
Introduction

National multi-environmental yield trials (MET),
allow assessment of the potential yield performance
of different varieties across a range of environments
(locations and possibly over years, as well as
combination of the two). These trials play an important
part in crop variety evaluation in breeding programs
and varietal recommendations for plant production. It
is therefore vital that the statistical methods used to
design the studies and analyse data from national yield
trial evaluation programs are as accurate, efficient and
informative as possible. Although the development of
statistical methods for analysing variety trial data has

a long history, due to the complexity of varietal and
environmental interactions there is no specific model
that is generally suitable for analysing combined data
sets from national trials. Spatial variability often exists
in field experiments due to factors such as moisture,
fertility, pH and structure of the soil, as well as the
pressure of diseases and pests (Davidoff & Selim,
1988; Scharf & Alley, 1993; Wu & Dutilleul, 1999;
Stroup, 2002). Multi-environment crop variety trials
and f ield evaluations are a particularly well-known
example of this. Failure to effectively control for
spatial variability greatly increases the risk of
misleading interpretations or erroneous inferences (Mo
& Si, 1986; Stroup, 2002; Yang et al., 2004).
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Historically, the analysis of variance (ANOVA),
along with randomised block designs (including
complete, incomplete blocks), has been used to deal
with the spatial variability of these trials. Numerous
studies have shown that such design-based control of
the spatial variation of field trials are often not optimal
and results in poor analysis eff iciency (Yang et al.,
2004). Statistical procedures that account for spatial
variation between plots within trials have been
proposed to address the topic of modelling spatial
variation in crop evaluation trials using polynomial
trend analysis, nearest neighbour analysis and a model
with correlated errors.

The problem with the ANOVA method as a means
to analyse multi-environmental crop variety trials is
that it requires the assumption of homogenous
variance-covariance structures across locations or
environments. This homogeneity of variance and
covariance may be unrealistic in many circumstances
(Kempton, 1984; Piepho, 1999a). As a result, a range
of more complex and informative models that can
account for variance or/and covariance heterogeneity
have been proposed for analysing MET data. While
other models are available, the problem of how the
models should be assessed and which model is more
suitable for a given trial’s data has not been solved.
This restricts the applicability of the models and model
choice. Therefore, a linear mixed model approach with
flexible spatial variance-covariance structures is
proposed. Correspondingly, model-based approaches
for analysing f ield trials that focus on the need to
control spatial variation have been put forward. These
approaches include nearest neighbour adjustment
(NNA) analysis and its modifications (Bartlett, 1978;
Cullis & Gleeson, 1991; Clarke & Baker, 1996; Yang
et al., 2004). Other options include linear mixed
models with spatial covariance structures such as those
used in geostatistics (Zimmerman & Harville, 1991;
Gilmour et al., 1997; Stroup, 2002). The efficiency of
spatial approaches has been compared with the no
spatial analyses found in the literature (Brownie &
Gumpertz, 1997; Wu & Dutilleul, 1999; Smith et al.,
2001; Yang et al., 2004; Hong et al., 2005).

However, most comparisons of eff iciency in the
literature appear to focus on the nearest neighbour
adjustment (including its modification or extensions)
and/or the linear mixed model with one special
covariance structure (usually the f irst order
autoregressive model, AR(1)) against the analysis of
variance of block designs. There have been few

comparisons of mixed models with different spatial
covariance structures. Now a migration seems to be
taking place from the NNA to a fully-fledged mixed
model analysis with different spatial components for
spatial variability because of the flexibility, simplicity
of use and other advantages of mixed model analysis
(Piepho et al., 2008). Recently, linear mixed models
have become well developed, and range from simple
variance component models that provide information
similar to ANOVA, to models with complex variance-
covariance structures that aim to explore complex
sources of variability and better accommodate
interactions. Specifically, different analytical models
can be cast in a unified mixed modelling framework
(Denis et al., 1997; Piepho, 1998, 1999b).Within such
a framework, different models can be handled as mixed
models with different variance-covariance structures.
Thus candidate models can be assessed and selected
for MET data analyses, which can result in high
accuracy when estimating and testing varietal effects.

Within advanced experimental designs, many spatial
methods were proposed for adjusting the spatial trend
(Bartlett, 1978; Wilkinson et al., 1983; Schwarzbach,
1984; Williams, 1986; Gilmour et al., 1997; Gleeson,
1997; Piepho, 1999a). A common feature of these
methods is that plots that are closer together are
assumed to have a higher correlation than plots farther
apart. Via such models the precision of genotypic value
estimates can be improved through both blocking and
the adjustment of spatial trend in one or two
dimensions.

With regard to the practical application of the linear
mixed model with a spatial component, various
unsolved problems must be dealt with. Among other
issues, these are concerned with the selection of a
suitable covariance model, i.e., a model with criteria
that form the basis for a user’s choice of whether or not
to use a spatial model at all. Another point in this regard
is the fact that the covariance parameters are unknown
in practice and the estimated values based on observed
data have to be used. In this case the statistical tests
about the f ixed effects of linear mixed models are
generally not exact and their degrees of freedom must
be determined by approximation. For some types of
mixed models, the available methods for approxi-
mating degrees of freedom have been well examined
(Schaalje et al., 2002; Spilke et al., 2004, 2005). For
mixed models with spatial covariance structures,
however, the use of the approximation methods has to
be undertaken with care. In addition of the approxi-
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mation, further consideration has to be given to the
question of what influence the various spatial models
have on the statistical tests used for, ranking and
selection of lines in cultivar trial evaluations, apart
from on efficiency vis a vis standard errors for line
effect estimations. In MET, the local spatial tendency
within trials and the residual heterogeneity between
trials can be jointly modelled in the context of linear
mixed models. By using a two-dimensional coordinate
system at each trial, it is possible to define the plot
location in a f ield, for example by specifying the
latitude and longitude of plot centres (Casanoves et al.,
2005, 2013).

The main objectives and contribution of this paper
were (1) to highlight the advantages of mixed effect
models in the data analysis of a national MET; (2) to
show the importance of several main spatial variance-
covariance structures, and direct implications of model
choice for the inference of varietal performance,
ranking and testing based on two data sets from real
national trials by comparing blocking without spatial
effect (ANOVA) model and a model with a block and
spatial effect; the mixed models with spatial variance-
covariance structure models were fitted using restricted
maximum likelihood (REML) approach; and finally
(3) to compare parameter estimates, ranking the
varieties and ranking order and tests of varietal effects
between the ANOVA model with only block effects and
the mixed effects model with a block effect with
selected spatial variance-covariance structure.

Material and methods

Linear mixed models have become well developed,
and range from simple variance component models that
provide information similar to ANOVA, to models with
complex variance-covariance structures that aim to
explore or better accommodate interactions. Speci-
f ically, different analytical models can be cast in a
unif ied mixed modelling framework (Denis et al.,
1997; Piepho, 1998, 1999b). Within such a framework,
different models with specif ic variance-covariance
structures can be formulated. Thus candidate models
can be assessed and selected for MET data analyses,
which result in high accuracy when estimating and
testing varietal effects. Although there are already
some general reviews of crop breeding analysis and
variety evaluation trials (Davidoff & Selim, 1988;
Smith et al., 2001, 2005), as well as studies on the

analysis of MET data using the mixed models (Bartlett,
1978; Piepho, 1997; Kelly et al., 2007; Piepho &
Möhring, 2010; Stefanova & Buirchell, 2010), most
references just contain some examples for
demonstration, or contain just one specif ic type of
mixed model in data analysis.

Both traditional block design ANOVA models and
spatial effect models can take the general form of the
linear mixed model:

[1]

where y stands for the vector of observations, X is a
matrix of constants associated with the fixed effects
contained in the vector β, β is a vector of unknown
fixed effects, Z is a matrix of constants associated with
the random effects, u is a vector of random effects, and
e is a vector of random residual errors. The random
effects are assumed to be distributed as multivariate
normal (MVN) or more precisely u ∼ MVN (0, G) and
the residual errors (e) distributed as MVN (0, R). It
follows that the vector of observations is distributed
as y ∼ MVN (Xβ, V) where V = ZGZ’ + R, The matrix
G is the covariance matrix among random effects, R
is the covariance matrix among the random residual
errors, and V is the covariance matrix of y. For block
designs, block effects may be regarded as f ixed or
random effects. A random block analysis makes
additional use of the so-called inter-block information
and is generally the preferred approach (Littell et al.,
2006). In this article, block effects will be considered
random in a combined analysis of data from different
location. In this situation, u is the vector of block
effects, and Z corresponds to the block effect design.

For analysis of variance models for block designs,
block effects are assumed to be iid ∼ N (0,σ2

b), and
residual errors are assumed to be iid N ∼ (0,σ2

b), where
iid denotes independent and identically distribution,
and and are variance components of blocks and
residual errors, respectively. Hence, G = Ibσ2

b and
R = Inσ2

b, where Ib is an identity matrix whose
dimension equals the number of blocks, In is an identity
matrix whose rank equals the number of observations.
The main feature of analysis of variance models for
block designs is that random variables located in the
same block have the same covariance regardless of the
extent of spatial variation; random variables not
located in the same block have a covariance of zero.

In spatial effect models, R takes the form
R = Inσ2 + σ2

sF, where σ2
s is the covariance parameter

of spatial structure variation, F is a square matrix with

y X Z= + +β u e
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a dimension reflecting the number of observations,
whose ijth element is f(dij), in which dij is the Euclidian
distance between spatial observation points i and j.
Suppose (xi,yi) and (xj ,yj) describe the coordinates of
the median points of plots for observations i and j,
respectively, then their distance is:

[2]

where x and y denote horizontal and vertical directions.
The variable f(dij) is generally a function of dij and its
form is dependent on the spatial model used, which is
dependent on the characteristics of spatial variation.
The spatial covariance structures available for
analysing field trials are listed in Table 1. In Table 1

c-list contains the names of the numeric variables used
as coordinates of the location of the observation in
space, and is the Euclidean distance between the ith and
jth vectors of these coordinates, which correspond to
the ith and jth observations in the input data set. For
SP(POWA) and SP(EXPA), c is the number of
coordinates, and d(i, j, k) is the absolute distance
between the kth coordinate, k = 1 ..., c, of the ith and jth

observations in the input data set. For the geometrically
anisotropic structures SP(EXPGA), SP(GAUGA), and
SP(SPHGA), exactly two spatial coordinate variables
must be specified as c1 and c2 . Geometric anisotropy
is corrected by applying a rotation ı and Ï scaling to
the coordinate system, dij (θ, λ) which represents the
Euclidean distance between two points in the

d x x y y
ij i j i j

= −( ) + −( )
2 2

Table 1. Spatial covariance structures
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transformed space. SP(MATERN) and SP(MATHSW)
represent covariance structures in a class defined by
Matérn (see Matérn, 1986; Handcock & Stein, 1993;
Handcock, 1994). The function Kv is the modif ied
Bessel function of the second kind of (real) order v > 0;
the parameter governs the smoothness of the process
(for further detail see SAS 9.3 help and documen-
tation). The five spatial-variance covariance structures
presented above belong to isotropic models, i.e., the
variation properties are the same in both directions x
and y; the other models, as their names show, belong
to anisotropic covariance structures, i.e., the variation
properties can be different in directions x and y.

Estimation and statistical test of varietal effects for
the classical analysis of block designs uses ANOVA,
which is, equating the observed mean squares to the
expected mean squares with the assumption of
independence, normality and homogeneity of the
variances of the residuals. While spatial models
analyses use REML for estimating variance
components. Estimable functions Lβ of linear contrast
of f ixed effects (variety) are estimated based on
Lβ̂ = L(X 'V–1X)–X 'V–1y with V being replaced by a
REML estimate V̂. The variance of Lβ̂ is determined
based on var(Lβ̂) = L(X 'V̂–1X)–L' (Hartley & Rao,
1967; Harville, 1977). Null hypotheses of the form of
H0: Lβ̂ = 0 are tested using the statistic

[3]

In general, the test statistic in [3] is only
approximately t-distributed and its degrees of freedom
must be estimated. The approximate degrees of
freedom in this research were determined using the
Kenward-Roger method (Kenward & Roger, 1997).
This approximation also uses the basic idea of
Satterthwaite (1941). Its extension relative to the
Satterthwaite method of Giesbrecht & Burns (1985)
and Hrong-Tai Fai & Cornelius (1996) is an asymptotic
correction of the estimated standard error of f ixed
effects due to Kackar & Harville (1984) in small and/or
unbalanced data structures.

Statistical tools for model selection and test
of consistency

Two questions in the analysis of practical trials are
whether there is signif icant spatial variability and

whether spatial models should be used (and if so,
which models are most appropriate for data analysis).
To answer these questions, statistical tools include
likelihood-based methods (Oman, 1991; Wolfinger,
1993).The likelihood-ratio test (LRT) allows the
comparison of the model’s fit, provided that one of the
models is hierarchically subordinated to the other or
similarly the smaller model is nested with the larger
one. This is the case if one model can be seen as a
special case of a more general model due to certain
model restrictions. The LRT then results from

[4]

where lnLLg and lnLLs denote the log likelihood of the
general model g and the special models, respectively.
Given certain regularity conditions, the LRT testing
statistic asymptotically follows a χ2 distribution, with
the degrees of freedom (d.f.) resulting from the number
of restrictions that are necessary to transform the gene-
ral model g into the special model (Fahrmeier & Ha-
merle, 1984; Greene, 2003). The general model fit, when
compared to the special model, is considered better if
LRT > χ2 (1-α, d.f.) with a significant level of α. If the
model comparison focuses on the covariance structure
of a constant expectation structure, the likelihoods are
employed via the REML method (Wolfinger, 1993).
This can be used for the first question. In this case, g
corresponds to the model with spatial correlations
among observations, and corresponds to the model
without spatial correlation among observations. The
LRT based on formula [4] can also be used for testing
the difference between the block design ANOVA model
(block effects as random) and the model without
correlations among observations, because the latter is
also a special model variation of the former. Thus, it
can be used for testing the difference between the
spatial models with and without block effects.

As mentioned above, the LRT is only applicable when
comparing two nested models. For model comparisons
that do not require hierarchical models, there are a
number of analytical criteria. These are so-called
«Information Criteria» based on likelihood estimations.
In the current work Akaike’s Information Criterion
(AIC) is used for comparing the covariance structures
for an identical expectation structure using the REML
estimation methods and is generally given by:

[5]

where lnLL is the log-likelihood same as in formula [4]
and q is the number of the parameters of the variance-

AIC LL q= − +2 2ln

LRT LL LL d f
g s

= − −( ) ( )2 2ln ln ~ . .χ

t t d f=
( )

( )L

L

ˆ

ˆvar
~ . .

β

β
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covariance structure. Thus, the formula of the
information criteria is given in such a way that the
model with the smaller value for the AIC is preferred
(Bozdogan, 1987; Burnham & Anderson, 2002). For
un-nested model we prefer to use the AIC but we note
that there are other available information criteria, such
as the Schwarz Bayesian Information Criterion (BIC)
(Schwarz, 1978). Guerin & Stroup (2000) compared
the performance of AIC and BIC on covariance model
selection for repeated measures and stated that AIC
tends to select a more complex model but with a better
control of type I error than the BIC. To assess
consistency (or inconsistency) in the statistical tests
on varietal effects between two models one can use the
test consistency ratio, which is computed as follows:

[6]

Data set and analysis

The data sets used in this study are taken from the
Ethiopian Agricultural Research Institute National
Variety Trials for Bread Wheat (BW00RVTI data) and
Barley Trial (BW01RVII data) of 2006-2008. Some 20
bread wheat (Triticum aestivum L.) varieties were
tested in at six locations (environments) on the first
year (2006/7) and five locations (environments) among
the six of the first used on the second year (2007/8).
Similarly 25 barley (Hordeum vulgare L.) varieties
were tested in five locations (environments) in 2007/8.
All the trials in each location were laid out as a
randomized complete block (RCB) design with four
replicates. There are two approaches to analysing MET
data using mixed model, the so-called one- and two-
stage approaches (Welham et al., 2010). In a one-stage
analysis, individual plot data from all trials are
combined in a single analysis (Cullis et al., 1998). In
a two-stage analysis, variety means are first obtained
from the separate analysis of individual trials (Stage I),
and are then combined in an overall mixed model
analysis (Stage II). The two-stage analysis can be
unweighted (e.g., Patterson & Silvey, 1980) or weighted
to reflect the relative precision of variety means from
each trial (e.g., Smith et al., 2001). A one-stage
approach provides the most accurate predictions of
variety performance, but it can be computationally
difficult to use when the variance models involved are
complex. With the steady improvements in computing
power, single-stage analyses are becoming feasible.

Apart from computational speed, the main advantages
of the two-stage approach are that one can carefully
analyse each trial individually, taking into account any
specifics of the design or field trends.

In this study we used two approaches for analysis;
the first one was a separate individual analysis of each
location of the BW00RVTI data set of wheat and
BW01RVII data set for barley. The second one was a
one-stage analysis, individual plot where data from all
trials (locations)are combined in a single analysis of a
two year BW00RVTI data set of wheat and a one year
BW01RVII data set of six location. Each data set was
separately f itted per location and per year using the
mixed model with fourteen variance-covariance
structures. The mixed model with compound symmetry
(CS) variance-covariance structures was identical to
the ANOVA model. The optimally fitted spatial model
and the ANOVA model are used for further varietal
effect assessment and statistical tests (or inference).
The single-stage analysis was applied to each of the
data sets by f itting one spatial-variance covariance
structure at a time for all location. Putting location as
random group factor on SAS (proc mixed) analysis
gave a different random parameter estimate for each
location. All the analyses ware conducted using
standard SAS software version 9.3. The results from
the two models were compared and used to assess
consistency (or inconsistency) in statistical tests on
varietal effects between the two models, using
consistency ratio defined earlier.

Results and discussion

Model f it statistics from ANOVA and the mixed
model with various spatial variance-covariance
structures and results of possible LRT and AIC for all
models are summarised in Tables 2, 3 and 4. Note that
“—” denotes the failure of a model to converge. This
occurred with the sp(lin) and sp(linlog) structures in
any of the locations, which shows that these models
are not suitable for that trial data (Schabenberger &
Pierce, 2002). The smallest AIC value (bold in
Tables 2, 3 and 4) indicates that for BW00RVTI trial
data set year 1 and 2 support the anisotropic power [spa
(powa)] and exponential [spa (exp)] variance-
covariance structures as the best compared to the
ANOVA model for seven trials (locations) out of
eleven. Similarly for the BW00RVTI trial five different
spatial variance-covariance structures [sp(pow),

text consistency ratio =
number of significaant varietal differences tested simultaneouusly in two models

(number of significamax nnt varietal differences tested under the twwo models considerated)



Spatial variance-covariance structure and local stationary trend 201

sp(expga), sp( mathsw), sp(expga) and sp(powa)]
models were selected as the best compared to the
ANOVA model for the five location BW01RVII trial
data set.

A model comparison between a block effect without
spatial structure (ANOVA) and a model with a block
and spatial effect using the LRT χ2-test for the trials
for the two (BW00RVTI and BW01RVII) data sets
suggested that the selected spatial variance-covariance
structure fitted the data significantly better than the
ANOVA model. However the optimally-fitted spatial

variance-covariance structures were not the same from
one location to the other. The optimally fitting spatial
variance-covariance structure was spatial power
[sp(powa)] for most of the locations. These results
showed that assuming a homogeneous variance-
covariance structure in the ANOVA model is generally
not realistic, and therefore using a linear mixed model
with spatial variance-covariance is necessary to
improve the eff iciency of the data analysis and
accommodation of local stationary trend of MET data.

It appears the year to year effect on variance-

Table 2. Related fitting statistics for the ANOVA model and the linear mixed model with spatial variance-covariance structures
for the first year BW00RVTI data set

Model
Location-1

�
Location-2

�
Location-3

�
Location-4

�
Location-5

�
Location-6

LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2

RCBD 385.1 387.1 — 344.2 346.2 — 398.8 400.8 — 426.4 428.4 — 421.7 423.7 — 377.3 379.3 —
sp(sph) 408.5 412.5 1,0000 360.8 364.8 1,0000 407.5 411.5 1,0000 442.1 446.1 1,0000 441.4 445.4 1,0000 364.4 368.4 0.0003
sp(exp) 385.1 387.1 1,0000 343.7 347.7 0.4869 394.2 398.2 0.0303 426.4 428.4 1,0000 421.7 423.7 1,0000 361.8 365.8 <.0001
sp(gau) 384.9 388.9 0.6537 343.8 347.8 0.5743 394.7 398.7 0.0425 426.3 430.3 0.7460 421.7 423.7 1,0000 365.5 369.5 0.0006
sp(pow) 385.1 389.1 0.8650 343.7 347.7 0.4869 394.2 398.2 0.0303 426.2 430.2 0.6300 421.7 425.7 0.9213 361.8 365.8 <.0001
sp(mat) 385.1 387.1 1,0000 343.7 349.7 0.7806 394.1 400.1 0.0953 426.1 432.1 0.8603 421.6 427.6 0.9648 359.7 365.7 0.0001
sp(EXPA) — — — — — — 386.4 396.4 0.0144 — — — — — — — — —
sp(EXPGA) 385.1 391.1 0.0608 334.5 342.5 0.0179 386.1 394.1 0.0747 426.4 432.4 0.2721 421.7 427.7 0.1855 353,0 361,0 0.0034
sp(GAUGA) 379.3 387.3 0.0339 344.2 352.2 1,0000 398.8 404.8 1,0000 426.4 432.4 0.3575 421.7 427.7 0.2295 363.9 371.9 0.1199
sp(MATHSW) 385.1 389.1 1,0000 343.7 349.7 0.7806 394.1 400.1 0.0953 426.4 430.4 1,0000 421.7 425.7 1,0000 359.7 365.7 0.0001
sp(POWA) 372.7 378.7 0.0020 332.5 338.5 0.0030 386.4 392.4 0.0020 424.8 430.8 0.4545 420.1 426.1 0.4665 349,0 355,0 <.0001
sp(SPHGA) 393.8 399.8 1,0000 — — — — — — — — — 439.2 447.2 1,0000 355.6 363.6 <.0001

—: denotes the failure of a model to converge. Bold values indicate smallest AIC (Akaike’s information criteria). LL: log-likelihood.
Locations 1, 2, 3, 4, 5 and 6 are Kulumsa, Adet, Bekoji, Sinana, Holeta, and DeberZeit (Ethiopia), respectively.

Table 3. Related fitting statistics for the ANOVA model and the linear mixed model with spatial variance-covariance structures
for the second year BW00RVTI data set

Model
Location-1

�
Location-2

�
Location-3

�
Location-4

�
Location-5

LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2

RCBD 370,0 372,0 — 334.2 336.2 — 345.6 347.6 — 395.2 397.2 — 284.1 286.1 —
sp(sph) 382.4 386.4 1,000 351.9 355.9 1,000 366.4 370.4 1,000 394.2 398.2 0.317 303,0 307,0 1,000
sp(exp) 367.1 371.1 0.091 333.5 337.5 0.428 345.6 347.6 1,000 387.3 391.3 0.005 284.1 286.1 1,000
sp(gau) 368.3 372.3 0.195 332.4 336.4 0.189 345.6 347.6 1,000 388.7 392.7 0.011 284.1 286.1 1,000
sp(pow) 367.1 371.1 0.091 333.5 337.5 0.428 345.5 349.5 0.659 387.3 391.3 0.005 284,0 288,0 0.762
sp(mat) 365.8 371.8 0.124 — — — — — — 386.9 392.9 0.016 — — —
sp(EXPA) 366.2 374.2 0.290 322.9 330.9 0.010 343.9 353.9 0.790 384.9 394.9 0.036 — — —
sp(EXPGA) 363.8 371.8 0.339 323.1 331.1 0.003 340.5 348.5 0.108 384.6 392.6 0.232 284.1 290.1 0.234
sp(GAUGA) 370,0 378,0 1,000 325.6 333.6 0.032 344,0 352,0 0.976 395.2 403.2 1,000 284.1 290.1 0.594
sp(MATHSW) 365.8 371.8 0.124 — — — — — — 386.9 392.9 0.016 284.1 288.1 1,000
sp(POWA) 367.9 373.9 0.367 322.7 328.7 0.003 344.1 350.1 0.464 386.3 392.3 0.011 283.6 289.6 0.773
sp(SPHGA) 382.4 390.4 1,000 — — — 356.1 364.1 1,000 391.3 399.3 0.273 — — —

—: denotes the failure of a model to converge. Bold values indicate smallest AIC (Akaike’s information criteria). LL: log-
likelihood.
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covariance of varieties is greatly exhibited in the
BW00RVTI data set. This is shown through the
variance-covariance structures being mostly consistent
for different locations in the same year, but obviously
not consistent between years as shown in Table 2 and 3.
This result is easily understood by realising that within
a year we expect only between location differences,
but between years there could be differences in
environments (years). The failure of some spatial
variance-covariance structures to converge may
indicate that they are not suitable or compatible with

the structure of the current MET data but could work
with other data sets.

To examine the impact of the spatial variance-
covariance structures on estimates on test of varieties,
the number of signif icant (at α = 0.05) varietal
differences by the t-test are given in Table 5. Using the
ANOVA model and mixed model with the optimally-
fitted spatial variance-covariance for each location, we
assessed the consistency between these two models.
The number of significant varietal differences by t-test
is not the same between the ANOVA model and the

Table 4. Related fitting statistics of ANOVA model and linear mixed model with spatial variance-covariance structures for
the one year BW01RVII data set

Model
Location-1

�
Location-2

�
Location-3

�
Location-4

�
Location-5

LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2

RCBD 475.5 477.5 — 454.5 456.5 — 421.6 423.6 — 506.9 508.9 — 524,0 526,0 —
sp(sph) 475.5 477.5 1,0000 454.5 456.5 1,000 427.7 431.7 1,000 506.9 508.9 1,0000 551.3 555.3 1,0000
sp(exp) 468.5 472.5 0.0083 452.3 456.3 0.142 410.9 414.9 0.001 503.7 507.7 0.0712 524,0 526,0 1,0000
sp(gau) 471,0 475,0 0.0341 452.4 456.4 0.145 414.1 418.1 0.006 504.8 508.8 0.1409 523.9 527.9 0.6890
sp(pow) 468.5 472.5 0.0083 452.3 456.3 0.142 410.9 414.9 0.001 503.7 507.7 0.0712 524,0 528,0 0.8947
sp(mat) — — — 452,0 458,0 0.283 407.7 413.7 0.001 502.9 508.9 0.1344 524,0 526,0 1,0000
sp(EXPA) — — — 452.4 462.4 0.711 — — — — — — — — —
sp(EXPGA) 466.7 474.7 0.3470 447.7 455.7 0.070 421.6 429.6 1,000 493.2 501.2 0.0141 524,0 530,0 0.0323
sp(GAUGA) 469,0 477,0 0.3427 449.6 457.6 0.157 410.1 418.1 0.275 498.6 506.6 0.0619 529.9 530.5 0.1424
sp(MATHSW) — — — 452,0 458,0 0.283 407.7 413.7 0.001 502.9 508.9 0.1344 524,0 528,0 1,0000
sp(POWA) 467.4 473.4 0.0179 458.8 459.2 0.435 413.7 419.7 0.020 497.1 503.1 0.0071 519.2 525.2 0.0873
sp(SPHGA) 475.5 481.5 1,0000 458.7 466.7 1,000 420.4 428.4 0.742 495,0 503,0 0.0077 — — —

—: denotes the failure of a model to converge. Bold values indicate smallest AIC (Akaike’s information criteria). LL: log-
likelihood.

Table 5. The number of significant and highly significant variety contrasts of t-test for trials of the BW00RVTI and BW01RVII
data sets and the consistency ratio test between the ANOVA model and the spatial linear mixed model with optimally fitting
spatial variance-covariance structure (SLMM)

Data set BW00RVTI Data set BW01RVII

Year-1
�

Year-2 Year-1

��������������
Consistency

��������������
Consistency

ANOVA SLMM
Consistency

ANOVA SLMM
No. Ratio (%)

ANOVA SLMM
No. Ratio (%) No. Ratio (%)

Location-1 60 78,0 53,00 67.94 44,00 40,00 37,00 84.09 Location-1 46,0 65,0 43 66.15
Location-2 53 50,0 37,00 69.81 33,00 35,00 26,00 74.29 Location-2 67,0 79,0 60 75.95
Location-3 10 18,0 6,00 33.33 * * Location-3 97,0 157,0 94 59.87
Location-4 * * 45,00 50,00 41,00 82,00 Location-4 47,0 36,0 22 46.80
Location-5 * * * * Location-5 36,0 45,0 26 57.78
Location-6 45 20,0 15,00 33.33
Average 42 41.5 22.75 51.11 40.67 41.66 34.67 80.13 Average 58.6 76.4 49 61.31

*: the optimally fitting model is ANOVA.
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mixed model with optimally f itted spatial variance-
covariance structures. The consistency ratio test
between the two models falls in the range of 33-84%.
From the average of all trials (locations), the test
consistency ratio of two models is approximately 64%,
which means that approximately 36% of the varietal
differences being tested as signif icant or very
significant in one model cannot be tested as significant
or very significant by the other model.

Varietal ranking

Apart from contrasts between new varieties, the
ranking of varietal productivity and a comparison of
new varieties with standard variety is also important
for variety trials. We consider the trial from the five
locations of BW01RVII data to compare variety mean
ranking between the ANOVA model and the optimal
spatial variance-covariance model. A trial corresponds
to a single experiment at a single location. Table 6
shows the ranking for the first eight entries from the
optimal spatial variance-covariance mixed model
compared to the ranking from the ANOVA model
across the locations. The model with spatial structure
is relatively more consistent in its top eight ranking
than the ANOVA model. The ranking are different for
different locations and differ between the spatially
structured model and ANOVA. A rank difference of
genotype between the locations is showing the presen-
ces of genotype by environment interaction. This also
indicates the advantage of single stage spatial models on
the handling of the spatial trend and variation of the trials.

The simple homogenous variance-covariance
structures implied by ANOVA models, which assume

that the interaction effects of varieties are independent,
is mostly not appropriate for data analyses of MET.
The fact that the goodness of f it of one variance-
covariance structure was different for various trial data
sets, and that none fitted all trial data sets optimally
throughout, indicates that the heterogeneous characte-
ristics of variance-covariance are not identical across
the trials. Therefore, the arbitrary use of a homo-
geneous variance-covariance structure (e.g. ANOVA
model) to analyse the MET cannot ensure a high degree
of accuracy. In this study, the ANOVA model, as a
special case form of mixed models, showed obvious
inconsistency in estimates and tests of varietal effects
compared to the linear mixed model with the
optimally-fitted spatial variance-covariance structures.

Both effective experimental designs and spatial
analyses can have an important role in improving the
reliability and precision of experiment results. The
importance of spatial variability to be expected from
a logical and subjective-related perspective is confir-
med in a variety of experiments. As presented in much
of the literature, spatial analysis may lead to higher
efficiency with regard to standard error of estimation
of fixed effects than a non-spatial analysis, provided
that spatial variability is present. Based on this work,
the commonly used ANOVA mixed model is not an
appropriate model for data analysis of MET trials. The
spatial variance-covariance models are more useful in
a practical sense, given that they can describe actual
existing variance-covariance characteristics more
accurately than the ANOVA model. Of course, with
one-stage analyses, the proposed spatial variance-
covariance models are expected to yield identical mean
yields for balanced data, and differences are expected
only for unbalanced data. Even so, a selection of

Table 6. The first eight genotype ranking comparison between the ANOVA model and the optimally fitting spatial variance-
covariance structure (SLMM) of five trials of data set BW01RVII location by location and a single-stage analysis

Rank
Location-1

�
Location-2

�
Location-3

�
Location-4

�
Location-5

�
All

ANOVA SLMM ANOVA SLMM ANOVA SLMM ANOVA SLMM ANOVA SLMM SLMM

1 G23 G23 G21 G23 G23 G23 G23 G23 G23 G23 G23
2 G13 G13 G23 G21 G40 G40 G11 G20 G20 G20 G21
3 G50 G21 G30 G30 G17 G17 G19 G10 G40 G10 G40
4 G17 G30 G17 G20 G20 G21 G15 G50 G80 G19 G13
5 G21 G17 G70 G17 G21 G10 G20 G19 G13 G10 G20
6 G40 G40 G11 G13 G10 G20 G50 G80 G14 G40 G17
7 G30 G50 G90 G16 G80 G80 G80 G15 G10 G30 G80
8 G19 G15 G13 G90 G60 G15 G13 G11 G19 G13 G30
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variance-covariance structures based on the mixed
model framework is important since the standard error
of varietal effect estimates (i.e. the accuracy of varietal
effect estimates) is different under the various models,
and unbalanced data is common in MET (Möhring &
Piepho, 2009). The advantage and validity of using
spatial variance-covariance structure depends on the
present spatial variability. Most of the investigated
spatial models showed better data fitting and smaller
standard error for variety contrasts than the ANOVA
model.

The main purposes of the present paper was to show
the importance of variance-covariance structure
selection and to illustrate that the classical ANOVA
model is inferior to more elaborate mixed models in
the analysis of MET data. This does not imply that the
models considered in this paper are appropriate for any
situation. For example, in some locations (trials) the
ANOVA model still optimally fitted the data better than
the spatial models.
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