
Performance Analysis of Paralldroid Programs

Alejandro Acosta
La Laguna University, Spain
Email: aacostad@ull.edu.es

Francisco Almeida
La Laguna University, Spain
Email: falmeida@ull.edu.es

Abstract—The advent of emergent System-on-Chip (SoCs) and
multiprocessor System-on-Chip (MPSocs) opens a new era on
the small mobile devices (Smartphones, Tablets, ...) in terms of
computing capabilities and applications to be addressed. The
efficient use of such devices, including the parallel power, is
still a challenge for general purpose programmers due to the
very high learning curve demanding very specific knowledge
of the devices. While some efforts are currently being made,
mainly in the scientific scope, the scenario is still quite far from
being the desirable for non-scientific applications where very
few of them take advantage of the parallel capabilities of the
devices. We develop a performance analysis in several SoCs using
Paralldroid. Paralldroid (Framework for Parallelism in Android),
is a parallel development framework oriented to general purpose
programmers for standard mobile devices. Paralldroid presents
a programming model that unifies the different programming
models of Android. The user just implements a Java application
and introduces a set of Paralldroid annotations in the sections
of code to be optimized. The Paralldroid system automatically
generates the native C or Renderscript code for the annotated
section. The results obtained are quite promising. With a very low
development effort the running times are significantly reduced.
The Paralldroid transformation model involves source-to-source
transformations and skeletal programming.

Keywords—Renderscript, source-to-source transformation, An-
droid.

I. INTRODUCTION

SoCs (Systems on Chip [1]) have been the enabling tech-
nology behind the evolution of many of todays ubiquitous
technologies, such as Internet, mobile wireless technology, and
high definition television. The information technology age, in
turn, has fuelled a global communications revolution. With the
rise of communications with mobile devices, more computing
power has been put in such systems. The technologies available
in desktop computers are now implemented in embedded
and mobile devices. We find new processors with multicore
architectures and GPUs developed for this market like the
Nvidia Tegra [2] with two and five ARM cores and a low power
GPU, the Qualcomm snapdragon [3], the Samsung Exynos [4]
and the OMAP 5 [5] platform from Texas Instruments that also
goes in the same direction.

On the other hand, software frameworks have been devel-
oped to support the building of software for such devices. The
main actors in this software market have their own platforms:
Android [6] from Google, iOS [7] from Apple and Windows
phone [8] from Microsoft are contenders in the smartphone
market. Coding applications for such devices is now easier. But
the main problem is not creating energy-efficient hardware but
creating efficient, maintainable programs to run on them [9].

Conceptually, from the architectural perspective, the model

can be viewed as a traditional heterogeneous CPU/GPU with a
unified memory architecture, where memory is shared between
the CPU and GPU and acts as a high bandwidth communi-
cation channel. In the non-unified memory architectures, it
was common to have only a subset of the actual memory
addressable by the GPU. Technologies like Algorithmic Mem-
ory [10], GPUDirect and UVA (Unified Virtual Addressing)
from Nvidia [11] and HSA from AMD [12] are going in the
direction of an unified memory system for CPUs and GPUs
in the traditional memory architectures. Memory performance
continues to be outpaced by the ever increasing demands of
faster processors, multiprocessor cores and parallel architec-
tures.

Under this scenario, we find a strong divorce among tradi-
tional mobile software developers and parallel programmers,
the first tend to use high level frameworks like Eclipse for
the development of Java programs, without any knowledge
of parallel programming (Android: Eclipse + Java, Windows:
Visual Studio + C#, IOS: XCode + Objective C), and the latter
that use to work on Linux, doing their programs directly in
OpenCL closer to the metal. The first take the advantage of the
high level expressiveness while the latter assume the challenge
of high performance programming. Paralldroid tries to help
bring these to worlds.

The Paralldroid system [13] is a development framework
that allows the automatic development of Native, Renderscript
and OpenCL applications for mobile devices (Smartphones,
Tablets, ...). The developer fills and annotates, using his/her
sequential high level language, the sections on a template
that will be executed in native, Renderscript and OpenCL
language. Paralldroid uses the information provided in these
annotations to generate a new program that incorporates the
code sections to run over the CPU or GPU. Paralldroid can
be seen as a proof of concept where we show the benefits of
using generation patterns to abstract the developers from the
complexity inherent to parallel programs [14].

The advantages of this approach are well known:

• Increased use of the parallel devices by non-expert
users

• Rapid inclusion of emerging technology into their
systems

• Delivery of new applications due to the rapid devel-
opment time

• Unifies the different programming models of Android

We find the novelty of our proposal in the simultaneous
generation of code for different programming models. The

ANN. MULT. GPU PROG.

48

heterogeneity of the Android programming models allows the
programmer to obtain the best performance, implementing
each section of the application using the programming model
that better fits to his/her code. Paralldroid allows to generate
code for each programming model, facilitating the develop-
ment of efficient heterogeneous applications. In this paper
we present a comparative performance analysis between the
generated code by Paralldroid and the adhoc implementation.
We have implemented a set of testing problems with different
inherent features. The analysis provides an overview of the
performance obtained with a very low development effort. Sev-
eral implementations have been generated for each problem,
and these have been tested in two different devices.

The paper is structured as follows, in section II we intro-
duce the development models in Android and the different
alternatives to exploit the devices, some of the difficulties
associated to the development models are shown. In section
III we present the Paralldroid Framework, the performance
of Paralldroid is validated in section IV using five different
applications, transform a image to grayscale, convolve 3x3
and 5x5, levels and a general convolve implementation. Seven
different versions have been compared, the ad-hoc Java, Native
C and Renderscript versions, and the generated Native C and
Renderscript versions. The computational results prove the
increase of performance provided by Paralldroid at a low cost
of development. We finish the paper with some conclusions
and future lines of research.

II. THE DEVELOPMENT MODEL IN ANDROID

Android is a Linux based operating system mainly designed
for mobile devices such as smartphones and tablet devices,
although it is also used in embedded devices as smart TVs and
media streamers. It is designed as a software stack that includes
an operating system, middleware and key applications.

Android applications are written in Java, and the Android
Software Development Kit (SDK) provides the API libraries
and developer tools necessary to build, test, and debug ap-
plications in a Software Development Kit (SDK). The central
section of Figure 1 shows the compilation and execution model
of a Java Android application. The compilation model converts
the Java .java files to Dalvik-compatible .dex (Dalvik
Executable) files. The application runs in a Dalvik virtual
machine (Dalvik VM) that manages the system resources
allocated to this application (through the Linux kernel)

Besides the development of Java applications, Android pro-
vides packages of development tools and libraries to develop
Native applications, the Native Development Kit (NDK). The
NDK enables to implement parts of the application running
in the Dalvik VM using native-code languages such as C
and C++. This native code is executed using the Java Native
Interface (JNI) provided by Java. The right-hand section of
Figure 1 shows the compilation and execution model of an
application where part of the code has been written using the
NDK. The Native .c is compiled using the GNU compiler
(GCC). The compiler used the default ARM architecture, in
this case the code is optimized for ARM-based CPUs that
supports the ARMv5TE instruction set [15]. Most devices
support the ARMv7-a instruction set [15]. ARMv7 version
extends the ARMv5 instruction set and includes support for

Fig. 1. Compilation and execution model of an application in Android

the Thumb-2 instruction set [16] and the VFP hardware FPU
instructions [17]. Note that using native code does not result in
an automatic performance increase, but always increases appli-
cation complexity, its use is recommended in CPU-intensive
operations that don’t allocate much memory, such as signal
processing, physics simulation, and so on. Native code is useful
to port an existing native code to Android, not for speeding up
parts of an Android application. Some devices support OpenCL
for executions on GPU. OpenCL code is implemented on the
context of Native Development Kit (NDK).

To exploit the high computational capabilities on current
devices, Android provides Renderscript, it is a high perfor-
mance computation API at the native level and a programming
C language (C99 standard). Renderscript allows the execution
of parallel applications under several types of processors
such as the CPU, GPU or DSP, performing an automatic
distribution of the workload across the available processing
cores on the device. The left-hand section of Figure 1 shows
the compilation and execution model used by Renderscript.
Renderscript (.rs files) codes are compiled using a LLVM
compiler based on Clang [18], moreover, it generates a set
of Java classes wrapper around the Renderscript code. Again,
the use of Renderscript code does not result in an automatic
performance increasing. It is useful for applications that do
image processing, mathematical modelling, or any operations
that require lots of mathematical computation.

III. PARALLDROID

Paralldroid is designed as a framework to ease the devel-
opment of future parallel applications on Android platforms.
We assume that the mobile platforms will be provided with a
classical CPU and with some kind of production processor like
a GPU that can be exploited thorough OpenCL or Renderscript.
In the proposed translation model, the developers define their
problem as Java code in the Android SDK and add a set
of directives. These directives are an extension of OpenMP
4.0 [19]. From this code definition, currently we can generate
automatically the Native C, Native OpenCL and Renderscript
code to be executed in the parallel device. The approach
followed is based in a source-to-source translation process.

ANN. MULT. GPU PROG.

49

The model implemented can be divided in three different mod-
ules (Figure 2): front-end, middle-end and back-end. These
modules are integrated as a plugin into the Eclipse building
process, thereby, when Eclipse builds a code our modules will
be executed automatically.

Fig. 2. Translation process modules.

The front-end is the first module and is responsible for
checking that the code written by the user is under the
Paralldroid language syntax and semantics. The syntax and
semantic analysis is supported on the library Java Development
Tools (JDT) [20] that allows to obtain and manipulate all
the elements of a Java class (Annotations, Methods, Fields,
...) easily. The front-end module is launched during the
compilation step performed by Eclipse, it invokes the middle-
end module when needed and also calls to the back-end module
after the generation of the intermediate code.

The middle-end takes charge of identifying directives de-
fined by the user and analyse the Java code associated to
these directives. All information and elements extracted by this
module are stored using an intermediate representation that
will be used by the next module. The middle-end is invoked
by the front-end module by demand.

The back-end takes over the generation of the target code
starting from the intermediate representation. The generation
is divided in two phases, the generation of the native code and
the modification of the original code to allow its access to the
native code generated. To access to the native code generated,
several modifications in the original code are performed. The
entire process is transparent to the user. This module is invoked
by the front-end after finishing with the intermediate code
generation.

In Figure 3 you can see as the process of generation is
integrated in the Android execution model (Figure 1). The Par-
alldroid generation process is in the top level and analyzes the
Java code looking for directives. The files that do not contain
directives are compiled directly (central section). If Paralldroid
finds a directive for Native or OpenCL code generation, this
code is generated and the Java code is modified to access to
generated Native code (right section). The same process is used

Fig. 3. The development model in Paralldroid

to generate Renderscript code (left section). The increment
of productivity under this approach is clear, moreover when
considering that Paralldroid not only generates the OpenCL or
Renderscript codes but the Native C JNI implementation. The
current version of Paralldroid imposes some constraints that
could be overcomed in the future. We only support primitive
type variables, the code associated to directives must be Java
and C99 compatible.

A. Paralldroid Directives

The directives supported by Paralldroid are an extension of
OpenMP 4.0 [21] that includes directives for accelerators. The
set of directives supported by Paralldroid are:

1) Target Data: Creates a device data environment. This
directive is responsible for mapping the data to the context of
the device. The clauses supported are:

• lang is an extension to the OpenMP standard, we
use it to indicate the target language that we want
generate: Renderscript, Native or OpenCL.

• map maps a variable from the current Java environ-
ment to the target data environment. We have different
types of mapping:

◦ alloc declares that on entry to the region
each new corresponding list item has an un-
defined initial value.

◦ to declares that on entry to the region each
new corresponding list item is initialized with
the original list item’s value.

◦ from declares that on exit from the region the
corresponding list item’s value is assigned to
each original list item.

◦ tofrom declares that on entry to the region
each new corresponding list item is initialized

ANN. MULT. GPU PROG.

50

Listing 1. GrayScale problem with Paralldroid directives.
1 p u b l i c vo id grayscale () {
2 i n t pixel , sum , x ;
3 i n t [] scrPxs = new i n t [width∗height] ;
4 i n t [] outPxs = new i n t [width∗height] ;
5 bitmapIn .getPixels (scrPxs , 0 , width , 0 , 0 , width , height) ;
6

7 / / pragma P a r a l l d r o i d t a r g e t l a n g (r s) map (t o : s c rPxs , width , h e i g h t) map (from : ou tPx s)
8 / / pragma P a r a l l d r o i d p a r a l l e l f o r p r i v a t e (x , p i x e l , sum) r s v e c t o r (s c rPxs , ou tPxs)
9 f o r (x = 0 ; x < width∗height ; x++) {

10 pixel = scrPxs [x] ;
11 sum = (i n t) (((pixel) & 0xff) ∗ 0 .299f) ;
12 sum += (i n t) (((pixel >> 8) & 0xff) ∗ 0 .587f) ;
13 sum += (i n t) (((pixel >> 16) & 0xff) ∗ 0 .114f) ;
14 outPxs [x] = (sum) + (sum << 8) + (sum << 16) + (scrPxs [x] & 0xff000000) ;
15 }
16

17 bitmapOut .setPixels (outPxs , 0 , width , 0 , 0 , width , height) ;
18 }

with the original list item’s value and that
on exit from the region the corresponding list
item’s value is assigned to each original list
item.

If the programmer does not specify a map type, the
default map type is tofrom.

2) Target: Creates a device data environment and executes
the construct on the same device. This directive is responsible
for mapping the data and executing the code associated to the
directive in the device. The clauses have the same function as
in the Target Data case.

3) Parallel for: Should be used in the context of a target
directive, this directive is applied to a for loop and is responsi-
ble for distributing the load of the for loop between the threads
available on the device. The clauses supported are:

• private indicates that each thread has a private copy
of the variables.

• firstprivate is the same that private but the
variables are initialized.

• shared indicates that all threads share the variables.

• colapse is used for nested loops, the load of all
nested loops is distributed between available threads.

• rsvector is an extension to the OpenMP standard.
It is used for the renderscript code generation and
indicates the input and output vectors used.

4) Teams: should be used in the context of a target
directive, this directive is responsible of teams or groups of
threads. The clauses supported are:

• num_teams indicates the number of teams

• thread_limit indicates the maximum number of
threads of each team.

• private indicates that each team has a private copy
of the variables. These variables are shared between
all threads in a teams.

• firstprivate is the same that private but the
variables are initialized.

• shared indicates that all teams shared the variables.

5) Distribute: should be used in the context of a teams
directive, this directive is similar to the parallel for
directive but in this case distributes the load of the for loop
between the teams available on the device. Clauses are similar
to the parallel for case.

Listing 1 shows a Java implementation for the grayScale
problem. This problem has a loop that traverses the pixels array
of the image and gets the colour to transform to grayscale. On
top of the loop, we add the Paralldroid directives to generate
Renderscript code (target lang(rs)) and parallelize the
loop ((parallel for)). As you can see, these directives
have the OpenMP 4.0 syntax with some extension. For the
definitions of the annotations we used comments instead of
Java annotations because the Java annotation system just
supports annotations to appear on class/method/field/variable
declarations (Java Specification Request JSR 250 [22]), there
is no support for the annotation of statements. Listing 2 shows
the Renderscript code generated by Paralldroid. The vari-
ables mapped by the target directive (scrPxs, outPxs,
width, height) are defined in the Renderscript context.
The loop is replaced by a root function that will be executed
in parallel, private variables of the parallel for directive
are defined inside the root function.

IV. COMPUTATIONAL RESULTS

Leaving aside some peculiarities associated to the real time
requirements of the smartphones and tables (e.g., power man-
agement, network management), we validate the performance
of the code generated by Paralldroid using five different appli-
cations. Four of these applications are based on the Render-
script image-Processing benchmark [23] (transforming a image
to grayscale, to levels and convolve with convolve window of
sizes 3x3 and 5x5) and the other one is an additional general
convolve implementation developed by ourselves. In all cases,
we implemented seven versions of code, the ad-hoc version

ANN. MULT. GPU PROG.

51

Listing 2. Generated Renderscript version of GrayScale problem.
1 #pragma version (1)
2 #pragma rs java_package_name (com .Paralldroid .grayscale)
3

4 i n t width ;
5 i n t height ;
6 i n t ∗ scrPxs ;
7 i n t ∗ outPxs ;
8

9 vo id root (c o n s t i n t ∗v_in , i n t ∗v_out , uint32_t x_lidrstadkd) {
10 i n t x ;
11 i n t sum ;
12 i n t pixel ;
13 x = x_lidrstadkd ;
14

15 pixel=scrPxs [x] ;
16 sum=(i n t) (((pixel) & 0xff) ∗ 0 .299f) ;
17 sum+=(i n t) (((pixel >> 8) & 0xff) ∗ 0 .587f) ;
18 sum+=(i n t) (((pixel >> 16) & 0xff) ∗ 0 .114f) ;
19

20 outPxs [x] = (sum) + (sum << 8) + (sum << 1 6) + (scrPxs [x] & 0xff000000) ;
21 }

from a Java developer, an ad-hoc Native C implementation, two
ad-hoc Renderscript implementations (sequential and parallel),
and the versions automatically generated by Paralldroid, the
generated Native C and Renderscript codes. We executed these
codes over two SoCs devices running Android, a Samsung
Galaxy SIII (SGS3) and an Asus Transformer Prime TF201
(ASUS TF201). The Samsung Galaxy SIII is composed of
an Exynos 4 (4412) holding a Quad-core ARM Cortex-A9
processor (1400MHz), 1GB of RAM memory and a GPU
ARM Mali-400/MP4. The Asus Transformer Prime TF201 is
composed of a NVIDIA Tegra 3 holding a Quad-core ARM
Cortex-A9 processor (1400MHz, up to 1.5 GHz in single-
core mode), 1GB of RAM memory and a GPU NVIDIA ULP
GeForce. Both devices run the Android system version 4.1
with the NDK r9. The GPUs of these devices do not support
OpenCL or Renderscript executions, so in this case, the GPUs
can not be used as accelerators. For Native C implementations,
the devices used supports the ARMv7-a instruction set, so we
compiled the code using the ARMv7 instructions set. In all
cases, the Java version will be used as the reference to calculate
the speedup. For all the problems we used two images of size
1600× 1067 and 800× 600.

To prove the performance obtained with the generated
code, we analysed the resources used (as memory or CPU)
and the execution time of each problem. The results obtained
by the generated code are compared to the ad-hoc versions.
This allows to analyse the differences between the generated
code and the ad-hoc code.

Tables I and II show the execution times in milliseconds
for all the problems proposed on the Asus architecture. The
Ad-hoc Java implementation provides an overview of each
problem’s granularity. We can see how the GrayScale problem
has the finest granularity. For the convolve problems the
granularity increases when the convolve window size is higher.
The Native implementation get the best results for the finest
granularity problems. When the granularity of the problems

TABLE I. EXECUTION TIMES FOR THE RENDERSCRIPT BENCHMARK
PROBLEMS (IMAGE 1600× 1067) WITH ASUS TF201

Implementation
Execution times (ms)

GrayScale Levels Convolve
3x3 5x5

Ad-hoc Java 336 779 2368 5747
Ad-hoc Native 102 277 974 2510

Generated Native 280 448 1158 2698
Ad-hoc Renderscript sequential 284 373 453 1087

Generated Renderscript sequential 300 390 851 1613
Ad-hoc Renderscript parallel 134 138 178 356

Generated Renderscript parallel 242 292 464 652

TABLE II. EXECUTION TIMES FOR A GENERAL CONVOLVE
IMPLEMENTATION (IMAGE 1600× 1067) WITH ASUS TF201

Implementation
Execution times (ms)

General Convolve
3x3 5x5 7x7 9x9

Ad-hoc Java 2827 6926 12864 20933
Ad-hoc Native 920 2311 4344 7045

Generated Native 1085 2490 4502 7233
Ad-hoc Renderscript sequential 595 1223 2111 3304

Generated Renderscript sequential 859 1625 2737 4217
Ad-hoc Renderscript parallel 239 525 625 929

Generated Renderscript parallel 502 727 1013 1367

increase, the Renderscript implementations obtain the best
results.

In Table III we show the Java heap memory used by the

TABLE III. HEAP SIZE ON ASUS TF201

Implementation Heap size (MB)
Base Execution

Ad-hoc Java 9,75 13,42
Ad-hoc Native 9,75 13,42

Generated Native 9,75 13,42
Ad-hoc Renderscript sequential 9,75 9,75

Generated Renderscript sequential 9,75 13,42
Ad-hoc Renderscript parallel 9,75 9,75

Generated Renderscript parallel 9,75 13,42

ANN. MULT. GPU PROG.

52

TABLE IV. CPU ACTIVITY ON ASUS TF201

Implementation CPU
1 2 3 4

Ad-hoc Java ON OFF OFF OFF
Ad-hoc Native ON OFF OFF OFF

Generated Native ON OFF OFF OFF
Ad-hoc Renderscript sequential ON OFF OFF OFF

Generated Renderscript sequential ON OFF OFF OFF
Ad-hoc Renderscript parallel ON ON ON ON

Generated Renderscript parallel ON ON ON ON

Dalvik virtual machine (Dalvik VM) for each implementation.
The Base column indicates the memory used when the applica-
tion is open an the image is load but the algorithm implemented
is not under execution. In all cases the base memory used is
the same. The Execution column collects the base memory
plus the memory used on the execution of the algorithms
implemented. In this case we obtain two different memory
usages. The Ad-hoc Java, Ad-hoc Native and all generated
versions use more memory due to the transformation of the
Java object that represents the image into an array of pixels.
These transformations get a best performance on the Ad-hoc
Java implementations. The Ad-hoc Renderscript versions do
not transform the Java object of the image and do not need
extra memory. Note that, for all Renderscript versions the
memory used on the Renderscript context is not represented
on the Java heap memory. We do not find any reliable tool
that allow measure memory used by the Renderscript context.
This memory must be added to the values shown in the table.

Table IV shows the CPU activity when each problem
is executed. If the application is open but the algorithm
implemented is not under execution, the CPU activity of all
cores are in a low energy state. In this state the CPU frequency
decreases and some cores are offline to save energy. When the
algorithms are executed, as expected, the activity of the CPUs
depends on the type of execution. For the sequential executions
only one core is active and the remaining of cores are on a low
energy state. On the parallel executions all cores are actives.

Figure 4 shows the speedup relative to the ad-hoc java
version for the Renderscript benchmark problems using a
image of size 1600 × 1067. The Native C versions show a
big differences between the ad-hoc and generated ones. These
differences disappear when the granularity of the problems
increase. The ad-hoc Renderscript parallel version is faster than
the ad-hoc Renderscript sequential version since the parallel
version takes advantage of the quad core processor. The ad-hoc
Native C version gets the best results for the finest granularity
problem. This is because the Renderscript implementations
introduce overhead when create the context, allocate memory
and copy values to the new memory context. For the coarse
granularity problems, the ad-hoc Renderscript versions get
the best results since these versions are optimized and use
vector operations. Currently, Paralldroid does not obtain this
level of optimization but it provides a positive speedup at
a low development effort. In the Renderscript executions,
the computational load of the instances solved involves an
important impact in the performance, problems with more
computational load get a better speedup.

In Figure 5 we show the speedup relative to the ad-hoc
Java version for the general convolve implementation using a
image of size 1600 × 1067. In this case we vary the sizes of

(a) ASUS TF201

(b) Samsung Galaxy SIII

Fig. 4. Speedup for the Renderscript benchmark problems (image 1600 ×
1067)

the convolve windows in the range 3 × 3, 5 × 5, 7 × 7 and
9 × 9. As in previous cases, the Native C versions provide a
similar result. Again, in the generated Renderscript version we
get positive speedups in all the cases but the best results are
obtained with the ad-hoc Renderscript version.

Figure 6 shows the executions for all the problems using
an image of size 800 × 600. In this case we only show the
speedups on the ASUS TF201 device, but we experimentally
tested that the running times provided by the Samsung Galaxy
SIII device are similar. As on the executions performed with
the image of size 1600×1067, the ad-hoc Renderscript version
gets the best results for the coarse granularity problems. The
Native C versions provide similar results, for the grayscale
problems obtains the best result.

In general, the ad-hoc versions get higher performances
but their implementations are more complex. Native C code is
a good option for problems with finest granularity. When the
granularity increases the best option is Renderscript.

ANN. MULT. GPU PROG.

53

(a) ASUS TF201

(b) Samsung Galaxy SIII

Fig. 5. Speedup for a general convolve implementation (image 1600×1067)

V. CONCLUSION

We develop a performance analysis in several SoCs using
Paralldroid. Paralldroid is a framework for the automatic
generation of Native C, Renderscript and OpenCL applications
for Android. The Java code annotated by the user is auto-
matically transformed in a native C or Renderscript version.
The generation process is automatic and transparent for the
Java developers, the implementation details of target parallel
programming language are hidden to the developer. Although
there is still opportunity for the optimization in terms of the
memory transfer among the different devices and in the use
of vector operations, the validation tests performed on five
different problems prove that the results are quite promising.
With a very low development effort the running times are
significantly reduced. Paralldroid also contributes to increase
the productivity in the parallel developments due to the low
effort required. For the near future we plan to introduce further
optimizations in the Renderscript generations. We will also
focus now on extending the annotations set to generate parallel

(a) Speedup for the Renderscript benchmark problems

(b) Speedup for a general convolve implementation

Fig. 6. Speedup for 800× 600 image size in ASUS TF201

patterns, like parallel reductions in Renderscript. Paralldroid
can be also used to the parallelization of basic libraries used for
Android programmers that could take advantage of the parallel
execution.

ACKNOWLEDGMENT

This work has been supported by the EC (FEDER) and
the Spanish MEC with the I+D+I contract number: TIN2011-
24598

REFERENCES

[1] SoCC, “IEEE International System–on–Chip Conference,” Sep. 2012.
[Online]. Available: http://www.ieee-socc.org/

[2] NVIDIA, “Tegra mobile processors: Tegra2, Tegra 3 and Tegra 4.”
[Online]. Available: http://www.nvidia.com/object/tegra-superchip.html

[3] Qualcomm, “Snapdragon mobile processors.” [Online]. Available:
http://www.qualcomm.com/snapdragon

[4] Samsung, “Exynos mobile processors.” [Online]. Available: http:
//www.samsung.com/global/business/semiconductor/minisite/Exynos/

ANN. MULT. GPU PROG.

54

[5] Texas Instruments, “OMAPTMMobile Processors : OMAPTM5
platform.” [Online]. Available: http://www.ti.com/omap5

[6] Google, “Android mobile platform.” [Online]. Available: http:
//www.android.com

[7] Apple, “iOS: Apple mobile operating system.” [Online]. Available:
http://www.apple.com/ios

[8] Microsoft, “Windows Phone: Microsoft mobile operating system.”
[Online]. Available: http://www.microsoft.com/windowsphone

[9] A. D. Reid, K. Flautner, E. Grimley-Evans, and Y. Lin, “SoC-C:
efficient programming abstractions for heterogeneous multicore systems
on chip,” in Proceedings of the 2008 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems, CASES’08,
E. R. Altman, Ed. Atlanta, GA, USA: ACM, Oct. 2008, pp. 95–104.

[10] Memoir Systems, “Algorithmic Memory TMtechnology.” [Online].
Available: http://www.memoir-systems.com/

[11] Nvidia, “GPUDirect Technology.” [Online]. Available: http://developer.
nvidia.com/gpudirect

[12] Anandtech, “AMD Outlines HSA Roadmap: Unified Memory for
CPU/GPU in 2013, HSA GPUs in 2014.” [Online]. Available:
http://www.anandtech.com/show/5493/

[13] A. Acosta and F. Almeida, “Towards an unified heterogeneous de-
velopment model in android,” in Eleventh International Workshop
HeteroPar’2013: Algorithms, Models and Tools for Parallel Computing
on Heterogeneous Platforms, 2013.

[14] I. Peláez, F. Almeida, and F. Suárez, “Dpskel: A skeleton based tool for
parallel dynamic programming,” in Seventh International Conference on
Parallel Processing and Applied Mathematics, PPAM2007, 2007.

[15] ARM, “Architecture reference manuals.” [Online]. Avail-
able: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
subset.architecture.reference

[16] ——, “Thumb-2 instruction set.” [Online]. Available: http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344c/Beiiegaf.html

[17] ——, “Vfpv3 architecture.” [Online]. Available: http://infocenter.arm.
com/help/index.jsp?topic=/com.arm.doc.ddi0344c/Beiiegaf.html

[18] CLANG, “A C language family frontend for LLVM.” [Online].
Available: http://clang.llvm.org/

[19] OpenMP, “The OpenMP API specification for parallel programming.”
[Online]. Available: http://openmp.org/wp/openmp-specifications/

[20] Eclipse, “Eclipse Java development tools (JDT).” [Online]. Available:
http://www.eclipse.org/jdt/

[21] OpenMP, “OpenMP application program interface, version 4.0.”
[Online]. Available: http://www.openmp.org/mp-documents/OpenMP4.
0.0.pdf

[22] JSRs: Java Specification Requests, “JSR 250: Common Annotations
for the Java Platform.” [Online]. Available: http://jcp.org/en/jsr/detail?
id=250

[23] AOSP, “Android Open Source Project.” [Online]. Available: http:
//source.android.com/

ANN. MULT. GPU PROG.

55

