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Resumen 

 

En este artículo, el método modificado de perturbación homotópica con distribución de no 

linealidades (MNDHPM) es utilizado para encontrar soluciones en series de potencias de 

ecuaciones diferenciales ordinarias, tanto lineales como no lineales. Se verá que el método es 

particularmente relevante en algunos casos de ecuaciones con coeficientes no polinomiales e 

inhomogéneas con términos no homogéneos no polinomiales. 

Palabras clave: ecuaciones diferenciales, soluciones en series de potencias, Método de 

perturbación homotópica, Método de perturbación homotópica con distribución de no 

linealidades, Métodos aproximados 
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Abstract 

 

In this article, modified non-linearities distribution homotopy perturbation method (MNDHPM) 

is used in order to find power series solutions to ordinary differential equations with initial 

conditions, both linear and nonlinear. We will see that the method is particularly relevant in some 

cases of equations with non-polynomial coefficients and inhomogeneous non-polynomial terms. 

 

Keywords: differential equations, power series solutions, Homotopy perturbation method, 

Homotopy perturbation method with no linearities distributions, approximate methods 
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1. - Introduction 

As widely known, the importance of research on nonlinear differential equations is that many 

phenomena, practical or theoretical, are of nonlinear nature. In recent years, several methods 

focused to find approximate solutions to nonlinear differential equations, as an alternative to 

classical methods, have been reported, such those based on: variational approaches (Kazemnia et 

al. 2008; Noorzad et al. 2008), tanh method (Evans and Raslan 2005), exp-function (Mahmoudi 

et al. 2008), Adomian’s decomposition method (Kooch y Abadyan 2011; Kooch and Abadyan 

2012; Vanani et al. 2011; Chowdhury 2011), homotopy perturbation method (He 1998; 

1999;2000;2006;2008, Ganji et al; 2008;2009, Sharma and Methi 2011, Vazquez-Leal et al. 

2012a;  2012b, Filobello-Nino et al. 2012a;  2012b, Khan and Wu 2011, Mirgolbabaei y Ganji 

2009, Tolou et al. 2008, Aminikhah 2011, Biazar y Aminikhan 2009a, Biazar y Ghazvini 2009b, 

Chowdhury 2011) homotopy analysis method (Patel et al. 2012), Boubaker polynomials 

expansion scheme (Agida y Kumar, 2010; Ghanouchi et al. 2008), variational iteration method 

(Saravi et al. 2013), perturbation method (Filobello-Nino et al. 2012c) among many others.  

The standard Homotopy Perturbation Method (HPM), proposed by Ji Huan He (He 1998), is a 

powerful tool for approaching some common cases of nonlinear problems, although it has been 

used for the solution of linear equations (He 1999; 2006; 2008, Ganji et al. 2008, Sharma y Methi 

2011, Vazquez-Leal et al. 2012b).  

On the other hand, solutions of linear differential equations with variable coefficients are 

generally expressed in terms of power series, because of the difficulty of finding exact solutions. 

In particular, the solution of an initial value problem, using the known methods of series (section 

2), requires initially finding the equation general solution and then obtain the required particular 

solution using the previously given initial conditions, which makes the method usually long.  

This study proposes a variation of the homotopy perturbation method (HPM), by using 

nonlinearities distributions, which allow to find power series solutions for ordinary differential 

equations with initial conditions, both linear and nonlinear. 

The paper is organized as follows. In Section 2, we give a brief review of Linear Differential 

Equations with Variable Coefficients. Section 3, presents standard homotopy perturbation 

method (HPM). In Section 4, we provide the basic concept of nonlinearities distribution 

homotopy perturbation method (NDHPM). Section 5, presents a modification of NDHPM; the 
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MNDHPM method, which emphasises the application of nonlinearities distributions, to find 

powers series solutions for linear and nonlinear ordinary differential equations, Section 6, 

provides the application of MNDHPM to find power series solutions to differential equations. 

Section 7, discuss the main results obtained. Finally, a brief conclusion is given in Section 8. 

 

2. - Linear Differential Equations with Variable Coefficients   

As reported in literature, linear differential equations with constant coefficients have exact 

analytical solutions. On the other hand, solution methods for linear differential equations of 

variable coefficients are essentially based on infinite series expansions. 

Consider a differential equation written in the form:   

( ) ( ) ( ) ( ) ( ) 0y x p x y x q x y x                                                                                  (1) 

If functions ( )p x and ( )q x are analytic at
0x x , then 

0x x  is an ordinary point of the differential 

equation, otherwise the point 
0x x  is considered a singular point (Arfken y Weber 1995; Zill 

2012). This allows us to propose two methods of solution for (1). 

Power Series. The first and simplest method is when solutions for (1) are expressed in the 

neighborhood of an ordinary point 
0x  (Arfken y Weber 1995; Zill 2012). In this case, all the 

solutions are searched in the power series form  

0
0

( )n

n
n

y c x x




  ,                                                                                                  (2) 

where the c
n

are unknown coefficients, which are determined by substituting (2) into the 

differential equation to be solved.  

Frobenius Series. Singular points are classified into regular and irregular (Arfken y Weber 1995; 

Zill 2012). In the case of regular singular points, the Frobenius method allow us to find power 

series solutions in the form 

0
0

( )n r

n
n

y c x x






  ,                                                                                               (3)  

where r is a parameter to be determined together with coefficients c
n

. 

According to linear differential equations theory, the general solution of (1) is expressed in terms 

of a superposition of two linearly independent series of the form (2) for the case of ordinary 

points, and of the form (3), for the simpler case, of regular singular points. 
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3. – Standard Homotopy Perturbation Method (HPM) 

The homotopy perturbation method can be considered as combination of the classical 

perturbation technique and the homotopy (whose origin is in the topology), but not restricted to 

the limitations of traditional perturbation methods. For example, HPM method does not require 

neither small parameter or linearization, and only requires few iterations to obtain accurate 

solutions (He 1998;1999).  

To figure out how HPM method works, consider a general nonlinear equation in the form  

( ) ( ) 0,A u f r                   r ,                                                                            (4) 

with the boundary conditions 

( , / ) 0,B u u n      r ,                                                                                          (5) 

where A  is a general differential operator, B  is a boundary operator, ( )f r a known analytical 

function and  is the boundary domain for . 

A  can be divided in two parts: L  and N , where L  is linear and N nonlinear; from this last 

statement, (4) can be rewritten as  

( ) ( ) ( ) 0L u N u f r   ,                                                                                            (6) 

Generally, a homotopy can be constructed in the form (He 1998;1999).   

0( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0H v p p L v L u p L v N v f r       , [0,1],p  r .             (7) 

or 

 0 0( , ) ( ) ( ) [ ( ) ( ) ( )] 0H v p L v L u p L u N v f r      ,      [0,1]p ,  r .                (8) 

where p is a homotopy parameter, whose values are in the closed interval between 0 and 1, 0u  is 

the first approximation for the solution of (4) that satisfies the boundary conditions. 

Assuming that solution for (7) or (8) can be written as a power series of p . 

 2

0 1 1 2 ...v v v p v p                                                                                                  (9) 

Substituting (9) into (8) and matching identical powers of p terms, there can be found values for 

the sequence 0 ,u 1,u 2 ,u … 

When 1p  , the approximate solution for (4) is given in the form  

0 1 2 3 ...v v v v v                                                                                                    (10) 
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4. – Basic Idea of NDHPM  

A recent report (Vazquez Leal et al. 2012a) introduces a modified version of homotopy 

perturbation method, which eases the solutions searching process for (4) and reduces the 

complexity of solving differential equations in terms of power series. 

As first step, an homotopy of the form (Vazquez Leal et al. 2012a) is introduced 

0( , ) (1 )[ ( ) ( )] [ ( ) ( , ) ( , )] 0H v p p L v L u p L v N v p f r p       .                                (11) 

It can be noticed that the homotopy function (11) is essentially the same as (7), except for the non 

linear operator N and the non homogeneous function f, which contain embedded the homotopy 

parameter p. The introduction of that parameter within the differential equation is a strategy to 

redistribute the nonlinearities between the successive iterations of the HPM method, and thus 

increase the probabilities of finding the sought solution. The standard procedure for the 

homotopy perturbation method is used in the rest of the method (for it, we are especially 

interested in the case where the functions N and f, can be expressed and distributed in a power 

series of p).    

As reported in (He 1998, Vazquez Leal et al. 2012a) it is proposed 

2

0 1 2 ...v v v p v p                                                                                                  (12) 

when 1p  , it is expected to get an approximate solution for (4) in the form  

0 1 2 3 ...v v v v v                                                                                                    (13)  

as the cases study reported in (He 1998; 1999;2000;2006;2008, Ganji et al; 2008;2009, Sharma 

and Methi 2011, Vazquez-Leal et al. 2012a;  2012b, Filobello-Nino et al. 2012a;  2012b, Khan 

and Wu 2011, Mirgolbabaei y Ganji 2009, Tolou et al. 2008, Aminikhah 2011, Biazar y 

Aminikhan 2009a, Biazar y Ghazvini 2009b, Chowdhury 2011). 

 

5.- Modified Non-Linearities Distribution Homotopy Perturbation Method (MNDHPM). 

This modification for NDHPM, is based on the freedom to divide a differential operator A  in two 

part L and N , where L  is linear and N could contain nonlinear and linear parts. 

 

In order to obtain a modification of NDHPM, that let us to obtain, power series solutions, for 

both, linear and nonlinear differential equations, are considered equations of the form  

( ) ( ) 0,A u f r                   r ,                                                                               (14) 
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for ( )( ) ( )m nA u r u N u  ,                                                                                           (15) 

so that, (14) can be written as 

( ) ( ) ( ) 0m nr u N u f r    ,                                                                 ,r                 (16) 

which have as boundary condition    

,0)/,(  uuB          ,r                    (17) 

where   is a constant, n  is the order of the differential equation, m  is an integer number 0m  

(the most of our cases study, will correspond to 0m ), ( )N u  is a general operator, which can 

be linear or nonlinear, ( )f r a known analytical function, which is chosen in this study to be, 

expressed in terms of exponential functions, although would be expected that it works also, for 

other functions which can be expressed in terms of power series of p (see below), B is a boundary 

operator,  is the boundary domain for  , and  /u , denotes differentiation along the normal, 

drawn outwards from .  

An homotopy of the following form is introduced  

( ) ( ) ( )

0( , ) (1 )[ ] [ ( , ) ( , )] 0m n m n m nH v p p r r p r N v p f r p           ,                          (18) 

where N and the non homogeneous function f, contain embedded the homotopy parameter p.
 
On 

the other hand, 0 is the first approximation for the solution of (14) that satisfies the boundary 

conditions.  

In this study we will deal with the solution of differential equations of first and second order with 

initial conditions, thus it is possible to systematize the choice of the initial approximation, as 

follows (for simplicity, we will assume as r = 0, the initial value for the independent variable r). 

For equations of first order, with initial condition (0)y a , we choose 0( ) ,v r r a 
 
as the first 

approximation for the solution that satisfies the initial conditions. On the other hand, second 

order differential equations, require of two initial conditions, say (0)y a , and (0)y b  ; in this 

case, an adequate initial function satisfying these conditions is given by 0( ) .v r br a   For higher 

order equations, generalization occurs as is expected. For example, a third order equation requires 

of three conditions, namely  (0)y a , (0)y b  , and (0)y c  . In this case we would choose 

2

0 ( ) ,
2

cr
v r br a  and so on. 
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Note that, despite of the specific form of 
( )m nL r u  is known, there remains some arbitrariness 

in the choice of N , and even in the same .L  What is more, in order to the method to work,  in 

the limit 1p  , the sum ( ) ( , )m nr N p    must equal to ( )A  (see (15)), because in this limit, 

the homotopy formulation (18) has to recover the original equation (16). 

Again we propose that solution for (18) can be written as a power series of p  (He 1998) 

2

0 1 1 2 ...v v v p v p                                                                                                  (19) 

When 1p  , it is expected to get an approximate solution for (14) in the form (He 1998; 

1999;2000;2006;2008, Ganji et al; 2008;2009, Sharma and Methi 2011, Vazquez-Leal et al. 

2012a;  2012b, Filobello-Nino et al. 2012a;  2012b) 

0 1 2 3 ...v v v v v                                                                                                    (20)  

Most of the examples that will be discussed are linear differential equations, because as it was 

mentioned, for these cases exist classical systematic methods of solution (see section 2) and it 

allow us compare and verify the performance of MNDHPM method.  

6. - Application of MNDHPM to find power series solutions to differential equations. 

The following examples show that MNDHPM method is particularly relevant for the case of non 

homogeneous differential equations with non polynomial coefficients, and non polynomial non 

homogeneous terms, regardless if the equation is linear or nonlinear. At the same time, we will 

emphasize the joining of HPM methods in the search for power series solutions. 

Example 1. This example depicts the solution of an equation with polynomial coefficients,  

 (1 ) 0y x y    ,               (0) 1y  , (0) 1y  .                                                        (21) 

 by using Standard HPM, MNDHPM, and power series method (Zill 2012). 

Power Series.  

Since the point 0
0

x  , is an ordinary point of (21), a solution of the form 

   
0

n

n
n

xy c




  ,                                                                                                            (22) 

will be sought. Substituting (22) into (21), we obtain 

2 0 / 2c c ,                                         

and establishing a recurrence relation 

1
2 ,

( 1)( 2)

k k
k

c c
c

k k







 
                                                                                                 (23) 
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by iterating (23), we obtain the coefficients 

1 0c  , 2 0 / 2c c , 3 0 / 6c c ,  4 0 / 24c c , 5 0 / 30c c ,..  

whose values are substituted  into (22), obtaining a solution of the form 

2 3 4 5

1 0

1 1 1 1
( ) 1 ..

2 6 24 30
y x c x x x x

 
      

 
.                                                           (24)  

In the same way, iterating a second time, yields 

0 0c  , 2 0c   3 1 / 6c c ,  4 1 /12c c , 5 1 /120c c ,..                                                                         

substituting these coefficients into (22) we obtain another solution  

3 4 5

2 1

1 1 1
( ) ..

6 12 120
y x c x x x x

 
     

 
.                                                                 (25)    

Note that for obtaining the n-th approximation, we need to calculate the n-th coefficient nc , of 

series development (22).                               

From (24) and (25), the general solution of (21), keeping to the fifth power of x, is expressed as 

2 3 4 5 3 4 51 1 1 1 1 1 1
( ) 1 .. ..

2 6 24 30 6 12 120
y x A x x x x B x x x x

   
             

   
,       (26) 

after applying the initial conditions (0) 1y  and (0) 1y   to (26), we obtain the required solution 

2 3 4 51 1 1 1
( ) 1 ..

2 3 8 24
y x x x x x x       .                                                              (27) 

the process described is long for the most of practical applications. 

 

Standard HPM 

To find a power series solution by standard HPM method, we construct the following homotopy 

(see (7) and (8)). 

0
(1 )( ) ( (1 ) ) 0p y y p y x y                                                                              (28)                                                               

or 

0 0
( (1 ) ) 0y y p y x y       ,                                                                                  (29) 

where we have identified terms: 

( )L y x ,                                                                                                             (30) 

(1 ) ( )N x y x   .                                                                                                  (31) 

Substituting (9) into (29) and equating terms with identical powers of p, we obtain  
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0 :p    0 0v y  ,                                                0 (0) 0v  ,      0 (0) 1v                        (32) 

1 :p    1 0 0(1 ) 0v v x v     ,                           1(0) 0v  ,       1(0) 0v  ,                     (33) 

2 :p    2 1(1 ) 0v x v   ,                                  2(0) 0v  ,     2(0) 0v  ,                      (34) 

3 :p   3 2(1 ) 0v x v   ,                                    3(0) 0v  ,     3(0) 0v  ,                     (35)  

… 

To solve the above equations, we choose  

0( ) 1v x x  ,                                                                                                          (36) 

as the first approximation for the solution of (21) that satisfies the initial conditions.  

Solving the above equations, we obtain the following results 

0 :p   0( ) 1v x x  ,                                                                                                   (37)    

1 :p   
2 3 4

1( )
2 3 12

x x x
v x    ,                                                                                        (38) 

2 :p
4 5 6 7

2 ( )
24 24 72 504

x x x x
v x     ,                                                                               (39) 

… 

and so on.  

Therefore, an approximate solution of (21) is obtained by substituting (37), (38), and (39) into 

(10), to obtain  

2 3 4 51 1 1 1
( ) 1 ..

2 3 8 24
y x x x x x x       .                                                               (40) 

As it can be seen, standard HPM requires only the second order approximation to generate up to 

the fifth power of x, with much less effort than the method of power series. In fact, it only 

requires to solve elementary integrals. 

 

MNDHPM Method. 

Following (11), we embed the parameter p as follows  

0
(1 )( ) ( (1 ) ) 0p y y p y p x y                                                                             (41) 

or 

0 0
( (1 ) ) 0y y p y p x y       ,                                                                                 (42) 

where, L and N are given by (30) and (31). 
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Substituting (19) into (42), and arranging coefficients with “p” powers we construct the following 

equations 

0 :p    0 0v y  ,                                                0 (0) 0v  ,      0 (0) 1v                        (43) 

1 :p    1 0 0v v   ,                                           1(0) 0v  ,       1(0) 0v  ,                     (44) 

2 :p    2 0(1 ) 0v x v   ,                                  2(0) 0v  ,     2(0) 0v  ,                      (45) 

3 :p   3 1(1 ) 0v x v   ,                                    3(0) 0v  ,     3(0) 0v  ,                      (46)  

4 :p   4 2(1 ) 0v x v   ,                                    4 (0) 0v  ,     4 (0) 0v  ,                     (47)  

… 

To solve the above equations, we choose  

0( ) 1v x x  ,                                                                                                            (48) 

as the first approximation for the solution of (21) that satisfies the initial conditions.  

Solving (43), (44), (45), (46) and (47) we obtain  

0 :p   0( ) 1v x x  ,                                                                                                    (49)    

1 :p   1( ) 0v x  ,                                                                                                          (50) 

2 :p
2 3 4

2 ( )
2 3 12

x x x
v x    ,                                                                                          (51) 

3 :p 3( ) 0v x   ,                                                                                                           (52) 

4 :p
4 5 6 7

2 ( )
24 24 72 504

x x x x
v x     ,                                                                                 (53) 

… 

and so on.  

Therefore, an approximate solution of (21) is obtained by substituting (49), (50), (51), (52) and 

(53) into (20), obtaining 

2 3 4 51 1 1 1
( ) 1 ..

2 3 8 24
y x x x x x x       .                                                               (27)  

As it can be seen, the embedding of p makes that terms of some orders of the approximation 

become zero, and are required iterations up to fourth order to achieve the fifth power of x. 

Although MNDHPM is simpler than the series methods in the search of series solutions, in the 
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case of differential equations with polynomial coefficients is not better than standard HPM 

method.  

 

Example 2.  The following example compares in detail the methods HPM and MNDHPM.  

exp( )y y x   ,              (0) 0y                                                                             (54)  

By using an integrating factor (Zill 2012), equation (54) has the following exact analytical 

solution. 

1 2(exp( ) exp( ))y x x                                                                                          (55) 

 

Standard HPM 

To employ the standard HPM method, we construct the homotopy (see (7) and (8))  

0
(1 )( ) ( exp( )) 0p y y p y y x                                                                            (56)                                                               

or 

0 0
( exp( )) 0y y p y y x       ,                                                                               (57) 

where we have identified terms: 

( )L y x ,                                                                                                               (58) 

( ) exp( )N y x x  .                                                                                                  (59) 

  

substituting (9) into (57), and equating terms with identical powers of p, we obtain  

0 :p    0 0v y  ,                                                           0 (0) 0v  ,                               (60) 

1 :p   1 0 0 exp( ) 0v v v x     ,                                    1(0) 0v  ,                               (61) 

2 :p   2 1 0v v   ,                                                       2(0) 0v  ,                               (62) 

3 :p   3 2 0v v   ,                                                        3(0) 0v  ,                              (63)  

4 :p   4 3 0v v   ,                                                       4 (0) 0v  ,                               (64)  

… 

To solve the above equations, we choose  

0 ( )v x x ,                                                                                                                 (65) 

as the first approximation for the solution of (54) that satisfies the initial conditions.  

Moreover, to obtain a solution in power series, we substitute  
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2 3

exp( ) 1 ..
2 6

x x
x x                                                                                           (66)  

into (61), so that the solution of equations (60)-(64) is expressed as  

0 :p   0 ( )v x x ,                                                                                                      (67)    

1 :p   
3 4 5 6

1( ) ...
6 24 120 720

x x x x
v x      ,                                                                     (68) 

2 :p  
4 5 6 7

2 ( ) ...
24 120 720 5040

x x x x
v x       ,                                                               (69) 

3 :p
5 6 7 8

3( ) ...
120 720 5040 40320

x x x x
v x      ,                                                             (70) 

4 :p
6 7 8 9

4 ( ) ...
720 5040 40320 362880

x x x x
v x       ,                                                    (71) 

…  

Therefore, an approximate solution for (54) is obtained by substituting (67)-(71) into (10), such 

that 

 3 4 5 6 4 5 6 7 5 6 7 8 6 7 8 9

( ) ... ... ... ... ..
6 24 120 720 24 120 720 5040 120 720 5040 40320 720 5040 40320 362880

x x x x x x x x x x x x x x x x
y x x                       

       
       
       
       

                                                   

(72) 

after cancelling terms, (72) is reduced to  

3 5

( ) ...
6 120

x x
y x x     

1
exp( ) exp( )

2
x x   ,                                                          (73) 

which is the solution shown in (55). 

 

MNDHPM Method. 

Following (18), we embed the parameter p as follows  

0
(1 )( ) ( exp( )) 0p y y p y y px                                                                              (74)   

or 

0 0
( exp( )) 0y y p y y px       ,                                                                                 (75)  

where, L and N  are given by (58) and (59). 

 Substituting (19) and  
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2 2 3 3

exp( ) 1 ..
2 6

p x p x
px px                                                                                  (76)     

into (75), and equating terms having identical powers of p we obtain  

0 :p    0 0v y  ,                                                           0 (0) 0v  ,                                   (77) 

1 :p   1 0 0 1 0v v v     ,                                             1(0) 0v  ,                                   (78) 

2 :p   2 1 0v v x    ,                                                   2(0) 0v  ,                                   (79) 

3 :p   
2

3 2 0
2

x
v v    ,                                                 3(0) 0v  ,                                 (80)  

4 :p
3

4 3 0
6

x
v v    ,                                                   4 (0) 0v  ,                                 (81)  

… 

To solve the above equations, we choose  

0 ( )v x x ,                                                                                                                   (82) 

as the first approximation for the solution of (54) that satisfies the initial conditions.  

Solving the above equations we obtain  

0 :p   0 ( )v x x ,                                                                                                          (83)    

1 :p   
2

1( )
2

x
v x   ,                                                                                                      (84) 

2 :p
3 2

2 ( )
6 2

x x
v x   ,                                                                                                  (85) 

3 :p   
4

3( )
24

x
v x   ,                                                                                                     (86) 

4 :p   
5 4

4 ( )
120 24

x x
v x   ,                                                                                              (87) 

…  

An approximate solution of (54) is obtained by substituting (83)-(87) into (20), so that 

3 5

( ) ...
6 120

x x
y x x     

1
exp( ) exp( )

2
x x   ,                                                        (55). 

As can be seen, even in the case of simple equations such as (54), the presence of non polynomial 

terms, leads to the standard HPM method to introduce infinite series in the calculation of the 

various orders of approximation, this complicates the process of finding solutions. By contrast, 
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such as it was shown with the above example, we will see that the MNDHPM eliminates these 

difficulties, at least for the case of equations with cosine variable coefficients and exponential 

inhomogeneous terms, although as it was mentioned, would be expected that it works also, for 

other functions ( , )N p  and ( , )f r p , which can be expressed in terms of power series of p, and 

provides solutions of equations as (54), in a simple way, just by solving elementary integrals.   

The following examples are resolved by using the MNDHPM method and then are compared 

with series method. 

 

Example 3.  This example, which presents a second order equation with non-polynomial variable 

coefficients, compares in detail HPM and MNDHPM, with power series method (Zill 2012). 

cos( ) 0y x y   ,          (0) 1y  , (0) 1y  .                                                                 (88) 

 

Power Series. Since the point 0
0

x  , is an ordinary point of (88), we seek a solution of the form 

0

ny c x
n

n

 


,                                                                                                             (89) 

since   

2 4 6

cos( ) 1 ...
2 24 720

x x x
x      ,                                                                                       (90)                                                       

substituting (89) and (90) into (88), we obtain 

 
2 4 6

2

2 0

cos( ) ( 1) 1 ... 0
2 24 720

n n

n n
n n

x x x
y x y n n c x c x

 


 

 
 

          
 

,      

after performing multiplications, and grouping terms having identical powers of p, we obtain  

2 3

2 0 3 1 4 2 0 5 3 1

1 1
2 (6 ) 12 20 ... 0

2 2
c c c c x c c c x c c c x

   
             

   
,  

from this equation, the following system of equations is deduced  

2 0
2 0c c  ,  

3 1
6 0c c  ,  

4 2 0

1
12 0

2
c c c   ,  

 
5 3 1

1
20 0

2
c c c   ,  
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… 

after solving the above equations for the coefficients, we obtain the general solution as follows 

2 4 3 51 1 1 1
( ) 1 .. ..

2 12 6 30
y x A x x B x x x

   
          

   
,                                        (91) 

applying the initial conditions (0) 1y  and (0) 1y  , to (91), we obtain the required solution 

2 3 4 51 1 1 1
( ) 1 ..

2 6 12 30
y x x x x x x       .                                                          (92) 

MNDHPM Method 

To find a power series solution by MNDHPM method, we construct the following homotopy (see 

(18)). 

0
(1 )( ) ( cos( ) ) 0p y y p y px y                                                                          (93)                                                               

or 

0 0
( cos( ) ) 0y y p y px y      ,                                                                                (94)     

in homotopy (93) we have identified terms as follows: 

( )L y x ,                                                                                                             (95) 

( )cos( )N y x x .                                                                                                    (96) 

  

substituting (19) and  

2 2 4 4 6 6

cos( ) 1 ..
2 24 720

p x p x p x
px                                                                             (97)     

into (94) and equating terms having identical powers of p we obtain  

0 :p    0 0v y  ,                                                0 (0) 1v  ,      0 (0) 1v  ,                      (98) 

1 :p    1 0 0 0v v v    ,                                    1(0) 0v  ,       1(0) 0v  ,                     (99) 

2 :p    2 1 0v v  ,                                            2(0) 0v  ,     2(0) 0v  ,                     (100) 

3 :p   
2

3 2 0 0
2

x
v v v   ,                                  3(0) 0v  ,     3(0) 0v  ,                     (101)  

… 

Let us select  

0( ) 1v x x  ,                                                                                                           (102) 

as an approximated solution of (88) that satisfies the initial conditions.  
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Solving the above equations we obtain the following results 

0 :p   0( ) 1v x x  ,                                                                                                     (103)    

1 :p   
2 3

1( )
2 6

x x
v x    ,                                                                                              (104) 

2 :p  
4 5

2 ( )
24 120

x x
v x   ,                                                                                               (105) 

3 :p   
4 5 6 7

3( )
24 40 720 5040

x x x x
v x     ,                                                                          (106) 

… 

An approximate solution for (88) can be obtained, by substituting (103)-(106) into (20), such that 

we obtain again 

2 3 4 51 1 1 1
( ) 1 ..

2 6 12 30
y x x x x x x       .                                                               (92) 

We see that MNDHPM method requires only the third order approximation to generate up to the 

fifth power of x, with much less effort than the method of power series. As in the previous 

examples, it only requires solving elementary integrals.  

 

Example 4. - Consider the following linear second order ordinary differential equation with no 

polynomial variable coefficients, which approximately describes the interaction of two nucleons 

(Arfken y Weber 1995). 

 exp( ) 0xy xE A x y      ,                        ( A , E constants)                              (107) 

with initial conditions (0) 0y  , (0)y a  . 

The above equation is the Schrödinger wave equation (Arfken y Weber 1995) for a meson 

potential exp( ) /V A x x  , where A is a constant. 

 

MNDHPM Method 

To find a power series solution by HPM method with nonlinearities distribution, we construct a 

homotopy in the form  

0
(1 )( ) ( exp( )) 0p xy xy p xy yE x A y px           ,                                             (108) 

in the above homotopy we have identified the following terms: 

( )L xy x ,                                                                                                           (109) 
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 exp( ) ( )N xE A x y x    .                                                                                  (110) 

Substituting (19) and the power series expansion 

2 2 3 3

exp( ) 1 ..
2 6

p x p x
px px                                                                             (111) 

 into (108), and equating the coefficients of terms with similar powers of  p, we get 

0 :p    0 0v y  ,                                                 0(0) 0v  ,      0(0)v a  ,                  (112) 

1 :p   1 0 0 0 0xv xv E xv A v       ,                     1(0) 0v  ,      1(0) 0v  ,                    (113) 

2 :p    2 1 0 1 0xv E xv A xv A v       ,                  2(0) 0v  ,     2(0) 0v  ,                   (114) 

3 :p   
2

3 2 2 1 0 0
2

A x
xv E xv A v A xv v


        ,     3(0) 0v  ,     3(0) 0v  ,                    (115)  

…  

Let us take 

0( )v x ax ,                                                                                                             (116) 

as an initial approximation for the solution of (107) that satisfies the initial conditions.  

After solving the equations (112)-(115), we obtain  

0 :p   0( )v x ax ,                                                                                                    (117)    

1 :p   
3 2

1( )
6 2

E ax A ax
v x

 
  ,                                                                                (118) 

2 :p   
2 2

3 4 5

2 ( )
12 6 18 120

A a A a E A a E a
v x x x x

     
    
 

,                                                 (119) 

3 :p
3 2 2 2 32074 5 6 7( )

3 48 24 12 60 144 97200 5040

A a A a A a E A a E A a E A a E a
v x x x x x

                
             
       
       

        (120) 

…  

Thus the solution of (107) is obtained by substituting (117)-(120) into (20) to obtain  

                                                 (121)     

 

 

Since the point 0
0

x   is a regular singular point of (107), we can employ the Frobenius series 

method to obtain solution (121), by substituting (3) in (107) (Arfken y Weber 1995).  

2 2 31 1 1
( ) ... .

2 6 2
y x a x A x A E A x

  
          

  
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It should noted that the Frobenius method is even longer than the power series method described 

(see examples 1 and 3), and therefore, more than the MNDHPM.  

Example 5. - Consider the following nonlinear second order ordinary differential equation.  

2 exp(2 ) exp( ) 0y y x x     ,                                                                               (122) 

with initial conditions (0) 0y  , (0) 1y  .  

 

MNDHPM Method 

To find a power series solution by modified HPM method with nonlinearities distributions, we 

construct a homotopy as follows 

2

0
(1 )( ) [ exp(2 ) exp( )] 0p y y p y y px px          ,                                             (123)    

which can be grouped as 

  2

0 0
[ exp(2 ) exp( )] 0y y p y y px px         ,                                                        (124) 

where we have identified terms: 

( )L y x ,                                                                                                                  (125) 

2[ ( ) exp(2 ) exp( )].N y x x x                                                                                   (126) 

 Using the power series expansions 

2 2 3 3

1 ..
2 6

px p x p x
e px                                                                                          (127)  

3 3

2 2 2 4
1 2 2 ..

3

px p x
e px p x    

 
(128)                                                                                                   

and substituting (19), (127) and (128) into (124), and then grouping coefficients with identical 

powers of p we obtain  

0 :p    0 0v y  ,                             0(0) 0v  ,   
0 (0) 1v                                                (129) 

1 :p    2

1 0 0 2 0v v v      ,           1(0) 0v  ,   1 (0) 0v                                                 (130)  

2 :p    2 0 12 3 0v v v x     ,            2(0) 0v  ,    2 (0) 0v   ,                                           (131) 

3 :p 2 2

3 1 2 0

5
2 0

2
v v v v x       ,     3(0) 0v  ,   

3 (0) 0v   ,                                            (132) 

4 :p 3

4 3 0 2 1

3
2 2 0

2
v v v v v x        ,   4(0) 0v  ,   4 (0) 0v   ,                                          (133)   

  … 
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To solve the above equations, we choose  

0( )v x x                                                                                                                  (134) 

as an initial approximation for the solution of (122) that satisfies the initial conditions, thus 

0 :p    0( )v x x ,                                                                                                       (135) 

1 :p   2

1( ) / 2v x x ,                                                                                                   (136)    

2 :p   3

2( ) / 6v x x ,                                                                                                   (137) 

3 :p    4

3( ) / 24v x x ,                                                                                                (138) 

4 :p    5

4( ) /120v x x ,                                                                                              (139)  

…  

The substitution of (135)-(139) into (20), shows that the resulting series can be expressed in a 

closed form as 

2 3 4 5( ) 1 / 2 / 6 / 24 /120 ... 1 1xy x x x x x x e          ,                                      (140) 

 

To emphasize the usefulness of HPM methods in the search for solutions of differential equations 

in terms of power series, the following equations with polynomial coefficients are solved by 

using the standard HPM method. 

 

Example 6. - Consider the linear first order ordinary differential equation. 

2 0y xy   ,                                                                                                             (141) 

with initial condition (0) 1y  .  

We construct the following homotopy  

0
(1 )( ) ( 2 ) 0p y y p y xy       ,                                                                             (142)     

or 

0 0
( 2 ) 0y y p y xy      ,                                                                                          (143) 

Substituting (9) into (143) and proceeding as in the previous examples, is obtained a resulting 

series which can be expressed in a closed form as 

2 4 6 2( ) 1 / 2 / 6 ... ( ).y x x x x exp x                                                                    (144) 

Since the point 0
0

x   is an ordinary point of (141), the Power Series Method could be employed 

to obtain solution (144), by substituting (2) in (141) (Zill 2012). 
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Example 7. – Consider Hermite
,
s differential equation which has applications in physical 

sciences (Arfken y Weber 1995).  

2 2 0y xy y    , where   is a constant,                                                             (145) 

with initial conditions (0)y a , (0) 0y  .  

Following the above procedure, it is obtained the solution  

 

2 4
22( ) 2 ( )(2 )

( ) 1 ...
2

x
y x a x

     
    

 ! 4!
.                                                        (146)   

The point 
0

0x   is an ordinary point of (145), and therefore it can be employed the power series 

method in order to obtain solution (146), by substituting (2) in (145) (Arfken y Weber 1995).  

 

7. – Discussion 

7.1. - MNDHPM and Standard HPM Methods. 

This paper proposes the MNDHPM method, as a tool to find power series solutions of both linear 

and nonlinear ordinary differential equations with initial values. From the  examples explained, 

we found that MNDHPM and standard HPM provide the same results with similar complexity for 

the case of polynomial coefficients, and/or polynomial  nonhomogeneous  term (see example 1), 

where the use of standard HPM is adequate. On the other hand, MNDHPM method shows better 

results when those functions are non polynomial, such as exponentials used in the examples. 

Example 2 showed that application of standard HPM method to equations with non polynomial 

nonhomogeneous terms, although is not complicated, infinite series may occur at the different 

iterations, complicating the process of solution, in special for the case of more complicated 

equations. 

In Example 5, the MNDHPM method was employed to find a power series solution of a 

nonlinear ordinary second-order differential equation. Unlike previous reports in the literature 

that apply the standardized approach for HPM solutions of nonlinear differential equations using 

power series (Ganji 2009, Hossein 2011) this work demonstrates the utility of the proposed 

modified HPM method with nonlinearities distribution, especially in equations which include non 
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polynomial coefficients and/or non polynomial nonhomogeneous terms, as the cosine and 

exponentials functions used in examples, showing a better performance. 

The main reason is that MNDHPM distributes the contributions of coefficient functions along the 

iterations in the differential equations for the successive parameter powers p: 0p , 1p , 2p ,..., that 

allows to MNDHPM method being simpler at the different stages of iterations. Moreover, is 

relevant that those results are valid for both linear and nonlinear ordinary differential equations. 

In fact, the use of the modified HPM method with nonlinearities distribution, for the case of 

differential equations with non-polynomial coefficients and/or non polynomial nonhomogeneous 

terms is considered as the main contribution of this work. 

 

7.2. - HPM Methods and Solutions by Series. 

As it was seen, the solutions of linear differential equations obtained by using HPM methods and 

the method of power series were the same for our examples. In particular examples 1 and 3 

showed and compared the use of HPM and MNDHPM with series method and it was emphasized 

the effort invested in each case. The solution for an initial value problem, employing the classical 

methods of series based in (2) and (3), turns out to be many times long and requires initially 

finding a general solution for the equation before employing the initial conditions to find the 

solution that is needed. Another problem that arises in the case of regular singular points, is that 

frequently the Frobenius method does not directly provide two linearly independent solutions, 

only one, and a second solution needs to be found, which implies solve integrals that usually 

contains infinite series (Zill 2012), and that causes the use of these methods become complicated 

for practical applications. This contrasts with the results obtained by HPM methods, which only 

require uncomplicated integrals to provide the solution. This occurs because since the beginning, 

the initial approximation function is chosen as simple as possible, besides satisfying initial 

conditions. An important contribution of this work was emphasize the usefulness of HPM 

methods in the systematically search for solutions to differential equations in terms of power 

series. 

Respect to convergence of solutions obtained by standard HPM method, those issues are 

addressed in (He 1999; 2000,  Biazar y Aminikhan 2009a, Biazar y Ghazvini 2009b) while the 

ones of MNDHPM method, can be discussed in a similar way as in (Vazquez Leal et al. 2012a).  
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8. – Conclusions 

The solution methods for linear differential equations of variable coefficients are based on 

classical methods for infinite series, mentioned in section 2.  

Nevertheless, the solution to initial conditions problems, by employing these methods, for some 

cases it requires a great computational effort. To overcome this shortcoming, this paper explored 

the possibility to employ MNDHPM in order to solve linear and nonlinear ordinary differential 

equations, with initial conditions. Despite the fact that MNDHPM does not offer clear advantages 

over standard HPM for the case of polynomial coefficients, its performance is better for some 

equations with no polynomial coefficients and/or no polynomial  nonhomogeneous terms as the 

cases study of this work. 

It is worth mentioning that the Homotopy Perturbation Methods studied here, are capable of 

reducing the computational work as compared to the classical methods based on (2) and (3), 

because these techniques only require of simple integrals to obtain the same results.  It is relevant 

that the above considerations are valid also for the nonlinear differential equations of example 5 

and perhaps for other similar cases. 
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