The full conditional distributions of the elements in the multivariate models
are found analogously, using the procedures presented for the univariate case.

A.4 Zero-Inflated Binomial model

In the multivariate case X := (X1,1, ..., XT,G). First recall the main elements
of this state space model that incorporates an additional mixture in order to
distinguish the two relevant states yg,t = 0 (no defaults) or yg,t ̸= 0 (in which
case the number of defaults is denoted as zg,t): The measurement equation
capture these two states,

yg,t|Bt =


0, pg,t + (1− pt)(1− πg,t)

kg,t ,

zg,t, (1− pg,t)

(
kg,t

zg,t

)
π
zg,t
t (1− πg,t)

kg,t−zg,t ,

the state equation, Bt = ΦBt−1 +Θηt, ηt ∼ N(0, I). The priors for (µ, ψ, ϱ(ρ))
have the same characteristics of the previous model. An additional signal is
introduced pg,t = P (τkg,t), with the following prior for τ ∼ N(0, σ2

τ = 103).
The easiest form of presenting the ZIB model is to segment the observed

defaults y := (y0, z), where z denotes the non-zero values of y, which is a
stacked vector of of dimensions ((TxG)x1). Let y be arranged such that the
first m elements are in y0 (zero defaults) and elements from m + 1 to L are in
z (non-zero defaults).

The fragmentation of the joint distribution of the data and the unknowns,
under this model, is:

[y, k,B, p, µ, ϱ(ρ), ψ, τ ] = [y | k,B, p, µ, ϱ(ρ)][B | ψ][p | k, τ ][µ][ϱ(ρ)][ψ][τ ]

An expression for the conditional distribution of defaults is required for
all of the other full conditional distributions. For observations 1...m:

m∏
l=1

G∏
g=1

[y0g,l | kg,l,Bl, pg,l, µ, ϱ(ρ), τ ] ∝,

m∏
l=1

G∏
g=1

P (τkg,l) + (1− P (τkg,l))[1− Φ(µg − ϱ(ρ)Bl − ϱ(ρ)gBl,g)]
kg,l ,
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for observations m+ 1...L:

L∏
l=m+1

G∏
g=1

[zg,l | kg,l,Bl, pg,l, µ, ϱ(ρ), τ ] ∝,

L∏
l=m+1

G∏
g=1

(1− P (τkg,l))Φ (µg − ϱ(ρ)Bl − ϱ(ρ)gBl,g)
zg,l ,

[1− Φ(µg − ϱ(ρ)Bl − ϱ(ρ)gBl,g)]
kg,l−zg,l .

The full conditional distributions of the elements in the ZIB model are
found analogously, using the procedures presented for the univariate case.
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