
Exploiting Kepler Capabilities on Zernike Moments
Antonio Ruiz, Manuel Ujaldón

Computer Architecture Department
University of Malaga, Spain

E-mail: {antruiz,ujaldon}@uma.es

Abstract—This work analyzes the most advanced features of
the Kepler GPU by Nvidia, mainly dynamic parallelism for
launching kernels internally from the GPU and thread scheduling
via Hyper-Q. We illustrate several ways to exploit those features
from a code which computes Zernike moments, using two
different formulations: direct and iterative. This way, we compare
how well they can deploy parallelism on the new generation of
GPUs. The direct alternative tries to maximize parallelism, while
the iterative one increases the operational intensity by reusing
results coming from previous iterations. This has allowed us
to increase the speed-up factor attained on Fermi architectures
versus a code written in C and executed on a multicore CPU. We
also succeed on identifying the critical workload which is required
by a code to improve its execution on the new GPU platforms
endowed with six more times computational cores, and quantify
the overhead introduced by the new dynamic programming
mechanisms in CUDA.

I. INTRODUCTION

General purpose computing on GPUs (GPGPU) started
a decade ago and since then it has transformed the High
Performance Computing (HPC) arena with extraordinary ac-
celeration factors. GPUs, designed with thousands of small but
efficient cores, allow to deploy parallelism at multiple layers,
helping CPUs to process those parts of an application which
are more demanding on computational time and/or allow to
benefit from massive data parallelism.

Disruptive programming models like CUDA or OpenCL
have made GPUs popular to programmers of a very diverse
background. However, it is still necessary to know at a basic
level the new programming paradigm of these processors to
be able to redesign applications and, at a more advanced
level, if we pretend to exploit the whole set of enhancements
introduced on a new architecture.

This work analyzes the Kepler architecture recently intro-
duced by Nvidia, focusing on two pillars of its SMX multipro-
cessors: dynamic parallelism and Hyper-Q. The benchmark we
have selected for this purpose is an algorithm which computes
Zernike moments for characterizing images on very diverse
scientific areas like biomedicine, robotics or topography. This
algorithm was also studied for its efficient execution on
Fermi, the previous GPU generation by Nvidia, which will
be used here as departure point and reference for performance
discussions.

Moment functions are integrals typically approximated by
discrete sums when applied to pixelated images. They can
be interpreted as a convolution of the image with a mask.
However, moments are more attractive than convolutions be-
cause some are invariant to image translation, scale change

and rotation [1], [2], [3]. Derived from the general concept,
moments with orthogonal basis functions such as Legendre
and Zernike polynomials can be used to represent the image
by a set of mutually independent descriptors, with a minimal
amount of information redundancy [4], [5]. The orthogonality
property enables the separation of the individual contribution
of each order moment, enabling its role as image descriptors.

Even though the compatibility with applications developed
in CUDA is guaranteed in enhanced versions of the hard-
ware, performance can be greatly improved if the code is
optimized on a particular architecture, which requires a deep
knowledge of software mechanisms for taking advantage of
those advanced features. Unfortunately, not all the architectural
changes are revealed by hardware vendors. Our contribution
here goes to help programmers in this daunting task, con-
necting software elements with hardware capabilities, and
discussing performance for a broad set of features.

This paper is structured as follows. Section II describes
Zernike moments and the state of the art for its computational
implementation. Section III presents the CUDA programming
model, highlighting those mechanisms widely used along this
work. Section IV provides details of the Kepler architecture
and its main differences with respect to the previous Fermi
GPU. Section V shows the departure point for our implemen-
tation of Zernike moments, introducing its peculiarities for
exploiting GPU parallelism. Section VI describes strategies to
follow for improving performance on the Kepler architecture.
Experimental results and conclusions drawn from this work
are outlined in the two closing sections.

II. ZERNIKE MOMENTS

A. Mathematical formulation
Zernike functions are a set of complex orthogonal functions

with a simple rotational property which forms a complete
orthogonal basis over the class of square integrable functions.
The set of orthogonal Zernike moments for an image repre-
sented by the intensity of its pixels f(r, θ) with an order p
and repetition q are defined as follows [4]:

Zpq =
p + 1

π

∫ 2π

0

∫ 1

0

f(r, θ)V ∗
pq(r, θ), rdrdθ, (1)

where V ∗
pq(r, θ) are the complex conjugates of the Zernike

polynomials Vpq(r, θ) whose representation describe the unit
disk defined as

Vpq(r, θ) = Rpq(r)ejqθ (2)

ANN. MULT. GPU PROG.

27

with p an integer fulfilling

p ≥ 0, 0 ≤ |q| ≤ p, p − |q| = par, j =
√
−1

θ = tan−1 (y/x), 0 ≤ θ ≤ 2π
(3)

Radial polinomials Rpq(r) are defined as

Rpq(r) =
(p−|q|)/2∑

k=0

(−1)k (p − k)!

k!(p+|q|
2 − k)!(p−|q|

2 − k)!
rp−2k

(4)
When we change the previous formulation from the contin-

uous domain and polar coordinates to the discrete domain and
cartesian coordinates, the equation 1 for an image function
f(x, y) of size NxN takes the following form

Zpq =
p + 1
γN

N−1∑
i=0

N−1∑
k=0

f(xi, yk)V ∗
pq(xi, yk)∆xi∆yk (5)

where x2
i + y2

i ≤ 1 and γN is a normalization component
which corresponds to the number of pixels within the unit disk
whose coordinates are represented by

xi =
2i + 1 − N

N
, yk =

2k + 1 − N

N
(6)

When we add to the f(x, y) image a rotation with an angle
α, the Zernike moment V ′

pq of an image is

V ′
pq = Vpqe

−jqα (7)

Since the rotation only modifies the phase of the Zernike
moments, the absolute value is invariant to the rotation. The
same happens when images are modified to be centered, scaled
or changed through linear transformations. These features
make them more suitable for image analysis than other existing
approaches like Legendre moments [6], though at the expense
of a higher computational cost [7].

B. Computational techniques

Figure 1 outlines the algorithm for computing Zernike
moments of an order n and a repetition m following the
equation 5, and assuming an NxN image size. Real and
imaginary parts are expressed as zr y zi, respectively.

The computation of Zernike moments has been improved
over the years [8]. From a computational perspective, we may
distinguish two basic approaches:

1) Direct methods: Under this formulation, moments are
computed individually without relying on others, basi-
cally applying the formula given by eq. 5. This way,
they may constitute features characterizing an image
after a selection of the most discriminant coefficients.
This situation arises more often on image classifiers and
image segmentation [9], [10].

2) Recursive methods: Here, the computation of a single
order moment and an isolated repetition within an order
cannot be computed without sweeping over all previous

Fig. 1. A basic algorithm for the computation of Zernike moments.

repetitions and orders. This allows to partially amortize
the cost of previous computations, but it is only suitable
in certain application domains like image reconstruction,
where all moments (repetitions) are required up to a
given order.
Recursive formulations have gained attention over the
past ten years. For example, Chong et al. [11] propose a
recursive approach and perform a survey comparing all
alternatives, and Hwang et al. introduce novel ideas to
speed up the process by exploiting the symmetry in the
polar coordinates space [12].

III. THE GPU PROGRAMMING MODEL

This section introduces the elements of CUDA (Computer
Unified Device Architecture) [13], which allows to deploy
massive parallelism on the GPU at different levels.

The GPU hardware is structured on multiprocessors, en-
dowed with SIMT (Single Instruction Multiple Threads) com-
putational cores which share the control unit and a small but
extremely fast shared memory. DRAM video memory is called
global memory and it is accessible to all multiprocessors, at a
slower latency but extraordinary bandwidth.

The CUDA programming model defines the following basic
elements:

ANN. MULT. GPU PROG.

28

• Threads: The basic execution unit that is mapped to a
single GPU core.

• Blocks: Batches of threads assigned to a single multi-
processor which share all the resources included in this
multiprocessor, such as register file and shared memory.
Block are scheduled on GPU multiprocessors, and ex-
ecuted via warps, the minimal working and scheduling
unit. Until now, the warp size has always been 32 threads.

• Grid: Set of twin blocks in which the execution of a
CUDA kernel can be decomposed to express parallelism.

• Kernel: Code excerpt delimiting a function to be ported
to the GPU. It is executed by all threads defined in the
grid of blocks, each of them working on a different data
region thanks to its blockID and threadID, unique
identifiers which are assigned to threads at run-time.

• Stream: Execution flow in parallel with other streams
defined. When kernels are not associated to streams, they
must follow a serial execution, that is, there can only be a
single kernel in execution at a given instant, which takes
all GPU resources. Using streams we can parallelize the
execution of as many kernels as streams may exist, for a
concurrent run on all multiprocessors available.

With all these elements, programmer must explicitly declare
the number of blocks and the block size required for executing
the kernel on the GPU. Large-scale applications deploying
massive parallelism declare a huge number of blocks, as the
block size cannot exceed 1024 threads.

IV. THE KEPLER ARCHITECTURE

Since CUDA inception in 2006, GPUs have evolved very
fast and Nvidia has developed three hardware generations:
Tesla (2008), Fermi (2010) and Kepler (2012)[14]. This work
is focused on the latter and compared to its predecessor, Fermi.

Fermi extended the number of GPU cores up to 512, and
double precision floating-point units up to 256. L1 and L2
caches were also introduced, with the L1 configurable in size
along with the shared memory. There were also enhancements
in context switches, atomic operations and ECC memory.

Kepler introduced the SMX multiprocessor, endowed with
192 cores for integer and single precision floating-point arith-
metic, and 64 cores for double precision floating-point. There
were initial versions with 13 and 14 SMXs called K20 and
K20X, respectively. In November 2013, the K40 was released
with 15 SMXs for a total of 2880 cores. SMX incorporates two
major features: Dynamic parallelism and Hyper-Q scheduling
1, which represent the main target of our study in this paper.
Before we describe those features, Table I performs a com-
parison between Fermi and Kepler based on those parameters
which are more relevant to CUDA performance.

Regular applications and massively parallel code can benefit
from higher number of warps and blocks which can simulta-
neously be executed on newer SMXs. Irregular and recursive
algorithms rely more on dynamic parallelism and Hyper-Q,
though at the expense of programmer’s effort.

1A preliminar Kepler GPU named K10 did not include any of these two
features.

TABLE I
FERMI AND KEPLER GPU FAMILIES SUMMARIZED.

GPU generation Fermi Kepler

Hardware model GF100 GK110

Threads per warp 32 32
Maximum number of warps per multiprocessor 48 64
Active blocks per multiprocessor 8 16
Maximum block size (in threads) 1024 1024
Maximum number of threads per multiprocessor 1536 2048
Maximum number of registers per thread 63 255
Maximum dimension for the grid of blocks 216 − 1 232 − 1

Dynamic parallelism No Yes
Hyper-Q No Yes

A. Dynamic parallelism

On a hybrid CPU-GPU system, the efficient execution of
applications with high degree of parallelism depends mostly
on the versatility for distributing the work between them by
exploiting the idiosyncrasies of each platform. Until 2013, a
CUDA-enabled GPU was seen as a coprocessor helping the
CPU with high speed-up factors, but low autonomy. Dynamic
parallelism allows the GPU to launch its own kernels, cre-
ate the events and threads required to control dependencies,
synchronize the results and control the task scheduling. This
frees the CPU, which can focus now on its own tasks in a
more efficient manner. The GPU also contributes with a more
straight processing of nested loops and recursive algorithms,
and in general, benefits from a more natural computation of
dynamic code and irregular data structures.

For example, now it is possible to determine at compile
time the number of threads dedicated to process the new
kernels created, and we can establish an initial set up with
a more conservative parallelism deployment which avoids
unnecessary computations on plain regions of an image, and
increase parallelism at run-time over those areas which we see
that require a more demanding processing as the computation
evolves.

B. Hyper-Q

The search of an optimal scheduler to manage the GPU
workload on a multiple stream code is one of the toughest
challenges for its architecture. Fermi allows the concurrent
execution of up to 16 streams, but they are implemented
underneath using a single queue, which forces to serialize
the execution. We can relax this constraint by reordering the
kernels of each stream, but this process is much tougher on
complex applications. Hyper-Q enables up to 32 concurrent
queues between the CPU and the CUDA workload distributor
on the GPU, endowing the design with flexibility and a
performance leap without changes in the implementation.
Now, each stream is managed independently on a different
hardware queue, without affecting dependencies in neighbor
queues, and streams may proceed in parallel coming from the
same or other CUDA program, MPI process or POSIX thread
(widely known as p-thread).

ANN. MULT. GPU PROG.

29

V. IMPLEMENTATION OF ZERNIKE MOMENTS

When optimizing Zernike moments for the Kepler archi-
tecture, our departure point will be the more recent version
developed for GPU [9]. Moreover, in order to unify compar-
isons with those versions already existing in the bibliography,
we will distinguish between direct and recursive methods.

Our baseline implementation belongs to the direct alterna-
tive for being more suitable to GPUs (skips data dependencies)
and more efficient on applications where selected orders and
repetitions have to be computed (the complete collection of
orders and repetitions within each order is not required).
Moreover, its implementation can take advantage of a couple
of optimizations:

• Parallelism. Our algorithm applies the same set of op-
erations on each pixel in an independent manner, thus
allowing a more natural use of data parallelism.

• Symmetry. One of the heaviest stages for computing
Zernike moments is the trigonometric calculations for the
unit disk which are applied for the transformation from
polar to cartesian coordinates. Symmetries on quadrants
and even octants allow to reuse many computations [12],
leading to speed-up factors of up to 8x on the GPU.

Our GPU implementation consists of five kernels which
accept a grayscale image as input and return the Zernike
moments as output relying on direct methods. If we adapt
this process to the CUDA programming model, we have:

1) Trigonometry for the unit disk. The first stage pro-
cesses the cartesian coordinates space with its trigono-
metric values (sin and cos) and distance, also discrimi-
nating those pixels which are outside the unit disk. This
stage takes advantage of aforementioned symmetries.

2) Zernike polynomials. Given the distances and sin/cos
values coming from the previous stage, we calculate the
Zernike polynomials for each pixel. The sum given by
equation 5 is performed on a shared memory space to
avoid repeated accesses to global memory in CUDA.

3) Application to the input image. The result of the space
obtained in the previous stage is multiplied with the
input image.

4) Pixel sum. The sum of pixels within the unit disk is
accumulated by using a sum reduction strategy. This
type of operator has been deeply studied for its CUDA
implementation, and we can luckily amortize this effort
here.

5) Pixel components sum. A similar operation is per-
formed for each pixel component to add its contribution
to the Zernike moment, and again, a reduction operator
is implemented following strategies already established.

Once the baseline implementation has been roughly de-
scribed, Table II outlines the hardware we have used along
our experimental study. We count on two GPUs of different
generations: A GF100 Fermi for a reference with the previous
architecture, and a Kepler GK110 which allows to quantify
improvements attained on newer SMXs with dynamic paral-
lelism and Hyper-Q.

VI. OPTIMIZING ZERNIKE MOMENTS ON KEPLER

This section analyzes those parts of our GPU implemen-
tation which can potentially benefit from features introduced
in the Kepler architecture, though we can anticipate that not
everyone we subscribe is going to lead to a faster execution.

A. Recursivity

We start describing the implementation of the recursive
method on the GPU, despite it looks like more challenging
that the direct counterpart for an efficient execution [9].

Within recursive methods, q-recursive is the more recent and
efficient [11] to compute all repetitions of Zernike moments
which correspond to a given order. The first couple of moments
belong to the two highest repetitions, and from that departure
point, lower repetitions are progressively computed through
static expressions involving those two moments immediately
higher. This methodology is successful on the CPU whenever
we compute several moments for the same order, but some
transformations are required on the baseline implementation
as it was already described in section V.

The CUDA code for this method is going to be built
by following an iterative process that calculates the Zernike
polynomials on each step for a given repetition taking as input
those moments previously stored. The memory space increases
proportionally to the number of repetitions to be computed, but
the complexity for this algorithm is lower and kernels which
do not depend on the repetition can be amortized for all the
iterations to be performed.

Kernels numbered as 1 and 4 in section V remain intact,
while all the others require to perform the following changes:

• Kernel 2, which applies Zernike polynomials to every
pixel must be split in two, as the nature of the iterative
algorithm prevents from linking the processing of Zernike
polynomials with its application to the point of the
cartesian coordinates space. Now, we have:
2.1 Zernike polynomials in its recursive way. It pro-

cesses Zernike polynomials recursively. This kernel
is executed as many times as repetitions we have
for the specific order(s) of the Zernike moments to
be computed. Each processed value uses its own
memory space.

2.2 Application to the cartesian space. Zernike polyno-
mials are applied over the whole space, together
with the trigonometric functions preceding them.

• Kernels 2.1, 3 y 5 increase its workload the same fac-
tor than the number of repetitions. This extra work is
performed by each thread, which distinguishes uniquely
the partition of the memory space where it has to access
thanks to its block ID and thread ID within the block.

B. Dynamic parallelism

Dynamic parallelism can be applied in several ways to
Zernike moments depending on the workload we offload from
the CPU to the GPU. We now describe different strategies that
can be eventually combined and their contributions:

ANN. MULT. GPU PROG.

30

1) Launch kernels from the GPU. The calls to the five
CUDA kernels deployed in the GPU version of the direct
method are shifted to the GPU scope, and now we launch
initially a single kernel composed of a single thread and
block. This root kernel performs all subsequent calls
to the code for computing Zernike moments on the
GPU, following what it was done in the original version
implemented on the CPU.

2) Calculate a repetition from each thread. In this case,
we exploit dynamic parallelism to calculate all moments
for a given order. In the original version following the
direct method, it would be necessary to apply a loop
for iterating on the number of repetitions. By apply-
ing dynamic parallelism, the implementation would be
equivalent to that of the previous paragraph, but with
each kernel having one thread for each repetition. In
order to avoid redundancies in the computations, those
kernels in common for all the repetitions would be
processed from the same thread.

3) Parallelize the loop of the Zernike polynomials. The
for loop required to calculate Zernike polynomials
using the direct method (see Figure 1) is a good potential
candidate to take advantage of dynamic parallelism.
Each pixel requires this calculation, so each of them will
launch a new kernel to process concurrently the work of
such loop.

C. Hyper-Q

In order to exploit Hyper-Q, we have to set up a process
decomposed in several flows of concurrent execution which
are free of dependencies. This goal is attainable on Zernike
moments, similarly to the previous section where we needed
to calculate all the repetitions for the Zernike moments of an
specific order.

Hyper-Q is transparent to the programmer. All we have to
do is enable CUDA streams to benefit from multiple queues of
concurrent execution. The increment in the number of queues
from 16 in Fermi to 32 in Kepler becomes crucial in the
new architecture given the larger number of CUDA cores,
because now, with a number close to three thousand, it is more
likely that a single kernel can only occupy a fraction of them.
By distributing kernels in different CUDA streams whenever
possible, additional streams may use those processors that are
idle after the first grid of blocks is deployed for the execution
of a first kernel.

VII. EXPERIMENTAL RESULTS

Table II summarizes hardware features for the GPUs we
have used along our experimental evaluation.

We have used a single precision floating-point data type and
all image sizes starting from 64x64 until 2Kx2K pixels. The
maximum order for the Zernike moments has been 34 because
it is a limit imposed by the hardware for the calculation
of the factorial numbers which are used within the Zernike
polynomials.

TABLE II
SUMMARY OF GPU FEATURES FOR THE HARDWARE WE HAVE USED TO

RUN OUR IMPLEMENTATIONS.

GPU generation Fermi Kepler

Commercial model Tesla C2075 Tesla K20c
Type of multiprocessor SM (32 cores) SMX (192 cores)
Number of multiprocessors 14 13
Total number of CUDA cores 448 2496
Frequency for the cores 1.15 GHz 710 MHz
Peak performance 1030 GFLOPS 3.52 TFLOPS
Frequency for the memory 2x 1566 MHz 2x 2600 MHz
Bus width for the memory 384 bits 320 bits
Memory bandwidth 148 GB/s. 208 GB/s.
Memory size (GDDR5) 6 Gbytes 5 Gbytes
Bus from/to CPU PCI-e x16 2.0 PCI-e x16 2.0

ALUs / SM(x) 32 192
32-bit FPUs / SM(x) 32 192
64-bit FPUs / SM(x) 16 64
Load/Store Units / SM(x) 16 32
Special Function Units / SM(x) 4 32

A. Architectural changes: SMX

First of all, we pretend to quantify those improvements due
to architectural changes, without making any change on the
CUDA implementation. Table III shows the execution time on
Fermi and Kepler for our baseline implementation described
in section V, and compares speed-up factors. Those factors
move in a window between 0.67x (slower) and 2.64x. The
minimum value represents an execution time 1.5 times slower,
which corresponds to the smaller image size, and similarly, the
maximum speed-up of 2.64x is attained when the workload
reaches its maximum value.

The GPU as general-purpose coprocessor, along with its
data-parallel model, shine more when the input image size
grows, which explains why Kepler migration runs faster when
the number of pixels to process becomes huge. The smaller
image size is 4096 pixels, evenly distributed among CUDA
blocks spread through GPU multiprocessors. Fermi’s SM
multiprocessor may process up to 2 warps concurrently, which
leads to 896 pixels to process in our Fermi GPU (2x32x14).
Kepler’s SMX multiprocessor reaches up to 8 warps for a total
of 3328 simultaneous pixels to be exploited by hardware re-
sources underneath (the GPU back-end). In this particular case,
even though the architecture has been improved, resources are
underused, and the much higher frequency in Fermi, leads to
a winner execution.

With a size of 128x128 pixels, the workload saturates
the maximum number of threads that Fermi can process
concurrently, whereas Kepler reaches 75.7% of its maximum
occupancy. For this image size, performance is similar on both
architectures because Kepler does not exploit all hardware
capabilities but can issue and schedule warps all together
(Fermi requires a second round to schedule remaining blocks).

For images of larger size, Kepler improvements grow until
they reach 100% of hardware resources available being used.

ANN. MULT. GPU PROG.

31

TABLE III
EXECUTION TIMES (IN MILLISECONDS) TO PROCESS ALL REPETITIONS FOR A GIVEN ORDER FOR ZERNIKE MOMENTS THROUGH DIRECT METHODS.

INPUT IMAGES ARE SQUARED WITH DIMENSIONS POWER OF TWO WITHIN A RANGE BETWEEN 64 AND 2048.

Zernike Fermi GPU Kepler GPU Improvement factor
moments 64 128 256 512 1024 2048 64 128 256 512 1024 2048 Minimum Maximum

A4,∗ 0,12 0,17 0,37 1,11 4,08 15,75 0,18 0,19 0,33 0,61 1,91 7,17 0,67x 2,20x
A8,∗ 0,20 0,32 0,74 2,36 8,83 34,71 0,28 0,31 0,46 1,16 3,86 14,74 0,71x 2,35x
A12,∗ 0,29 0,50 1,21 4,08 15,32 60,41 0,41 0,44 0,72 1,88 6,42 24,67 0,71x 2,45x
A16,∗ 0,38 0,72 1,82 6,14 23,49 92,05 0,53 0,58 1,00 2,72 9,55 36,93 0,72x 2,49x
A20,∗ 0,51 0,97 2,50 8,68 33,37 130,93 0,67 0,74 1,33 3,75 13,28 51,56 0,76x 2,54x
A24,∗ 0,61 1,27 3,31 11,76 45,39 176,51 0,80 0,90 1,70 4,92 17,64 68,59 0,76x 2,57x
A28,∗ 0,74 1,59 4,23 15,20 58,20 229,20 0,97 1,09 2,11 6,23 22,52 87,87 0,76x 2,61x
A32,∗ 0,87 2,00 5,27 18,89 73,30 288,76 1,14 1,29 2,58 7,70 28,04 109,53 0,76x 2,64x
A34,∗ 0,95 2,16 5,89 20,96 81,29 319,76 1,22 1,39 2,81 8,48 31,01 121,23 0,78x 2,64x

On a vertical analysis, the order increment in Zernike
moments to be computed requires an additional execution
of the algorithm for every couple of orders. This additional
workload increases the computational time with a slight benefit
for the GPU in the global process.

B. Workload set up

Raising the number of cores within the SMX multiprocessor
in a 6x factor with respect to SM in Fermi poses a question
about the optimal set up for the size of the block in the CUDA
grid. On Fermi GPUs endowed with SMs of 32 cores, a value
between 128 and 256 threads was optimal to achieve 100%
occupancy as long as there were no restrictions about the use
of registers and shared memory. On Kepler GPUs with SMXs
having 192 cores, this requires a more demanding analysis.

Fig. 2. Execution time on Kepler to evaluate performance (on the right scale
and using a blue solid line) as a function of the CUDA block size. Those
values are compared with the theoretical occupancy for the architecture on
the left scale using a red dashed line.

Figure 2 unveils the execution times for the kernel com-
puting the Zernike polynomials, that being the critical kernel
as long as resources is concerned. Times in the right scale
(solid line) are compared with the theoretical ones for blocks
of different sizes, leading to the occupancy depicted on the left
scale (dotted line). Even though peak performance is usually

attained for block sizes of a power of two from 128 threads
on, our results are slightly better for an exact block size of 128
threads, the lower among the potential candidates. However,
the bigger divergence between theory and practice corresponds
to those cases when the number of threads per block is not
enough to exploit resources, and also when an additional block
exceeds the limit of threads to be simultaneously executed
on a single multiprocessor, leading to a block sacrificed from
concurrent execution.

1) If the block contains less than 128 threads, the limitation
for not reaching the maximum number of threads per
multiprocessor is imposed by the maximum number of
blocks scheduled. On Kepler GPUs, we can execute up
to 16 active blocks on each SMX multiprocessor, and the
formula for occupancy takes the following expression:

Occupancy =
Threads ∗ 16

2048
(8)

2) When the number of threads allocated on a multipro-
cessor reaches its maximum value, an additional block
may exceed this maximum and, therefore, the number of
allowed blocks does not exploit all hardware resources.
The worst case scenario (69% occupancy) corresponds
to a set up of 704 threads per block where only two
active blocks can be scheduled (three blocks lead to
2112 threads, exceeding the maximum of 2048 on each
multiprocessor). In general, the following expression can
be applied to calculate the percentage of occupancy:

Occupancy =
BlockSize ∗ NumberOfActiveBlocks

2048
(9)

C. Dynamic parallelism

The use of dynamic parallelism that we described in section
VI-B is going to be evaluated here to discuss when its
application is profitable. Table IV(a) shows that its simplest
use, tagged “Launch kernels from the GPU”, and the strategy
“Calculate a repetition from each thread” are not profitable.
Those results were taken for moments with specific orders
and repetitions to give an idea about the execution times for

ANN. MULT. GPU PROG.

32

TABLE IV
EXECUTION TIMES AND ACCELERATION FACTORS ATTAINED FOR

DIFFERENT STRATEGIES MAKING USE OF DYNAMIC PARALLELISM ON
SQUARE IMAGES OF DIFFERENT SIZES. THE UPPER TABLE SHOWS

SELECTED ZERNIKE MOMENTS, THE LOWER ONE SWEEPS OVER ALL
REPETITIONS FOR A GIVEN ORDER.

(a) Execution times in milliseconds without/with dynamic parallelism.

Zernike Dyn. par. disabled Dyn. par. enabled Performance gain
moment 64 256 1024 64 256 1024 Min. Max.

A0,0 0,08 0,10 0,56 0,16 0,20 0,88 0,48x 0,64x
A6,2 0,08 0,13 0,93 0,16 0,22 1,26 0,53x 0,74x
A12,0 0,09 0,16 1,43 0,16 0,27 1,79 0,58x 0,80x
A25,13 0,09 0,17 1,52 0,16 0,27 1,88 0,59x 0,81x
A34,0 0,12 0,28 3,07 0,18 0,38 3,51 0,65x 0,88x
A34,18 0,10 0,19 1,82 0,16 0,29 2,20 0,60x 0,83x
A34,34 0,08 0,10 0,63 0,16 0,20 0,95 0,49x 0,66x

(b) Execution times in milliseconds using dynamic parallelism.

All moments Image size
for a given order 64 128 256 512 1024 2048

A4,∗ 0,73 0,70 0,78 0,70 0,71 0,72
A8,∗ 0,82 0,76 0,71 0,75 0,76 0,76
A12,∗ 0,89 0,82 0,76 0,79 0,79 0,79
A16,∗ 0,91 0,84 0,78 0,80 0,81 0,81
A20,∗ 0,93 0,86 0,81 0,82 0,82 0,82
A24,∗ 0,93 0,87 0,82 0,84 0,84 0,84
A28,∗ 0,95 0,89 0,84 0,85 0,85 0,85
A32,∗ 0,96 0,91 0,85 0,86 0,86 0,86
A34,∗ 0,96 0,90 0,85 0,86 0,86 0,86

individual moments in addition to compare the results with
dynamic parallelism.

In the first case, execution times increase a factor between
1.15x ad 2.15x (see Table IV(a)). This variance depends on the
overhead for calling a new kernel from the GPU. The penalty
is lower on larger image sizes and moments more demanding
computationally (those with a higher difference between the
order and its repetition).

For the second strategy, performance worsens up to a 1.4x
factor following the previous strategy (see Table IV(b)). In this
case, performance is better on small images due to processing
a set of moments which make a better use of hardware
resources. This would not be possible for isolated moments.
In summary, performance on small images is sensitive to two
main aspects: launching kernels from the GPU itself, and the
parallel execution for a collection of moments characterized
by a chain An,∗ (the whole set of repetitions required by an
order n).

The third strategy, called “Parallelize the loop of the Zernike
polynomials” is quite ambitious for its dynamic nature. How-
ever, experimental tests show immediately that performance
here is very poor. The implementation requires each thread
to launch a new kernel, and time skyrockets to reach 1000x
factors quickly. We have measured the time consumed for
each GPU kernel call, obtaining values between 5 and 16
µsecs., whereas the kernel call executed from the CPU side

(a) Improvements achieved with Hyper-Q on Kepler.

(b) Improvements achieved with concurrent kernels in Fermi.

Fig. 3. Performance gains with the use of CUDA streams for different image
sizes when we raise the set of Zernike moments to compute.

consumes around de 3 µsecs. It does not seem logical to
assume that the kernel launch introduces more overhead when
it is generated from circuitry much closer to the GPU, and
we believe that this slowdown will be solved on more mature
versions of the drivers and/or subsequent enhancements on
SMX multiprocessors.

Nevertheless, dynamic parallelism is oriented to applica-
tions following a “divide and conquer” strategy, and must
be used with similar guidelines already popular in GPUs:
Making few calls to kernels dealing with a huge amount of
data. Another feature shortening the scope of application for
dynamic parallelism is the constraint that each thread cannot
access the shared memory space of its father kernel. The
information to be shared among father and sons are delegated
to global memory space, incurring a performance penalty
which sometimes is decisive.

ANN. MULT. GPU PROG.

33

D. Hyper-Q

In order to take advantage of Hyper-Q in our algorithm,
we define a stream for each repetition when we aim to
compute all repetitions for a given order. Figure 3(a) compares
the acceleration factor when Hyper-Q is enabled under these
assumptions, varying the order for the Zernike moments and
the size of the input images.

The maximum gain obtained is 2.2x, whereas our worst
performance result is a draw with the basic implementation (no
speed-up). This parity situation arises for a workload capable
of filling all hardware resources. If the image size is such that
keeps all GPU resources busy, there are no leftovers to be ex-
ploited by additional streams via Hyper-Q, and those streams
will end up executed sequentially on working queues. On the
other hand, on smaller image sizes, gains increase lineally
with the number of repetitions to compute for each moment.
The maximum performance is attained when processing the
smallest image and the Zernike moment of highest order. This
scenario is ideal for exploiting Hyper-Q, as the little workload
required by each image can be compensated by eventually
allowing additional images to be processed in parallel.

Since using Hyper-Q does not require any change from the
developer’s side and the queues manager to process the streams
is transparent, the same implementation executed on Fermi
hardware provides us some insights about the improvements
that were brought to the GPU when concurrent kernels were
enabled. Figure 3(b) shows, following what we did in Kepler,
the gain factor obtained when we count on that feature in
Fermi. Performance results are similar, but this time the
smaller image size maximizes performance on lower moment
orders because it is already enough to reach full occupancy of
hardware resources. In particular, the maximum factor is 1.86x
on 11 streams, a situations which arises for the computation
of the twentieth moment (A20).

Hyper-Q has contributed with a maximum speed-up of
1.74x in addition to what we had already attained using
concurrent kernels in Fermi.

The previous analysis combines those improvements intro-
duced by Hyper-Q with those due to the full occupancy of
hardware resources on GPU multiprocessors. Now we pretend
to isolate the acceleration provided by Hyper-Q by conducting
an experiment on a 16 x 16 image size (which matches our
CUDA block size). This way, a conventional execution of all
repetitions for a given order is performed sequentially and
without taking advantage of all resources (a single block is
sent per iteration). When using Hyper-Q or concurrent kernels,
resources usage increases due to the parallel execution of
repetitions.

Figure 4 shows the results comparing Fermi and Kepler
under those assumptions. Fermi is ahead in performance when
the parallelization does not use streams (the image size is too
small). This result was already explained in section VII-A
on images of 64x64 pixels. When Hyper-Q is enabled in
Kepler or concurrent kernels are used in Fermi, the gain factor
is higher in Kepler (1.7x), even though its execution time

Fig. 4. Comparative analysis for the improvements attained by the GPU
when the input image has 16 x 16 pixels, which correspond to a CUDA
block of threads. This pretends to isolate the benefit obtained by Hyper-Q
and concurrent kernels in our execution.

remains slower than Fermi. This make us believe that Hyper-
Q is a great partner to exploit the increment in number of
processing cores, but does not contribute much to the pillars
deploying parallelism in CUDA, namely, blocks of threads
within multiprocessors and grids of concurrent blocks among
multiprocessors. Our hypothesis will be validated after the
recursive approach of the Zernike moments be analyzed in
the following section.

E. Recursive methods

Until now, we have exploited dynamic parallelism and
Hyper-Q to compute all repetitions for a given order of Zernike
moments. This is the easiest way to increase the amount of
data to compute and skip data dependencies, but section VI-A
described recursive algorithms too. If we explore this path,
we will definitely have a faster execution on the CPU, but
less opportunities to apply parallelism on the GPU.

Table V shows the execution times obtained when we
apply the q-recursive method on Fermi and Kepler GPUs, and
compares those with respect to the direct methods formerly
executed, where chances for deploying parallelism are higher.
Results favor the recursive implementation in almost every
case, with the exception of the moment of lowest order and
the smallest image. Accelerations grow as we increase the
moment order and the image size, and so Fermi does the
same. We find two reasons to justify this amazing result: First,
the recursive implementation reduces the complexity of the
operations, and therefore, the GPU workload, which penalizes
the Kepler platform. Second, the reference time is higher in
Fermi, and this departure point grants higher potential for
improvements in this platform.

F. Recursion versus Hyper-Q in direct methods

Previous sections tackled Zernike moments from two dif-
ferent perspectives: Using direct methods, which allow to

ANN. MULT. GPU PROG.

34

TABLE V
EXECUTION TIMES (IN MILLISECONDS) FOR SQUARE IMAGES OF DIFFERENT SIZES VIA THE q-recursive METHOD ON FERMI AND KEPLER GPUS. GAINS

ON THE LAST FOUR COLUMNS ARE CALCULATED TAKING AS REFERENCE THE TIME ELAPSED BY THE DIRECT METHOD.

Zernike Fermi GPU Kepler GPU Gain on Fermi Gain on Kepler
moments 64 128 256 512 1 K 2 K 64 128 256 512 1 K 2 K Min Max Min Max

A4,∗ 0,08 0,12 0,29 0,90 3,31 13,07 0,11 0,12 0,24 0,59 2,01 7,76 1.21 1.50 0.92 1.62
A8,∗ 0,11 0,17 0,45 1,50 5,78 22,53 0,14 0,16 0,32 0,91 3,27 12,73 1.53 1.92 1.16 2.05
A12,∗ 0,12 0,23 0,61 2,12 8,12 32,12 0,17 0,20 0,42 1,25 4,54 17,73 1.88 2.35 1.39 2.34
A16,∗ 0,14 0,28 0,79 2,74 10,58 41,66 0,20 0,24 0,52 1,58 5,82 22,79 2.21 2.67 1.62 2.58
A20,∗ 0,17 0,34 0,95 3,36 13,13 51,35 0,23 0,29 0,62 1,91 7,11 27,87 2.54 3.07 1.85 2.88
A24,∗ 0,19 0,39 1,12 3,98 15,59 60,88 0,26 0,32 0,72 2,24 8,38 32,93 2.90 3.26 2.08 3.06
A28,∗ 0,21 0,45 1,28 4,60 17,97 70,56 0,28 0,36 0,82 2,58 9,66 38,03 3.24 3.56 2.31 3.42
A32,∗ 0,23 0,50 1,45 5,31 20,41 80,19 0,32 0,41 0,93 2,92 10,95 43,15 3.56 4.02 2.54 3.52
A34,∗ 0,24 0,52 1,54 5,55 21,64 85,00 0,33 0,44 0,98 3,09 11,59 45,70 3.76 4.12 2.65 3.66

Fig. 5. Experimental comparison between the recursive method and the direct
method using Hyper-Q. Those values greater than 1 mean higher performance
on the recursive side.

apply higher degree of parallelism, and recursive methods,
which amortize the computational cost of previous orders and
repetitions. A final comparison between those two strategies
will determine the winner technique in the GPU arena.

Figure 5 shows the comparison between the two methods,
a battle where brute force and smart computation meet. Re-
cursive methods win on Fermi and Kepler, showing a scalable
and linear behavior with the moment order for the whole range
considered (up to an order of 34).

Moreover, larger image sizes benefit to Kepler GPUs. This
is because SMX multiprocessors use a larger number of GPU
cores when a conventional workload distribution is applied
via the CUDA grid. Once we have reached the necessary
data volume to feed all computational cores, the overhead
introduced by a more sophisticated Hyper-Q when managing
kernels and streams is clearly amortized.

The main conclusion we draw from this analysis is that
the parallelism deployment inherent to algorithms must be
focused on exploiting intra-block concurrency (among the
cores of each multiprocessor) and the number of active blocks
(among the multiprocessors of a GPU), leaving the third level

of concurrent kernels and Hyper-Q as a third party when
the workload does not allow to saturate the high number
of computational cores and resources. This situation often
arises within the context of irregular applications where data
volume is spread on a huge set of small tasks where each
of them deals with little data structures, say lower than a
thousand elements. It will also be a likely assumption in future
hardware generations endowed with larger number of cores,
which indicates that we are just at the beginning of a long way
road to exploit the potential hidden by Hyper-Q as a parallel
schedule resource.

G. Software needs versus hardware availability

The hardware evolution from the G80 (the first CUDA-
enabled GPU) to Fermi and later Kepler has been driven by
an astonishing increment in the number of functional units,
computational cores dedicated to integer arithmetic (ALUs),
floating-point computations (FPUs), special function units
(SFUs) and load/store units. A tough question to be answered
by hardware designers is how many cores they dedicate to each
kind of computation, and how well those percentages fit into
the software needs of every particular CUDA code. Algorithms
using units in the right proportion will exploit better the GPU
versus those persistently using the same type of functional unit
at the expense of leaving others idle.

We have wondered this for our case study, and Table VI
gives the appropriate answer for our second and third CUDA
kernels when executed on Fermi and Kepler. We have chosen
these two kernels because the first one is too simple, and
the fourth and fifth ones implement reduction operators which
have been extensively studied in the literature.

In the second kernel, Kepler dedicates less percentage of
units to double precision and more to special function units,
which is good for the code requirements. On the contrary,
it generates a higher bottleneck on load/store units and ex-
ceeds more the availability of integer arithmetic and single
precision FPUs. Overall, Fermi fits better into what this kernel
computationally demands. But fortunately, memory bandwidth
comes to a rescue here, as it has been increased from 36.6
GB/s in Fermi to 468.1 GB/s in Kepler, which means higher

ANN. MULT. GPU PROG.

35

TABLE VI
HARDWARE AVAILABILITY OF GPU RESOURCES VERSUS THE USE THAT OUR CUDA KERNELS MAKE OF THEM. WE EVALUATE OUR SECOND AND THIRD

KERNELS ON FERMI AND KEPLER GPUS.

GPU resources ALUs Single Precision FPUs Double Precision FPUs Load/Store Units Special Function Units

Offered by Fermi SM multiprocessors 32% 32% 16% 16% 4%
Offered by Kepler SMX multiprocessors 37.5% 37.5% 12.5% 6.25% 6.25%

Required by our second CUDA kernel 23.7% 30.9% 0.0% 21.0% 24.4%
Who fits better into our second kernel needs Fermi Fermi Kepler Fermi Kepler

Required by our third CUDA kernel 22.2% 22.2% 0.0% 55.6% 0.0%
Who fits better into our third kernel needs Fermi Fermi Kepler Fermi Fermi

throughput for every kind of instruction, particularly when the
programmer makes an extensive use of shared memory.

Another path to explore at this point is to avoid the use of
intrinsic CUDA instructions to delegate all math operators onto
conventional floating-point units, leaving aside SFUs. When
this variant is accomplished in Kepler, performance decreases
as the workload raises, converging to a 3x factor. And the
slowdown is even higher in Fermi for having less percentage
of single precision FPUs. Such a remarkable difference in
performance justifies the presence of SFUs in SMX multi-
processors, having increased from 4 in Fermi to 32 in Kepler.
Even though these special math functions are not widely used,
the computation of a counterpart version on typical FPUs use
classic algorithms decomposed into polynomial approaches
that are way inefficient.

Finally, the third kernel represents a simpler case where
both platforms are bandwidth limited, reaching 188.7 GB/s
and 120.7 GB/s for Kepler and Fermi, respectively. Kepler in-
creases bandwidth more than 50% here, which is profitable for
issuing warps more aggressively on the front-end (Kepler can
issue up to eight warp-instructions coming from four different
warps, whereas Fermi can only issue a pair). Looking at the
back-end, Fermi contains a higher percentage of load/store
units, but Kepler increases the number up to the warp size.
That is the optimal number for the active warps consuming the
video memory bandwidth or when playing with the 32 banks
of shared memory. Wasted resources are double precision
FPUs and SFUs this time, with a percentage around 20%
of total hardware resources deployed by Fermi and Kepler.
Integer and single precision floating-point arithmetic needs
match (22.2% each), being Fermi closer than Kepler (32%
for those type of units versus 37.5% provided by Kepler).

Overall, thanks to the higher memory bandwidth, the front-
end and back-end seem quite compensated in Kepler for the
computational requirements of our kernels, whereas Fermi
offers a better balance of computational units inside the
back-end and shows shortages on the front-end for issuing
instructions when the kernel is embarrassingly parallel.

VIII. CONCLUSIONS

This work analyzes the GPU capabilities for accelerate the
computation of Zernike moments, focusing on the Kepler
architecture and its SMX multiprocessor. The architectural
changes from the previous Fermi generation are remarkable

and have allowed us to improve performance up to 265%
using the same implementation, with higher gains relying on
dynamic parallelism and Hyper-Q. Dynamic parallelism was
not profitable due to an overhead detected on the mechanisms
for launching kernels internally from the GPU. We expect this
shortcoming to be fixed as Kepler hardware evolves. On the
positive side, Hyper-Q increases performance up to 220% with
respect to the baseline implementation of direct methods in
Kepler, producing better results when the workload coming
from a single kernel does not saturate the number of cores
available on the GPU. This gain can be improved in parallel
codes using POSIX threads or even MPI.

The recursive method is improved on the Kepler architecture
even though we sacrifice most of the parallelism to deploy
on the GPU and Hyper-Q benefits. As compared to direct
methods, results worsen only up to an order of six, improving
from that Zernike moment on to reach percentages of 350%.

Ultimately, the best method for computing Zernike moments
on the GPU depends on our application idiosyncrasy. A broad
set of problems like image classifiers and texture characteriza-
tion require only a small number of selected moments (those
showing better discrimination properties after a preliminary
analysis). Other examples like image compression and recon-
struction rely on the whole set of repetitions and orders of
high degree where the recursive formulation can be applied
on a second dimension in our parameters space. This work
studies a hybrid situation which considers the computation of
all repetitions for a given order, finding the basic criteria to
select the more advantageous implementation on GPUs: Either
using direct methods thanks to the parallelization mechanisms
in CUDA, or via the recursive formulation despite of its good
behavior on CPUs. And our results are more competitive when
the input image grows in size and the underlying hardware
increases the number of functional units available, two factors
which are expected to follow a scalable evolution for the
software applications and hardware platforms yet to come.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Education of
Spain under projects TIN2009-14475-C04 and by the Junta de
Andalucı́a under Project of Excellence P12-TIC-1741. We also
thank NVIDIA for hardware donation under CUDA Teaching
Center 2011-14, CUDA Research Center 2012-14 and CUDA
Fellow 2012-14 Awards.

ANN. MULT. GPU PROG.

36

REFERENCES

[1] Y. Bin and P. Jia-Xiong, “Invariance analysis of improved Zernike
moments,” Journal of Optics A: Pure and Applied Optics, vol. 4, no. 6,
p. 606, 2002.

[2] A. Khotanzad and Y. H. Hong, “Invariant image recognition by Zernike
moments,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 12, no. 5, pp. 489–497, 1990.

[3] Y. S. Abu-Mostafa and D. Psaltis, “Recognitive aspects of moment in-
variants,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, no. 6, pp. 698–706, 1984.

[4] M. R. Teague, “Image analysis via the general theory of moments,” J.
Opt. Soc. Am, vol. 70, no. 8, pp. 920–930, 1980.

[5] Ø. Due Trier, A. K. Jain, and T. Taxt, “Feature extraction methods for
character recognition - a survey,” Pattern recognition, vol. 29, no. 4, pp.
641–662, 1996.

[6] C.-H. Teh and R. T. Chin, “On image analysis by the methods of mo-
ments,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 10, no. 4, pp. 496–513, 1988.

[7] R. Mukundan and K. Ramakrishnan, “Fast computation of Legendre and
Zernike moments,” Pattern recognition, vol. 28, no. 9, pp. 1433–1442,
1995.

[8] M. Al-Rawi, “Fast Zernike moments,” Journal of Real-Time Image
Processing, vol. 3, no. 1-2, pp. 89–96, 2008.

[9] M. J. Martı́n-Requena and M. Ujaldón, “Leveraging graphics hardware
for an automatic classification of bone tissue,” in Computational Vision
and Medical Image Processing. Springer, 2011, pp. 209–228.

[10] M. J. Martin-Requena and M. Ujaldon, “High performance computation
of moments for an accurate classification of bone tissue images,” in High
Performance Computing and Communications (HPCC), 2011 IEEE 13th
International Conference on. IEEE, 2011, pp. 593–598.

[11] C.-W. Chong, P. Raveendran, and R. Mukundan, “A comparative anal-
ysis of algorithms for fast computation of Zernike moments,” Pattern
Recognition, vol. 36, no. 3, pp. 731–742, 2003.

[12] S.-K. Hwang and W.-Y. Kim, “A novel approach to the fast computation
of Zernike moments,” Pattern Recognition, vol. 39, no. 11, pp. 2065–
2076, 2006.

[13] NVIDIA, “Parallel programming and computing platform,” http://www.
nvidia.es/object/cuda home new es.html, Jun. 2013.

[14] NVIDIA, “The Kepler architecture,” http://www.nvidia.com/object/
nvidia-kepler.html, Jun. 2013.

ANN. MULT. GPU PROG.

37

