
Remote Monitoring of Forest pests

A major concern in forest management is the control
of pests threatening forest survival. Pest management
usually relies on an appropriate detection, allowing for
a suitable estimation of the infestation episode, but this
is not an easy task, as visual detection of an infested
stand is not straightforward in many cases. This
situation is particularly complicated in large and
inaccessible forests, where on site monitoring would
be too unaffordable. RS technology has been called to
address this issue, mainly due to two reasons: f irst,
remote sensors have spectral abilities for checking 
the health of forest vegetation beyond our own eyes,
in a wider spectral range. And second, they have an
aerial or satellite vision that allows assessing extensive

forest areas at different scales and constant time
periods.

Scale is a fundamental issue if we are studying RS
application in forest health. Detecting, mapping, and
monitoring forest damage must consider a hierarchy
of data sources ranging from coarse to f iner-scale
(Wulder et al., 2006; Coops et al., 2009). The wide
range of spatial resolutions in the currently available
sensors enables, potentially, the implementation of
multi-scale approaches. These are suitable for
detection and discrimination of all space objects
composing a complex nature scene, like the dynamics
of forest disturbances (Marceau and Hay, 1999).

Each Earth’s cover material irradiated by solar
energy absorbs, transmits and reflects back to the
atmosphere, as a result of its intrinsic spectral pro-
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perties (Hunt, 1977), the different solar radiation wave-
lengths in a way that generates a particular signal pat-
tern of reflectance. This specific signal, known as a
spectral signature, allows to detect, identify and clas-
sify different forest covers suffering crown damage by
insects, diseases or other factors (Ciesla et al., 2008).

Tree crown is the main forest component to be
observed for estimating health condition by assessing
two particularly important variables, foliage dis-
coloration and defoliation. These are related to stress
factors and are considered reliable parameters to assess
forest damage (Innes, 1993). Damaging factors can be
abiotic, as pollution, winds, hails and droughts, or
biotic when pathogens (diseases) and insect pests are
involved. Furthermore, forest damage such as defo-
liation can be the result of a complex combination of
the two mentioned kind of factors causing decline and
dieback, often followed by tree mortality. So, there are
several agents causing loss and colour alteration of
foliage, though it is assumed that insects are the most
common cause of defoliation (Ciesla et al., 2008). Due
to its multiple causes, detecting and mapping forest
defoliation by insects is still a challenge.

In many forested ecosystems, insect defoliation has
been the major cause of disturbance leading to impor-
tant timber and carbon losses (Fraser and Latifovic,
2005). Defoliators are in many occasions the main
factor responsible for the annual losses in forest yield
(Fleming and Volney, 1995), and frequently increase
susceptibility to secondary host infection, driving
direct changes in stand dynamics (Wulder and Fran-
klin, 2007).

Considering the ongoing climate warming, several
empirical studies have forecasted for the not-too-
distant future dramatic changes in the forest landscapes
and in the insect populations inhabiting them, in-
cluding expansion of insect defoliators (Williams and
Liebhold, 1995; Volney and Fleming 2000; Battisti
et al., 2005; Kharuk et al., 2009; Jepsen et al., 2008,
2009; Karjalainen et al., 2010; Seixas et al., 2011;
Paritsis et al., 2011). Furthermore, the known dif-
f iculty for trees to quickly adapt to environmental
changes adds a special vulnerability to any forest
ecosystem facing climatic change, rending it more
susceptible to pest attacks (García-López and Allué-
Camacho, 2010; Pajares, 2009).

Nevertheless, the major current pest related threat
is not global warming but global trade (MacLeod et al.,
2002; Vanhanen et al., 2007). The greater volume,
speed and frequency of trade eases dispersal of

organisms from one region to another, making much
more likely for potential exotic invasive pests to be
introduced undetected in new ecosystems. This
situation is posing a high risk to natural forests and
forest plantations in the last decades, despite
considerable international efforts in trade regulation
and border surveillance. Thus, these present and future
pest threats to forest are becoming practically too
complex and “Hence, the most promising strategy will
rely on a judicious interdisciplinary mix of available
research approaches” (Fleming and Volney, 1995), one
of which should be the RS approach.

Remote Sensing has had difficulties in the past to
be successfully applied in monitoring forest health. In
1999, Peterson et al., evaluating the feasibility of RS
on forest health monitoring, concluded that satellite
RS was oversold and had often been of little utility. It
was perceived insuff icient in their technological
capabilities, too expensive to acquire and interpret
satellite data, compared to aerial detection surveys,
and its scale was seen inappropriate for answering most
operational forest management questions. However,
eight of the nine current major satellite sensors used
in forest health research have been launched since then
(Wang L. et al., 2010) and the RS has continued to
develop new technologies until today.

To put this technological evolution within a context,
Melesse et al. (2007) have differentiated three different
periods: The “Earth Observing System Era”, compri-
sing the launching of the MODIS coupled with ASTER
and the Landsat 7 (ETM+) satellites in 1999, and the
second MODIS in 2002. In the second, “New Mil-
lennium Era”, the next generation of satellites and
sensors, like the Earth Observing-1 carrying the first
spaceborne hyperspectral sensor and the Advanced Land
Imager (ALI), were launched. Finally, the “Private
Industry Era”, started when the first very high resolution
(<10 meter) sensors, like IKONOS and QuickBird
satellites, were launched in 1999 and 2001 respectively.
It is also to remark the introduction of micro satellites
in several countries, all of them designed and launched
by the private industry, as the Spanish commercial
satellite DEIMOS-1, launched in 2009, and the next
DEIMOS-2 with sub-meter resolution to be launched in
2013 (Casal and Freire, 2012).

Therefore, in less than fifteen years since Peterson
et al. (1999) remarks, the availability of remote
technology has enormously increased and the
traditionally high costs have fallen to more affordable
prices, particularly for coarse and medium resolution



Remote monitoring of forest insect defoliation 379

data (Wang et al., 2010). Nowadays, RS industry is
aiming to reduce the cost of their products and this may
be the general trend during the next years for medium
spatial resolution imagery (with Landsat-8 and
Sentinel-2, for example as free cases) but expectations
for high spatial resolution are more reduced.

This paper is aimed to provide a comprehensive
review of the research published during the last 6 years
(2007-2012) on the sate, trends and potential of
airborne and spaceborne RS applications for detecting,
mapping and monitoring forest insect defoliation.

The next section shows some main RS concepts to
better comprehend the physical interactions of light
on vegetation that are applied in RS defoliation
studies.

Remote sensing indicators 
of defoliation

Plotting the wavelengths of the electromagnetic
spectrum versus the corresponding reflectance

percentage from healthy and green vegetation results
in a well known pattern of spectral signature (white
line in Fig. 1). This pattern shows highest absorption
and lowest reflectance in the visible portion (VIS) of
the continuum sunlight spectrum, followed by an
opposite behaviour in the nearest-infrared portion
(NIR), where highest reflectance of vegetation forms
a plateau.

Inside the VIS interval and between chlorophyll a
and b absorption bands (0.43 μm and 0.66 μm
respectively), a reflectance peak occurs in the middle
of the green band (0.54 μm) that is the responsible for
the green colour of healthy foliage. Moreover, the
strong light absorption in the VIS interval primarily
depends on the pigments (chlorophyll a and b,
carotene, xanthophyll, anthocyanin, etc.) present in the
leaf palisade mesophyll (Fig 1).

In healthy plant leaves, the abundant chlorophyll
pigments have a major role in the absorption of the
blue and red wavelengths and in the photosynthesis
rate across the Photosynthetically Active Radiation
(PAR) region. Therefore, chlorophyll content has

Figure 1. Change in canopy absorption, reflectance and transmittance. A healthy leaf absorbs, reflects and transmits the incident
sunlight in a typical spectral signal pattern (white line). Chlorophyll pigments in the leaf palisade mesophyll produce a reflectance
peak in the visible (VIS) portion, whereas the spongy mesophyll layer strongly reflects in the near-infrared (NIR) portion of the
sunlight spectrum. An unhealthy leaf will show an increase and flattening of the reflectance signal (dotted line) due to the leaf stress
response. Reflectance and transmittance curves are almost mirror images of each other in the VIS and NIR portion of the
electromagnetic spectrum (modified after Jensen, 2005).
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become an important biophysical variable to be
assessed. The LAI is def ined as the amount of
chlorophyll by ground area in the forest canopy. As a
proxy for crown density, LAI variation is significant
of changes occurring in forest health (Solberg et al.,
2007). Thus, a significant loss of foliage is expected
to be shown by the corresponding decrease of LAI. It
is said that a plant is under stress when there is a change
in the health condition of the plant foliage. Under such
condition, plants increase their reflectance in the green
and red portions as leaves become yellowish or
chlorotic. This fact has lead to suggest that the VIS
portion is the most consistent leaf reflectance indicator
of plant stress (Carter, 1993; Jensen, 2005). On the
other hand, NIR reflectance increase appears only
consistent with extreme stress levels, like significant
damage by dehydration (dotted line in Fig. 1).

Moreover, the stress induced increase of reflectance
in the VIS interval may f irst be noted near 0.7 μm
wavelength, the red edge, shifting then towards shorter
wavelengths in the so called “blue shift of the red edge”
(Jensen, 2005). Thus, the 0.65-0.7 μm portion of the
red band within the VIS is a sensitive range (Fig. 2) to
detect any initial increase of reflectance due to

vegetation stress, suitable for early forest damage
detection. Hence, the ability to analyse such narrow
sensitive range may improve the capacity to detect
vegetation stress, scaling from plant leaves to densely
vegetated canopies (Carter, 1993; Carter et al., 1996;
Jensen, 2005). Actually, this may be possible using
high spectral resolution imaging or hyperspectral data.
This data has large number of narrow width bands (less
than 2 nm) and contiguous coverage (Mutanga et al.,
2009), whereas multispectral data has commonly few
bands with non-contiguous coverage (Fig. 2).
Hyperspectral data may also measure chlorophyll
absorption and reflectance in the PAR to assess
vegetation damage such as insect defoliation (Jensen,
2005).

Healthy vegetation reflects 40-60%, transmits 40-
60% through the leaf onto underlying leaves, and
absorbs the 5-10% of the incident solar energy in the
NIR interval. Reasons for the strong reflectance of NIR
energy by healthy plant canopies are first, the scattering
of the wall-air interfaces in the leaf spongy mesophyll,
and second, the leaf additive reflectance occurring when
the remaining energy is transmitted through the leaf
and can be reflected once again by the leaves below it

Figure 2. Differences between multispectral and hyperspectral data. The typical spectral reflectance pattern of a healthy green leaf
is showed as a continuous black line across the 350-2600 nm wavelength interval. Black dots along the line represent the contiguous
large number of narrow, less than 2 nm, wavelength bands of a hypothetical hyperspectral sensor. The six white strips depicted on
the reflectance plot represent six of the seven non-contiguous bands (B1-B5, B7) of the multispectral sensor Landsat ETM+ The
sensitive range and the red edge of the red band (600-700 nm) are also shown (modified after Jensen, 2005 and Mutanga et al.,
2009).



(Jensen, 2005). Therefore, is known that changes in the
NIR spectral properties may be useful in detecting loss
of foliage by senescence or stress.

In the shortwave infrared interval (SWIR)
reflectance of healthy vegetation presents two peaks,
at about 1.6 μm and 2.2 μm respectively, between the
two atmospheric water absorption bands crossing the
middle-infrared interval (Fig. 2). Water is a good
absorbent of the middle-infrared energy, thus, this
SWIR band reflects leaf moisture content, turgidity,
which is the amount of plant water occupying the
intercellular air spaces. Moisture content of plant
canopies is correlated with transpiration rates. When
this content decreases, the middle-infrared energy
becomes scattered and its reflectance increases
(Jensen, 2005). Thus, this band can be useful in
assessing water stress.

Chlorophyll content, LAI, absorbed photosyn-
thetically active radiation (APAR), moisture content,
evapotranspiration, etc., are then fundamental bio-
physical variables to be extracted by means of remote
sensing, and to be modelled for measuring changes in
vegetation condition. Several VIs indicating relative
abundance and activity of green vegetation have been
developed for this purpose. The VIs are single
dimensionless radiometric measures, based on algo-
rithms of several spectral values (Jensen, 2007; Wang
et al., 2010), directly or indirectly linked to the
behaviour of a biophysical variable of interest. For
example, defoliation, a general plant response to stress,
is intimately related to LAI (Solberg et al., 2007), or
the APAR can be linked to chlorophyll content in the
foliage. There are many VIs with redundant functions
and some that provide unique biophysical information.

Current contributions to remote
monitoring of insect defoliation

There are many studies where RS techniques have
been applied to detect, map and monitor forest insect
damage in the past decades. However, current
availability and development of RS have notably
increased research of potential applications of RS to
the complex challenge of monitoring forest damages
caused by pests, particularly by insect defoliators, and
even more in the context of climate change. This
section reviews the main outcomes in remote
monitoring of forest insect defoliation achieved during
the past six years. Aimed to facilitate a comprehensive

overview, research topics covered by these studies are
grouped in four main subsections based in Zhang et al.
(2010) classification (Table 1).

Remote detection of forest defoliation

Remote detection of insect defoliation is thought to
be at initial stages (Zhang et al., 2010) and the
processes involved in the spectral response of forest
pest damaged vegetation are still far away to be fully
understood (Wang L. et al., 2010). In this sense, as
pointed out by Jepsen et al. (2009), operational RS
“has yet to find its way”.

Remote defoliation monitoring is asked for an early
and adequate detection of outbreaks. That means a
continuous RS system able to detect ephemeral forest
defoliation episodes across large regions. Early
warning is crucial for a sound forest management,
more even so for forest health. Developing early
warning systems is thus a much desirable goal (Lange
and Solberg, 2008), as they are key tools for effective
pest control and outbreak suppression (Kharuk et al.,
2009). For such a system, it is necessary the
aggregation of temporal composite images, allowing
for a wall to wall cloud-free observational coverage
(Prados et al., 2006), and the improvement of the signal
to noise ratio (Cohen et al., 2010) (e. g. the increasing
application of time-series and algorithms used with
them, such as Landsat time-series (LTS) or MODIS
time-series products.

The scale of study is another important aspect to
bear in mind if we are to keep remote monitoring cost
effective. Two operational scales should be considered:
a national or regional scale at an early warning level,
with coarse resolution satellite-based monitoring for
identifying locations of disturbances where they are
suspected, and a second local, tactical scale, with finer
resolution for assessing the validity and nature of
warnings coming from first level, using finer satellites
or even overflights and on-the-ground monitoring (e.g.
sketch maps produced by the US Forest Service Aerial
Detection Surveys (ADS) overflight program for forest
disturbances; Spruce et al., 2011). Sketch mapping is
to date the most commonly used technique for
detection and assessment of forest damage caused by
biotic factors (Ciesla et al., 2008), and has been an
integral part of forest health protection programs in
Canada and the United States since the end of World
War II (Ciesla, 2000). Unfortunately, information from
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sketch maps is subjective and is extracted primarily
through manual processes, so it is not copping with the
increasing need for a more detailed and frequent
information for sustainable forest management.

Developing a fully operational system for multi-
scale RS monitoring of insect damage will require a
combination of data from different sources. Whereas
coarse-resolution time-series will enable low-cost
detection and mapping of large areas, high resolution
data and field surveys will be necessary for pinpointing
the cause and exact location of damage (Eklundh et al.
2009). In other words, fine scale sources, such as ALS
(where area mapping relies on a laser beam, mostly
pulsed, emitted at fixed time intervals and attached to
an airborne scanning mechanism), hyperspectral and
hyperspatial data, coupled with reference data from
ground-based assessments and ancillary information,

may improve accuracy and become an effective means
to monitor forest pests, reducing the interference
factors unrelated to defoliation (Zhang et al., 2010).
However, its must be bare in mind that forest extension
limits the use of these sensors. For example the use of
MODIS requires large continuous forests (as in the
Scandinavian forests), as noted Eklundh et al. (2009)
and Wang et al. (2010). In the case of fragmented
forests, as Mediterranean forests, moderate or coarse
resolution sensors are difficult to work with.

Classification of damage degree

In 1989, Ciesla et al. pointed that whereas defoliated
areas could be identified, the intensity of defoliation
was not yet reliably classified. The inherent complexity
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Table 1. Recent (2007-2012) remote monitoring studies of insect defoliation

Study area Insect defoliator/Host
Remote sensor1 Topic2, Prepro4,

Analysis and Techniques6 Reference
t-s = time-series Method3 class/Con5

Russia D. sibericus/Abies siberica SPOT-VEG D, i Ac, 2 class Supervised & threshold classification, correlation Kharuk et al., 2009
Finland D. pini/Pinus sylvestris TM, DAP B, i Ac, 2class Supervised & unsupervised, regression & mixed model Ilvesniemi, 2009
Finland D. pini/Pinus sylvestris SAR t-s B, i —, 2class/Con 3- Nearest neighbour classification Karjalainen et al., 2010
Finland D. pini/Pinus sylvestris ALS-DAP B, i —, 2 class Tree feature extraction, regression tree classifiers Kantola et al., 2010
Finland D. pini/Pinus sylvestris ALS B, m —, 2class/Con Area based & tree feature extraction, regression tree classifier Kantola et al., 2011
Norway N. sertifer/Pinus sylvestris SPOT, MODIS t-s A, m Nc, Con LAI regression analysis, correlation Solberg et al., 2007
Norway N. sertifer/Pinus sylvestris ALS C, o Ac, — LAI regression analysis, tree segmentation, PC, correlation Lange, Solberg, 2008
Norway N. sertifer/Pinus sylvestris ALS A, m — , 2 class/Con LAI regression analysis, regression, correlation Solberg, 2010
Norway N. sertifer/Pinus sylvestris MODIS t-s B, m Ac, Con LAI regression analysis, VI profiles, regressions Eklundh et al., 2009
Norway E. autumnata/B pubescens TM D, o Ac, Con Supervised, image differencing, tree-ring detection, PC Babst et al., 2010
Sweden E. autumnata/B pubescens MODIS t-s D, v Ac, 2 class Correlation, logistic regression Jepsen et al., 2009
Spain G. scutellatus/E.globulus TM A, m Nm, 2 class Discriminant analysis, stand density Alvarez et al., 2007
Spain T. pityocampa/Pinus Pinea AHS C, s Ac, 2 class Regression & correlation, threshold segmentation Cabello et al., 2011
Canada C. fumiferana/Populus.spp. TM t-s A, d Nc, 2 class Image differencing, threshold segmentation Thomas et al., 2007
USA D. elongate/Tamarix spp. ASTER, MODIS t-s A, v Ac, 2 class ET estimation function of VI, ET-VI profiles, histogram threshold Dennison et al., 2009
USA L. dispar/Oaks spp. MODIS C, v Ac, Con Regressions and statistic comparison De Beurs,Townsend, 2008
USA L. dispar/Oaks spp. MODIS t-s A, i Ac, Con Unsupervised & threshold classification, temporal processing Spruce et al., 2011
USA L. dispar/Oaks spp. TM B, m Ac, Con Model regression as change in VI, comparison of VI Townsend et al., 2012
Argentine O. amphimone/N. spp. MSS,TM, ETM+ D, m Nm, Con Supervised classification, overlay analysis-GIS, model regression Paritsis et al., 2011
Australia Several/E. globulus TM, Hyperion A, o Ac, — Statistic comparison of spectral mixture analysis methods Somers et al., 2010
China Pine moths/Larix spp. TM,ETM+, MODIS A, m Ac, 2 class Forest physical model & NN based in decision rules & fixed VI Wang L. et al., 2010

1 Active: ALS = airborne laser scanner, SAR = synthetic aperture radar. Passive: Multispectral = Landsat (MSS, TM, ETM+),
MODIS, ASTER, SPOT, DAP = digital aerial photography, SPOT–VEG and Hyperspectral = AHS (Airborne Hyperspectral
Scanner), Hyperion. 2 A. Remote detection of forest defoliation; B. Classification of damage degree; C. Research on forest
vegetation index; D. Tempo-spatial distributions and prediction of forest pests (based Zhang et al., 2010). 3 (i) Image
classification method; (v) Different types of vegetation index and ratio method; (d) Difference method; (o) Other image
processing method; (s) Spectrum analysis technology; (m) Mathematical statistical methods and GIS technology (based
Zhang et al., 2010). 4 Pre-processing: Ac = atmospheric corrected; Nm = atmospheric correction not mentioned; Nc = mention
not doing atmospheric correction. 5 Defoliation intensity as a discrete class data (# class) or continuous data (Con). — Not
data or not needed. 6 ET = evapotranspiration; GIS = Geographic Information System; LAI = Leaf Area Index; NN = Neural
Network; PC = principal component; VI = vegetation Index.



of this issue has long challenged research. The
difficulties for classifying damage severity using tra-
ditional methods may be underlined by the fact that
less than half of the studies in this review were able to
map defoliation above two severity classes in a con-
tinuous manner (see Table 1), and in two of these
significant accuracy was attained only for two classes
(Ilvesniemi 2009; Kantola et al., 2010). Nevertheless,
accuracy of 80% or above and Kappa values ≥ 0.6 were
achieved in one third of the cases using a dichotomous
classification.

One of the most outstanding studies assessing
damage severity and detecting location of hazards is
the recent work by Townsend et al. (2012) in which
defoliation severity was recorded as a five continuous
variables (Fig. 3). They used Landsat data to predict
defoliation severity caused by Lymantria dispar in
deciduous forests, applying a straightforward and
robust logistic model as a function of the change in the
Normalized Difference Infrared Index (NDII) (mean
absolute error of 10.8% and r2 = 0.802).

Moreover, the work by Eklundh et al. (2009) also
deserves to be highlighted. These authors successfully

assessed defoliation by Neodiprion sertifer in pine
forests using MODIS time-series data with 71-82%
accuracy, testing it against the change in LAI estimated
from ALS data. However, even if they outlined the
obvious potential of data from MODIS time-series for
early detection of forest insect defoliation, they also
warned that MODIS approach should not be recom-
mended for estimating defoliation intensity.

Another successful study was carried out by Solberg
(2010) for detecting pine forest defoliated by N. sertifer,
using penetration variables derived from high density
ALS data strongly related to f ield-measured gap
fraction. They estimated outbreak defoliation by
temporal changes in the LAI variable derived from ALS
data during a summer season, with r2 = 0.82 – 0.95,
thus demonstrating that combining ALS data pe-
netration variables in an alternative manner may dif-
ferentiate defoliation from felling. However, these
authors suggested that ALS data alone cannot provide
the monitoring accuracy required to assess damage
degree. Even though light defoliation is diff icult to
monitor (Zhang et al., 2010), current pest caused
defoliation monitoring is achieving 70% to 80%
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Figure 3. Damage mapping of an oak-forested area affected by a Lymantria dispar outbreak during 2006-2008 in the central
Appalachian ecoregion of the USA. Severity of defoliation damage has been successfully classified into five degrees. Reprinted
from Remote Sensing of Environment, Vol. 119, Townsend, Philip A., Singh, Aditya, Foster, Jane R., Rehberg, Nathan J., Kingdon,
Clayton C., Eshleman, Keith N., Seagle, Steven W., A general Landsat model to predict canopy defoliation in broadleaf deciduous
forests, Pages 255-265, Copyright 2012, with permission from Elsevier.



accuracy for three defoliation levels (light, moderate
and severe). Remote detection of defoliation in sparse
cover vegetation is still much more difficult to assess
(Dennison et al., 2009). Nevertheless, Kantola et al.
(2010) found that combining (in a fusion approach)
different sensor data, like spectral features from digital
photographs with those from high density ALS data,
can enhance mapping accuracy for two defoliation
classes to higher values (88.1%) than obtained by each
method separately (80.7% and 87.4% respectively).

Correct assessment of defoliation by detection of
changes much depends on obtaining data relatively free
of exogenous noise, so an adequate pre-processing of
image data is critical. Measurement of site features
provided by sub-pixel georeferencing is needed for
change detection techniques to avoid geolocation
inaccuracies that might result in anomalous measuring
of even the most stable land features (Townshend et al.,
1992; Lambin and Linderman, 2006). Accurate links
between data and image processing require quality data
relatively uncontaminated by noise and extraneous
effects derived from viewing, light conditions, cloud
and atmospheric contamination, etc. Thus, sufficient
cloud-free temporal composites across the defoliation
period and effective noise reduction of residual atmos-
pheric contamination (Spruce et al., 2011) or back-
ground influences, such as soil or understory in open
forest stands (Lambin and Linderman, 2006), are
required for useable imagery detecting defoliation.

The biological window (bio-window) period,
defined as “the optimum for visual expression of major
forest pests and related damage” (B.C. Ministry of
Forest, 2000; Wulder et al., 2004), is another key factor
for successful detection of defoliation by a particular
pest. It is a varying period depending on several factors
(e.g. host phenology, climate conditions, predators,
etc), often synchronized with the maximum foliation
period in the host tree. The bio-window is usually open
within a relative short period in relation to the temporal
resolution of the satellite sensor and to the quantity of
sensing images during the period. Therefore, historical
and f ield data on pest occurrence, or predictions of
defoliation phenology using climatically driven insect
population models, as the BioSIM (Régnière et al.,
1995), are critical to establish the pre-defoliation and
peak defoliation periods, before post-outbreak
refoliation.

In this sense, sensors suitable to encompass a bio-
window have high temporal resolutions of 1-3 days
(e.g. satellites as the coarse resolution AVHRR and

SPOT-VEG, the moderate resolution MODIS, the fine
resolution SPOT or the very high resolution IKONOS
and Quickbird-2). By contrast, sensors with low
temporal resolution of 16 days (e.g. satellites with fine
resolution ASTER, ALI and Landsat) can rarely obtain
more than one or a few images during a growing season
(Jepsen et al., 2009), severely limiting its use in the
seasonally ephemeral forest defoliator outbreaks (de
Beurs and Townsend, 2008). Commercial very high
resolution sensors are currently prohibitive for
practical monitoring of insect outbreaks on a regional
scale due to the high costs of obtaining, processing and
calibrating large numbers of f ine resolution images
(Jepsen et al., 2009). On the other hand, MODIS sensor
is free and the MODIS-based Vegetation Continuous
Fields products can be used for measuring changes in
the forest cover over time. Today, MODIS is regarded
as an important tool for insect damage detection at
regional scale (Hayes et al., 2008; Adelabu et al.,
2012). It is strongly recommended for physical and
physiological modelling and has been considered the
best sensor for forest health RS (Wang et al., 2010).
However, lack of spatially explicit reference data for
producing damage maps is a MODIS major limitation
(Adelabu et al., 2012).

A new promising approach when assessing
defoliation is the Spectral Mixture Analysis (SMA).
This method quantif ies the proportion of each pixel
that is occupied by individual image components and,
considering defoliation as the absence of leaves,
estimates stress severity as the relative proportion of
leaves in the image pixels (Somers et al., 2010).
Coupled, with high resolution multispectral data, SMA
is able to detect low and fragmented vegetation cover
and offers advantages over simple regression using
spectral indices and other transformation methods
(Goodwin et al., 2005; Somers et al., 2010). In 1998,
Robert et al were able to improve SMA by the Multiple
Endmember Spectral Mixture Analysis (MESMA) and
later Somers et al. (2010) further improved it in a
weighted Multiple Endmember Spectral Mixture
Analysis (wMESMA), a novel spectral unmixing
technique. These authors were able to detect defo-
liation by Gonipterus spp in Eucaliptus globulus stands
in Australia using hyperspectral (Hyperion) and
multispectral (Landsat) satellites. The SMA technique
performed better with the last sensor, pointing to a
higher potential for multispectral data.

Another relevant advantage of linear mixture model
techniques is that they can estimate the sub-pixel
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spectral composition of plant cover, as regression
techniques do for modelling biophysical continuous
variables. They can extract major information on key
variables in the spectral signal when the targeted
processes operate at scales below the sensor resolution.
This will often be the case when studying land cover
changes with coarse resolution imagery, such as
MODIS data sets (Hayes et al., 2008). They may also
assess degree of defoliator damage in finer scales, as
those from Landsat.

Forest vegetation indices

Presence and condition of leaf foliage are reliable
indicators of tree health, similarly as canopy foliage is
of the forest stand. Research on forest VIs is aimed to
the spectral identification, detection and quantification
of forest health. Thus, defoliation and discoloration,
not related to plant phenology, are taken as indicators
of the plant stress that may be caused by insect
defoliators. In addition, water loss suffered by the host
is another important, but not visually evident, stress
indicator (Wang L. et al., 2010). Many RS studies have
detected differences in spectral responses between
forest discoloration, like chlorosis or canopy
reddening, and insect defoliation, (Jepsen et al., 2009;
Kantola et al., 2011). Biophysical variables, such as
the LAI, chlorophyll content and evapotranspiration,
or any other VI correlated with ground based data, are
aimed to quantify defoliation, discoloration and water
loss. Therefore, analyses of these variables would
provide insight into the nature and development of
forest defoliation and may allow monitoring and
damage mapping with significant accuracy. There are
certain requisites that the biophysical variables or VI
related to them, must fulf il: they must present high
sensitivity and linear relationships with the forest
vegetation variables to be estimated, and they must
have high dynamic ranges and minimal saturation
effects. Furthermore, biophysical variables, or VIs,
must be scale-independent, so they can be transferred
across scales even to more heterogeneous landscapes
(Lambin and Linderman, 2006).

In general, remote detection methods are usually
based on differences among the red (R), NIR, and
SWIR wavelengths. Mathematic algorithms of these
bands conform the VIs that are closely related to the
biophysical variables of foliage vigour associated to
plant health. Thus, these algorithms account for the

morphological and physiological changes in the forest
canopy occurring before, during and after insect
outbreaks.

De Beurs and Townsend (2008), mapping the
magnitude of defoliation by L. dispar during two
consecutive years in a largely broadleaved and oak-
dominated forest area in the USA central Appalachian
range, used MODIS images within a single year that
corresponded to the pre-defoliation and peak defo-
liation periods. The bio-window period was previously
determined by the BioSIM model. They used both
images to develop a MODIS index of defoliation as a
function of a VI. Besides the commonly used NDVI
and Enhanced Vegetation Index (EVI) (that uses the R
and NIR bands), the authors also tested three VIs that
use the R, NIR, SWIR and mid-infrared (MIR) bands.
SWIR reflectance is very sensitive to the amount of
water in the vegetation, increasing when leaf water
content decreases, as happens in vegetation stressed
by pest defoliators. They concluded that Normalized
Difference Infrared Index bands 6 and 7 (NDIIb6 and
NDIIb7, both using the SWIR band) performed
signif icantly better than NDVI and EVI, in daily
MODIS 250m data, for monitoring insect defoliation
in large patches (>0.6 km2) on an annual time scale.

Spruce et al. (2011), however, obtained similar
accuracy in mapping defoliation for the same region and
pest using NDVI derived from MODIS (MODIS-NDVI)
to a minimum patch size of 0.25 km2. They recommended
this product by its higher inherent spatial resolution
compared to alternative indices as the NDII proposed by
De Beurs and Townsend (2008). Temporal compositing
using any VI combining NIR and SWIR bands from
MODIS data would be difficult, since these bands have
different spatial resolution (i.e. 250 m versus 500 m) and
noise mitigation can be complicated. Furthermore, Jepsen
et al. (2009) showed, for the same region, that MODIS-
NDVI time-series were more reliable than daily MODIS
products for long term monitoring of ephemeral forest
disturbances, due to significant cloud coverage during
the defoliation period of daily products.

Moreover, Townsend et al. (2012), working with
Landsat TM, were able to successfully classify and
map, in a continuous way, defoliation severity using
NDIIb5 in combination with a logistic regression
model. Long before, Vogelmann (1990) had obtained
a better performance of the SWIR/NIR ratio over
NDVI in identifying low versus high forest damage in
balsam fir forests. On the contrary, Spruce et al. (2011)
noted that NDVI was better in separating medium from
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low damage within a deciduous forest. Thus, as the VIs
performance may vary from site to site, it is always
recommendable to explore and test several robust VIs
for selecting the best index for a particular case. For
example, NDVI has been shown to have a robust
positive linear correlation with vegetation coverage
between 25% and 80%, but its performance was
reduced significantly below or above this range (Zhang
et al., 2010).

Hyperspectral data is becoming very important for
early stress detection and may be useful for identifying
tree-level pre-visual reductions in LAI, chlorophyll
(Pontius et al., 2008) and water contents. Early
detection means detecting subtle changes in foliage
canopy occurring as physiological or biochemical host
defence responses to infestation. Hyperspectral sensors
operate with hundreds of narrow wavelength bands.
Thus, there are specif ic VIs for hyperspectral data,
such as the Vogelmann “red edge” index or Vog 1
(R740/R720; Vogelmann et al., 1993) proposed for
assessing chlorophyll content, or the simple ratio or
SR (RNIR/Rred; Rouse et al., 1973) for LAI. Both of
them have recently been used to preliminary detect and
map defoliation caused by Thaumetopoea pityocampa
in Pinus pinea stands in Spain (Cabello et al., 2011).
Further results from this advanced methodological
proposal could provide valuable insight into forest VIs
and monitoring defoliation issues.

Adelabu et al. (2012), following Coops et al. (2003)
and Santos et al. (2010), have stressed the need for
research monitoring defoliation on broadleaved forest
by applying multi and hyperspectral sensors.
Complexity and costs of pre-processing (correction
and calibration) and information extraction are current
constraints of hyperspectral data. Nevertheless,
continuous estimates of variables such as LAI, and
several others, from multispectral or hyperspectral data
can be provided by regression analysis, the most
popular empirical method linking ground-measured
biophysical variables to RS data, or by any other
empirical model (Cohen et al., 2003).

Tempo-spatial distribution 
and prediction of forest pests

Remote detection and mapping of defoliation inform
on spatial distribution and intensity of damage, but
does not provide insight into its temporal component.
Temporal distribution is relevant to fully understand

the dynamics of pest outbreaks and therefore to predict
its potential behaviour. Time-series analysis may allow
for predicting annual distribution of defoliated areas
and can provide indications of outbreak history in
periods where f ield records are unavailable (Jepsen
et al., 2009). Using MODIS-NDVI 16-day data,
orthophotos and sketch maps of defoliated polygons,
these authors succeed in using defoliation scores to
classify defoliation and estimate Epirrita autumnata
larval density. They were able to capture the spatial
and temporal patterns of this pest and concluded that
data obtained this way may allow for the development
of monitoring at relevant regional scales. Kharuk et al.
(2009) analyzed the spatial and temporal dynamics of
a Dendrolimus sibiricus outbreak using NDVI derived
from SPOT-VEG data coupled with a digital elevation
model (DEM). They found strong relationship between
outbreak patterns and topographic features (elevation,
azimuth, slope steepness) and confirmed the suitability
of this satellite for remote pest monitoring.

Supported by natural proxy data (pine and birch
chronologies, temperatures, documented outbreaks)
and using Landsat-based detection, Babst et al. (2010)
succeeded in reconstructing E. autumnata outbreaks
over the 19th and 20th centuries in the Scandes Range.
They observed that microclimate, topography, site
conditions and vegetation type strongly influenced
distribution of pest damage. Applying dendro-
chronological techniques, they found a significant non
linear relationship between standardized radial growth
reductions due to E. autumnata outbreaks and NDVI
variations. They also observed that outbreaks appeared
clearly related to regional climate change (frequency
of egg-killing minimum winter temperatures).

Zhang et al. (2010) stressed that a health monitoring
system should be aimed to gathering information for
monitoring, prediction and disaster loss assessment
decision. In this sense, Alvarez et al. (2007) have
proposed a forest health monitoring system prototype
for predicting Gonipterus scutellatus damage on E.
globulus stands in Galicia (Spain), based in the
combined application of satellite remote sensing, GIS
and forest growth models. Unfortunately, this proto-
type has not yet produced conclusive results. Recently,
Paritsis et al. (2011) have succeeded in predicting
susceptibility to defoliation by Ormiscodes amphimone
in Nothofagus forests in two areas of Patagonia
(Argentine). They applied straightforward patch detec-
tion, false-colour visually evident and composite Land-
sat image, together with logistic regression model ge-
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nerated maps, to assign the areas to defoliated and non-
defoliated classes. These authors concluded on the
need of knowing how vegetation heterogeneity and
abiotic sources of landscape heterogeneity affect sus-
ceptibility of Nothofagus stands to Ormiscodes attack.

Trends in remote monitoring 
of forest insect defoliation

Recent research in RS of forest insect defoliation
shows a trend of specialization in a particular pest for
certain area. Thus, current research might be grouped
in relation to the insect and the area most frequently
studied. In the United States, studies are focused on
oak forests affected by L. dispar, whereas Northern
European research is mostly dealing with Scots pine
forests affected by N. sertifer (Norway) and Diprion
pini (Finland). There is also research on E. autumnata
outbreaks in Fennoscadian birch-coniferous forests. In
Southern Europe, research has been addressed to E.
globulus defoliation by Gonipterus beetles and to pine
defoliation by processionary moths in Spain.

Collaborative national RS for developing nation
wide forest health monitoring systems tackling climate
change is another currently observed research trend
(Solberg et al., 2004). It may be exemplif ied by the
U.S. National Early Warning System (EWS) (Spruce
et al., 2011), the Norwegian REMote sensing of
FORest health project (REMFOR) (Solberg et al.,
2007), or the National Environmental Disturbances
Framework (NEDF) in Canada (Thomas et al., 2007).

Although to date multispectral sensors Landsat,
MODIS and SPOT are still the most used in studies of
insect defoliation (Hall et al., 2007, Wang, L. et al.,
2010; Adelabu et al., 2012), it is to remark the
increasing use of LiDAR technology in the relatively
new ALS sensors by Northern European research
teams. ALS data has proven efficient for determining
important forest parameters; it is increasingly used in
forest inventory (Kantola et al., 2010) and would
provide a good basis for detection of defoliation
(Solberg et al., 2006). On the contrary, Synthetic
Aperture Radar (SAR) data seems to contribute
modestly to remote detection of defoliation.

All the studies here reviewed were multitemporal
and considered the pest period as the criterion for
image selection. Individual images were taken before,
during and after the outbreak episode, like time-series
data from MODIS, Landsat or SPOT, for the detection

and temporal analysis of pest outbreak. Satellite-
derived time-series of outbreak dynamics is a
promising tool with many applications (e.g. as a basic
large scale and cost effective monitoring) (Jepsen
et al., 2009).

In 2007, Hall et al. reported that half of the studies
reviewed in North America, most of them after 1998,
employed pre-processing procedures, such as image
normalization or atmospheric correction. This may
signal an increasing use of pre-processing image
procedures, such as georeferencing or radiometric and
atmospheric correction, prior to any change detection
analysis (Lu et al., 2004; Hall et al., 2007). In this
sense, we have found that at least 75% of the studies
here reviewed used atmospheric correction when it was
necessary. Furthermore, these authors observed that
about 20% of the studies employed continuous
estimates of insect defoliation damage, whereas in the
present review this figure has been doubled (Table 1).
This may point to a trend for finer limits more suited
to the nature of the spectral response to defoliation
than the subjective and broad defoliation classes (Hall
et al., 2007) obtained from visual estimates on field
or aerial surveys.

Another interesting trend in remote insect defo-
liation monitoring is the development of temporally
processed time-series data. This technique may provide
alternatives to overcome the need of cloud-free data
for operational monitoring (cloud contamination is a
main problem inherent to all electro-optical sensors),
allowing for a wall to wall assessment of defoliation
towards an early warning system (Dennison et al.,
2009; Spruce et al., 2011). In this sense, it can be
observed in Table 1 that at least one third of the studies
have applied time-series or temporal composite
images, mostly for “Remote detection of forest
defoliation” topic, with several methods and sensors,
in North America and Fennoscandia. In fact, both
regions suffer in their northern latitudes from high
cloud coverage that frequently precludes the use of
daily satellite images for operational monitoring
(Jepsen et al., 2009; Spruce et al., 2011). Furthermore,
global coverage and the cluster of historic images of
Landsat time-series (LTS), free available now, along
with the growing need for detailed information on
disturbances over large areas, have generated new
automated algorithms for exploiting these data.
Temporal aggregation of LTS high-density data
improves the signal to noise ratio and therefore
requires new mapping algorithms. LandTrendr and
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Vegetation Change Tracker (VCT) with new calibration
and validation, and TimeSync algorithms (Kennedy
et al., 2010; Huang et al., 2010; Cohen et al., 2010)
were created for that purpose. These algorithms may
lead to new methods to be tested or incorporated (Deel
et al., 2012), for characterizing annual changes in
disturbed vegetation of large areas, offering interesting
potential for assessing pest patterns and history of
affectation and recovery of forests.

There is a wide variety of remote change detection
methods being applied to a given range of damage
pattern, from traditional classification to mathematic
modelling (Table 1). This diversity makes difficult to
select a particular approach for mapping defoliation
and some are becoming more sophisticated image
processing techniques (e.g. the f ive-scale model
coupled with neural network from Wang L. et al.,
2010). This may be evidenced by the higher frequency
of application (38%) of “Mathematical statistical
methods and GIS technology” (m) over the other
methods shown in Table 1, as expected by Zhang et al.
(2010). These (m) methods have been applied mainly
for topics A and B and have similarly used Landsat and
MODIS data, followed by the significant rise of ALS
data applications (20%). In this respect, several
promising studies reveal a trend towards an increasing
contribution of this sensor to remote monitoring of
defoliation: LAI mapping in Solberg et al. (2007) and
Solberg (2010), defoliation predicting in Kantola et al.
(2010, 2011) and satellite image analysis in Eklundh
et al. (2009). Solberg et al. (2007) found a close to 1:1
correlation between satellite-borne LiDAR data
(ICESAT sensor) and penetration rates of airborne
LiDAR data (ALS sensors), pointing to the feasibility
of exploiting the potential advantages of LiDAR
satellite monitoring.

Development of hyperspectral capacities has lead
to new powerful indices for analyzing the “red edge”
zone, to detect subtle changes in plant health, as occurs
in early stages of insect damage (Zhang et al., 2010).
Moreover, it has been shown the capacity of hyper-
spectral analysis to assess defoliation intensity with a
highly significant accuracy (Pontius et al., 2005).

Conclusions

Remote sensing is a dynamic technology conti-
nuously improving sensors, methods, products and
availability. Though, it is increasingly being used in

forest health monitoring RS of insect defoliation is still
at an early stage. RS of defoliation is a complex and
multifactorial task, dependent on several factors such
as physiographic conditions or host and pest pheno-
logies. Forest defoliation does not mean a simple chan-
ge in foliage condition, so each case should be treated
as unique, testing different sensors and combining
different techniques that may produce the best results.

There is increasing evidence suggesting that recent
changes in distribution and duration of pest outbreaks
can be attributed to climate warming. These changes
could be cost effectively monitored in large areas using
satellite derived spatio-temporal time-series, to predict
population build ups and prevent harmful consequen-
ces to forest ecosystems.

Remote monitoring of forest health may allow for
effective pest control and outbreak suppression. It has
been suggested that an operative nation or region wide
monitoring system will depend on two scale levels, one
using time-series with moderate to coarse resolutions
(e.g. MODIS or SPOT-VEG data) and the other with
fine or very high resolution (e.g. Landsat or Quickbird-
2 data) supported with reference ground-based data,
digital elevation models and other ancillary data. ALS
and hyperspectral data analysis may be included in this
second level.

MODIS capabilities place it as the most suitable
sensor for early warning detection and physical and
physiological modelling, whereas Landsat is especially
suited for defoliation damage research, but not for
operative monitoring due to its coarse temporal
resolution. ALS data currently stands as the more
promising option for operative detection of defoliation
using several data sources in a fusion approach.

A general straightforward method is applying
multispectral f ine resolution satellite data (Landsat
imagery) to assess percent defoliation as a function of
the change in a VI. This approach has been shown to
allow for continuous, rather than categorical, defo-
liation scoring, and to produce appropriate insect
defoliation maps across years.

Proper estimation of defoliation phenology of an
insect pest, or bio-window, is another key requisite for
acquisition of spectral images suitable for effectively
detecting the seasonally ephemeral outbreak of the
forest defoliators. Climatically driven insect popu-
lation models are currently providing accurate bio-
window estimations.

Remote spectral characterization of forest defo-
liation accounts for detecting morphological changes
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in tree crown coverage for a given period of time using
adequate change detection methods. These methods
are usually especially sensitive to pre-processing tech-
niques, such as precision georeferencing or radiometric
and atmospheric correction among others. Thus, pre-
processing may largely determine the reliability and
accuracy of insect defoliation damage detection and
mapping.

Vegetation indices are derived from its reflectance
properties and are designed to highlight a particular
vegetation feature or change. To date, NDVI has been
the most used and so proven VI for mapping insect pest
defoliation, although those indices combining SWIR
and NIR bands, as SWIR/NIR-based indices, seem more
promising. The loss of foliage is intimately related to
the biophysical variable LAI which has been
significantly used for defoliation mapping. Further-
more, since decrease of moisture content is a general
plant stress response, moisture content indicators should
be also considered for remote detection of defoliation.

Two promising methods for insect defoliation
monitoring are to be highlighted. One, the Spectral
Mixture Analysis approach is best suited for detection
due to its sub-pixel recognition and analysis capacity.
The second approach attempts classification damage
degree using logistic models as a function of the VI
change difference between two dates, and is recom-
mended for predicting defoliation.

Research on remote monitoring of insect defoliation
can be considered still rare compared to other RS
applications to forest health management. There is an
evident need, though, for facing present and future forest
pest threats in a multidisciplinary way. A clear research
opportunity for RS of defoliation arises, posing a
challenge for improving defoliation intensity detection,
improving early stage outbreak detection, developing
more generalist models, increasing robustness of data
processing and analytical methods, and extending
results to more heterogeneous and complex forests.

References

Adelabu S, Mutanga O, Cho M, 2012. A review of remote
sensing of insect defoliation and its implications for the
detection and mapping of Imbrasia belina defoliation of
Mopane Woodland. African J Plant Sci Biotech 6(1): 1-13.

Alvarez Taboada MF, Lorenzo Cimadevila H, Wulder M,
2007. Monitorización del estado sanitario de las masas
de Eucalyptus globulus en Galicia empleando modelos
de proceso, SIG y teledetección. Proc 2º Simposio

Iberoamericano de Eucalipto Globulus in Vigo (Spain),
October 17-20, CIDEU 4, vol. II, pp: 41-47.

Babst F, Esper J, Parlow E, 2010. Landsat TM/ETM+ and
tree-ring based assessment of spatiotemporal patterns of
the autumnal moth (Epirrita autumnata) in northernmost
Fennoscandia. Remote Sens Environ 114: 637-646.

Battisti A, Stastny M, Netherer S, Robinet C, Schopf A,
Roques A et al., 2005. Expansion of geographic range in
the pine processionary moth caused by increased winter
temperatures. Ecol Appl 15(6): 2084-2096.

BC Ministry of Forests, 2000. Forest health aerial overview
survey standards for British Columbia, Version 2.0. Forest
Practices Branch, and Canadian Forest Service. 48 pp.

Cabello A, Frieyro J, Granado L, Hayas A, Méndez E,
Montoya G et al., 2011. Estudio de las afecciones por
plagas y decaimiento en masas de coníferas mediante
imágenes procedentes de sensores hiperespectrales. Proc
XIV Congreso de la Asociación Española de Teledetección
Int Conf on “Teledetección: Bosques y Cambio Climá-
tico”, Asturias (Spain), September 21-23, pp: 81-84.

Carter G, 1993. Responses of leaf spectral reflectance to
plant stress. Am J Bot 80: 231-243.

Carter G, Cibula W, Miller R, 1996. Narrow-band reflectance
imagery compared with thermal imagery for early
detection of plant stress. J Plant Physiol 148: 515-522.

Casal G, Freire J, 2012. Síntesis de la evolución histórica de
la teledetección en España (1889-2012). Revista de
Teledetección AET 38: 109-120.

Ciesla W, Dull C, Acciavatti R, 1989. Interpretation of SPOT-
1 color composites for mapping defoliation of hardwood
forests by gypsy moth. Photogramm Eng Remote Sens
55: 1465-1470.

Ciesla W, 2000. Remote monitoring in forest health
protection. USDA Forest Service. 266 pp.

Ciesla W, Billings R, Compton J, Frament W, Mech R,
Roberts M, 2008. Aerial sigantures of forest damage in
the Eastern United States. The Forest Health Technology
Enterprise Team (FHTET). USA. 121 pp.

Cohen W, Spies T, Alig R, Oetter D, Maiersperger T, Fiorella
M, 2003. Characterizing 23 years (1972-1995) of stand
replacement disturbance in western Oregon forests with
Landsat imagery. Ecosystems 5: 122-137.

Cohen W, Yang Z, Kennedy R, 2010. Detecting trends in
forest disturbance and recovering using yearly Landsat
time-series: 2. TimeSync-Tools for calibration and
validation. Remote Sens Environ 114: 2911-2924.

Coops N, Stanford M, Old K, Dudzinski M, Culvenor D,
Stone C, 2003. Assessment of Dothistroma needle blight
of Pinus radiata using airborne hyperspectral imagery.
Phytopathology 93: 1524-1532.

Coops N, Waring R, Wulder M, White J, 2009. Prediction
and assessment of bark beetle-induced mortality of
lodgepole pine using estimates of stand vigor derived
from remotely sensed data. Remote Sens Environ 113:
1058-1066.

De Beurs K, Townsend P, 2008. Estimating the effect of
gypsy moth defoliation using MODIS. Remote Sens
Environ 112: 3983-3990.

Remote monitoring of forest insect defoliation 389



Deel L, McNeil B, Curtis P, Serbin S, Singh A, Eshleman K
et al., 2012. Relationship of a Landsat cumulative
disturbance index to canopy nitrogen and forest structure.
Remote Sens Environ 118: 40-49.

Dennison P, Nagler P, Hultine K, Glenn E, Ehleringer J, 2009.
Remote monitoring of tamarisk defoliation and
evapotranspiration following saltcedar leaf beetle attack.
Remote Sens Environ 113: 1462-1472.

Eklundh L, Johansson T, Solberg S, 2009. Mapping insect
defoliation in Scots pine with MODIS time-series data.
Remote Sens Environ 113: 1566-1573.

Fleming R, Volney W, 1995 Effects of climate change on
insect defoliator population processes in Canada’s boreal
forest: some plausible scenarios. Water Air Soil Pollut 8:
445-454.

Fraser R, Latifovic R, 2005. Mapping insect-induced tree
defoliation and mortality using coarse spatial resolution
satellite imagery. Int J of Remote Sens 26: 193-200.

García-López J, Allué-Camacho C, 2010. Effects of climate
change on the distribution of Pinus sylvestris L. stands in
Spain. A phytoclimatic approach to defining management
alternatives. Forest System 19(3): 329-339.

Goodwin N, Coops N, Stone C, 2005. Assessing plantation
canopy condition from airborne imagery using spectral
mixture analysis and fractional abundances. Int J Appl
Earth Obs 7: 11-8.

Hall R, Skakun R, Arsenault E, 2007. Remotely sensed data
in the mapping of insect defoliation. Chap. 4, pp: 85-111
In: Understanding forest disturbance and spatial pattern:
remote sensing and GIS approaches (Wulder M, Franklin
S, 2007). Taylor & Francis Group. FL, USA. 253 pp.

Hayes D, Cohen W, Sader S, Irwin D, 2008. Estimating
proportional change in forest cover as a continuous
variable from multi-year MODIS data. Remote Sens
Environ 112: 735-749.

Huang C, Goward S, Masek J, Thomas N, Zu Z, Vogelmann
J, 2010. An automated approach for reconstructing recent
forest disturbance history using dense Landsat time series
stacks. Remote Sens Environ 114: 183-198.

Hunt G, 1977. Spectral signatures of particulate minerals in
the visible and near infrared. Geophysics 42(3): 501-513.

Ilvesniemi S, 2009. Estimating Scots pine defoliation using
aerial images and Landsat TM. Master thesis. University
of Helsinki. 60 pp.

Innes J, 1993. Forest health: its assessment and status. Cab
International, Cambridge. 677 pp.

Jensen J, 2005. Introductory digital image processing: a
remote sensing perspective, 3rd ed. Pearson Education,
Inc. 526 pp.

Jensen J, 2007. Remote Sensing of the Environment: an earth
resource perspective, 2nd ed. Pearson Education, Inc. 592 pp.

Jepsen U, Hagen S, Ims R, Yoccoz N, 2008. Climate change
and outbreaks of the geometrids Operophtera brumata
and Epirrita autumnata in subarctic birch forest:
evidence of a recent outbreak range expansion. J Anim
Ecol 77: 257-264.

Jepsen J, Hagen S, Hogda K, Ims R, Karlsen S, Tommervik
H et al., 2009. Monitoring the spatio-temporal dynamics

of geometrid moth outbreaks in birch forest using MODIS-
NDVI data. Remote Sens Environ 113: 1939-1947.

Kantola T, Vastaranta M, Yu X, Lyytikäinen P, Holopainen
M, Talvitie M et al., 2010. Classif ication of defoliated
tres using tree-level airborne laser scanning data
combined with aerial images. Remote Sens 2: 2665-2679.

Kantola T, Lyytikäinen P, Vastaranta M, Kankare V, Yu X,
Holopainen M et al., 2011. Using high density ALS data
in plot level estimation of the defoliation by the Common
pine sawfly. Proc 11th International SilviLaser Int Conf
on “LIDAR applications for assessing forest ecosystems”
Hobart (Australia), October 16-20. pp: 1-8.

Karjalainen M, Kaasalainen S, Hyyppä J, Holopainen M,
Lyytikäinen P, Krooks A et al., 2010. SAR Satellite
Images and Terrestrial Laser Scanning in Forest Damages
Mapping in Finland. Proc ESA Symposium Int Conf on
“Living Planet”, Bergen (Norway), June 28-July 2.

Kharuk V, Ranson K, Im S, 2009. Siberian silkmoth outbreak
pattern analysis based on SPOT VEGETATION data. Int
J Remote Sens 30(9): 2377-2388.

Kennedy R, Yang Z, Cohen W, 2010. Detecting trends in
forest disturbance and recovery using yearly Landsat time
series: 1 Land-Trend-Temporal segmentation algorithms.
Remote Sens Environ 114(12): 2897-2910.

Lambin E, Linderman M, 2006. Time series of remote
sensing data for land change science. IEEE Trans Geosci
Remote Sens 44(7): 1926-1928.

Lange H, Solberg S, 2008. Leaf area index estimation using
LIDAR and forest reflectance modelling of airborne
hyperspectral data. Proc IGARSS Int Conf on “The next
generation”, Boston (USA), July 6-11. pp: 475-478.

Lu D, Mausel P, Brondizio E, Moran E, 2004. Change
detection techniques. Int J Remote Sens 25: 2365-2407.

MacLeod A, Evans H, Baker R, 2002. An analysis of pest
risk from an Asian longhorn beetle (Anoplophora
glabripennis) to hardwood trees in the European
Community. Crop Protection 21(8): 635-645.

Marceau D, Hay G, 1999. Remote sensing contributions to
the scale issue. Can J Remote Sens 25(4): 357-366.

Melesse A, Weng Q, Thenkabail P, Senay G, 2007. Remote
sensing sensors and applications in environmental
resources mapping and modeling. Sensors 7: 3209-3241.

Mutanga O, van Aardt J, Kumar L, 2009. Imaging
spectroscopy (hyperspectral remote sensing) in southern
Africa: an overview. S Afr J Sci 105: 193-198.

Pajares J, 2009. Los médicos del monte: una mirada a la
sanidad forestal española desde sus inicios hasta los
nuevos escenarios del siglo XXI. Proc 5° Congreso Fo-
restal Español on “Montes y Sociedad: Saber qué hacer”
Ávila (Spain), September 21-25. pp: 2-17.

Paritsis J, Veblen T, Smith J, Holz A, 2011. Spatial prediction
of caterpillar (Ormiscodes) defoliation in Patagonian
Nothofagus forests. Landscape Ecol 26: 791-803.

Peterson D, Resetar S, Brower J, Diver R, 1999. Forest
monitoring and remote sensing: a survey accomplish-
ments for the opportunities for the future. RAND Science
and Technology Policy Institute, Washington DC, USA.
Report MR-111.0-OSTP. 107 pp.

390 C. D. Rullan-Silva et al. / Forest Systems (2013) 22(3): 377-391



Remote monitoring of forest insect defoliation 391

Pontius J, Hallett R, Martin M, 2005. Using AVIRIS to asses
hemlock abundance and early decline in the Catskills,
New York. Rem Sens Environ 97: 163-173.

Pontius J, Martin M, Plourde L, Hallet R, 2008. Ash decline
assessment in emerald ash borer-infested regions: a test
of tree-level hyperspectral technologies. Remote Sens
Environ 112(5): 2665-2676.

Prados D, Ryan R, Ross K, 2006. Remote time series product
tool 2006. Proc AGU Fall Meeting In Conf on “Com-
putational Rapid Prototyping Capabilities for Advancing
Science Toward Societal Benefits”, San Francisco, CA
(USA), December 11-15.

Régnière J, Cooke B, Bergeron V, 1995. BioSIM: a compu-
ter-based desicion support tool for seasonal planning 
of pest management activities. Canadian Forest Service.
50 pp.

Rouse J, Haas R, Schell J, Deering D, 1973. Monitoring
vegetation systems in the Great Plains with ERTS. Proc
Third ERTS Symposium Int Conf on “Earth Resources
Technology Satellite-1”, Washington DC (USA), Decem-
ber 10-14, pp: 301-317.

Santos M, Greenberg J, Ustina S, 2010. Using hyperspec-
tral remote sensing to detect and quantify southeastern
pine senescence affects in red-cockaded woodpecker
(Picoides borealis) habitat. Remote Sens Environ 114(6):
1242-1250.

Seixas P, Oliveira I, Santos J, Leite S, 2011. Climate change
and forest plagues: the case of the pine processionary
moth in the Northeastern Portugal. Forest Systems 20(3):
508-515.

Solberg S, Næsset E, Lange H, Bollandsas O, 2004. Remote
sensing of forest health. Proc ISPRS Int Conf on “Laser-
Scanners for forest and landscape assessment”. Freiburg
(Germany), October 3-6, pp: 161-166.

Solberg S, Næsset E, Hanssen K, Christiansen E, 2006.
Mapping defoliation during a severe insect attack on Scots
pine using airborne laser scanning. Remote Sens Environ
102: 364-376.

Solberg S, Eklundh L, Gjertsen A, Johansson T, Joyce S,
Lange H et al., 2007. Testing remote sensing techniques
for monitoring large scale insect defoliation. Proc
ForestSat 2007, Int Conf on Hyperspectral & Advanced
sensors, Montpellier (France), November, 5 pp.

Solberg S, 2010. Mapping gap fraction, LAI and defoliation
using various ALS penetration variables. Int J Remote
Sens 31: 1227-1244.

Somers B, Verbesselt J, Ampe E, Sims N, Verstraeten W,
Coppin P, 2010. Spectral mixture analysis to mon-
itor defoliation in mexed-aged Eucalyptus globulus
Labill plantations in southern Australia using Landsat 5-
TM and EO-1 Hyperion data. Int J Appl Earth Obs 12:
270-277.

Spruce J, Sader S, Ryan R, Smoot J, Kuper P, Ross K et al.,
2011. Assessment of MODIS NDVI time series data pro-
ducts for detecting forest defoliation by gypsy moth
outbreaks. Remote Sens Environ 115: 427-437.

Thomas S, Deschamps A, Landry R, Van der Sanden J, Hall
R, 2007. Mapping insect defoliation using multi-temporal
Landsat data. Proc CRSS/ASPRS 2007 In Conf on “Our
Common Borders- Safety, Security, and the Environment
through Remote Sensing”, Ottawa (Canada). October 28-
November 1.

Townsend P, Singh A, Foster J, Rehberg N, Kingdon C,
Eshleman K et al., 2012. A general Landsat model to
predict canopy defoliation in broadleaf deciduous forests.
Remote Sens Environ 119: 255-265.

Townshend J, Justice C, Gurney C, McManus J, 1992. The
impact of misregistration on change detection. IEEE Trans
Geosci Remote Sens 30(5): 1054-1060.

Vanhanen H, Veteli T, Päivinen S, Kellomäki, Niemelä P,
2007. Climate change and range shifts in two insect
defoliators: gypsy moth and Nun moth – A model study.
Silva Fenn 41(4): 621-638.

Vogelmann J, 1990. Comparison between two vegetation in-
dices for measuring different types of forest damage in the
Northeastern United States. Int J Remote Sens 11: 2281-2297.

Vogelmann J, Rock B, Moss D, 1993. Red-edge spectral
measurements from sugar maple leaves. Int J Remote Sens
14: 1563-1575.

Volney W, Fleming R, 2000. Climate change and impacts of
boreal forest insects. Agr Ecosyst Environ 82: 283-294.

Wang J, Sammis T, Gutschick V, Gebremichael M, Dennis
S, Harrison R, 2010. Review of satellite remote sensing
use in forest health studies. Open Geogr J 3: 28-42.

Wang L, Huang H, Luo Y, 2010. Remote sensing of insect
pests in larch forest based on physical model. Proc IGARSS
Int Conf on “Remote Sensing: Global vision for local ac-
tion”, Honolulu, Hawaii (USA), July 25-30. pp: 3299-3302.

Williams D, Liebhold A, 1995. Herbivorous insects and
global change: potential changes in the spatial distribution
of forest defoliator outbreaks. J Biogeogr 22: 665-671.

Wulder M, Dymond C, Erickson B, 2004. Detection and
monitoring of the mountain pine beetle. Report BC-X-398.
Canadian Forest Service and Pacific Forestry Center. 32 pp.

Wulder M, White J, Bentz B, Ebata T, 2006. Augmenting the
existing survey hierarchy for mountain pine beetle red-
attack damage with satellite remotely sensed data. The
Forestry Chronicle 82: 187-202.

Wulder M, Franklin S, 2007. Understanding forest distur-
bance and spatial pattern: remote sensing and GIS
approaches. Taylor & Francis Group. FL, USA. 253 pp.

Zhang T, Zhang X, Liu H, Pei X, 2010. Application of remote
sensing technology in monitoring forest diseases and
pests. Plant Diseases and Pests 1(3): 57-62.


