ANN. MULT. GPU PROG.

Comparing multicore implementations of
evolutionary meta-heuristics for transportation
problems

Raul Baiios*!2
IDpt. of Business Administration
and Management, Catholic University
of Murcia, Campus de los Jerénimos s/n,
E-30107 Guadalupe, Murcia (Spain),
(+34)968278656, rbanos @ucam.edu

Abstract—The set of NP-hard problems require vast computa-
tional resources to solve exactly. With the aim of overcoming this
limitation several heuristic and meta-heuristic approaches have
been proposed in the past. However, the performance of these
approaches degradates when solving large problem instances
of complex problems. Fortunatelly, parallel processing can be
applied to obtain better solutions than the sequential algorithm
in the same runtime. The traditional fields of improvement in
parallelism have been orientated to experimentation on high-
budget equipment, such as clusters of computers or shared me-
mory machines thanks to their high-performance and scalability.
In recent years, the generalization of multi-core microprocessors
in almost all the computing platforms makes it possible to take
advantage of parallel processing even for the desktop computer
user. This paper analyzes the performance of population-based
meta-heuristics using MPI, OpenMP, and hybrid MPI/OpenMP
implementations in a workstation having a multi-core processor
when solving a vehicle routing problem, one of the major tasks
in the context of transportation. The results obtained when using
different number of processes/threads show that these parallel
implementations produce high quality solutions compared with
the sequential algorithm.

Keywords: Parallel computing, Multi-core processors, MPI,
OpenMP, Hybrid MPI/OpenMP, Vehicle Routing Problems.

I. INTRODUCTION

Most real optimization problems cannot be solved exactly
because they have extremely large and complex search spaces.
To overcome this drawback, researchers have proposed a wide
set of meta-heuristics (extensions of heuristic algorithms to
tackle general problems) for solving optimization problems
arising in several domains. However, the continuous increase
in the complexity of real applications often involves that
meta-heuristics obtain a poor performance when solving large
instances of hard problems in a limited runtime. Thanks to the
advances in computer hardware it is now possible to reduce
the runtime required to obtain solutions of a given quality even
in low-cost computers having multi-core processors [5].

Given a parallel architecture, the decisions to be taken
before to parallelize the sequential code are to determine which
parallel model is more suitable to implement the algorithm,
and the software library to be used. According to the literature
[10], the parallel models that are often used to determine the

Julio Ortega®
2Dpt. of Computer Architecture and
Technology, CITIC-UGR, University
of Granada, C/Periodista Daniel
Saucedo s/n, E-18071 Granada (Spain),
jortega@ugr.es

Consolacién Gil3
3Dpt. of Informatics, ceiA3,
University of Almeria, La
Cafada de San Urbano s/n,
E-04120 Almeria (Spain),
cgilm@ual.es

implementation strategy are: (i) The master-worker paradigm,
where the master process divides the work amongst the wor-
kers, who complete the required work and return the result to
the master. The master then organizes the received informa-
tion, being the master processor responsible for synchronizing
communications, collecting and distributing data, etc.; (ii) the
diffusion, also known as fine-grained paradigm, that considers
a conceptual population like the master-worker paradigm, but
this population contains only a few individuals; (iii) the island-
based paradigm, also termed distributed or coarse-grained
paradigm, consists in dividing the entire population of the
sequential algorithm into several sub-populations distributed
among different processors. These sub-populations or islands
evolve, mainly in isolation, by executing all the steps of
the algorithm, although it is possible to share information
by migrating solutions between islands. The performance of
island-based parallelizations is often influenced by two main
design parameters: the migration topology and the frequency
of these migrations; (iv) hybrid models that combine different
implementation strategies.

Some software components have been standarized to im-
plement parallel algorithms [23], [8], [7], [19]. Pthreads [7] is a
low level standard for multi-threaded programming that works
by dividing a program into subtasks which execution can be
executed in parallel. The MPI (Message Passing Interface) [23]
is a portable, efficient, and flexible standard specification for
the developers and users of message passing libraries. MPI
runs on virtually any hardware platform, including those that
based on shared, distributed, and hybrid memory architectures,
and allows to write parallel programs by providing routines
to initiate and configure the message environment as well as
managing some of the tasks of the parallelization, such as
decomposing and distributing the starting points of search, mo-
ments of communication, synchronization of communications,
etc. The OpenMP [8] is a portable and scalable model for
specifying shared memory parallelism in Fortran and C/C++
programs in platforms ranging from laptop computers to super-
computers. The standard OpenMP allows the multi-threaded
execution of a program thanks to the fact that compiler
directives exploit loop level parallelism using the well-known
fork-and-join execution model. Further, it is also possible to
use a hybrid programming model which uses OpenMP for
parallelization inside the node and MPI for message passing

between nodes [9]. In the context of multi-core architectures,
the question arises whether it might be advantageous or not
to use more than one MPI process with multiple threads
running on a node so that there is at least some explicit intra-
node communication. The Vehicle Routing Problem (VRP)
[12] and its multiple variants have been extensively tackled
by sequential [6] and parallel [3] meta-heuristics, but no
hybrid MPI/OpenMP implementations have been reported for
solving large problem instances of VRPTW. Since both, the
OpenMP and the MPI paradigms, have different advantages
and disadvantages, and as the VRPTW is a problem whose
cost functions are relatively easy to compute but the search
space is very large, a priori it is not possible to determine
which implementation strategy and software library would
obtain the best results. This paper analyzes the performance of
population-based meta-heuristics using MPI, OpenMP, and hy-
brid MPI/OpenMP implementations in a workstation having a
multi-core processor when solving the vehicle routing problem
with time-windows (VRPTW).

The paper is further organized as follows: Section 2 for-
mally describes the VRPTW. Section 3 presents the framework
of this research, including a population-based meta-heuristic
(MT-SA) which is parallelized using different parallel models
and software libraries. Section 4 presents the results of the
empirical analysis carried out in a multi-core workstation,
while conclusions are drawn in Section 5.

II. THE VEHICLE ROUTING PROBLEM WITH TIME

WINDOWS

Vehicle Routing Problem (VRPs) have been the subject
of intensive research, not only because its high complexity,
but also for its considerable economic impact on all logistic
systems [1] and its relevance in supply chain operations. The
basic VRP [12] and its variants are NP-hard multi-constrained
combinatorial optimization problems that consist in providing
goods from a supply point to several geographically dispersed
demand points by satisfying a set of constraints. Routes are
designed to start and end at the depot and the total demand
met by any route cannot exceed the vehicle capacity. The
customers are placed in diverse geographical locations and
have pre-established requirements of goods and service time.
The goods can only be supplied once by exactly one vehicle.
Thus, the problem is to minimize the total distance travelled
by all the vehicles while satisfying these constraints. The
Vehicle Routing Problem with Time Windows (VRPTW) [13]
extends the typical Capacitated VRP by including time window
constratins, such that customers only allow the service within
a given time interval (time window). A large number of
approaches have been proposed and discussed in the past,
including deterministic [13] and stochastic approaches [6].

The VRPTW is often modeled as a graph theoretical
problem [13], where G = (V, E) is a non-directed complete
graph, the vertices V' = {1,..., N} correspond to the depot
and the customers, and the edges e € E{(i,5) : 4,j € V} to
the links between them.

Decision variable

Xk — 1 if vehicle k travels from node i to node j
i 7 1 0 otherwise

10

ANN. MULT. GPU PROG.

Parameters
a; is the earliest time for customer j to allow the service,
b; is the latest time for customer j to allow the service,
Cy; 1is the cost of travelling from node i to node j (here, Cj;

is considered as the distance or time required for travelling
from node i to node j),

d; is the demand at customer j,
K is the maximum number of vehicles that can be used,
N is the number of customers plus the depot (the depot is

noted with number 1, and the customers are noted as 2,...N),
Q" s the loading capacity of vehicle k.

Objective function (minimize):

X5 Cij)]
k=1i=1j=1
subject to
XE=0 (Vie {1,...,N}, Vke {1,...,K}) (2)
k ..
X;; €{0,1} (Vije{l,..,N},Vke {1,..,K}) (3)
K N
Y XxE=1 (Vje{2,..,N}) (4)
k=1 1:1=1
N N
SN Xkd; < Q" (Vke {1,.,K}) (5)
i=1 j=2
K N
YD XG<K (6)
k=1 j=2
N N
Y X Xfi=0 (Vk € {1,...K}) (7)
Jj=2 j=2
a; < Skj < bj (Vl,j S {1,..,N},Vk S {1, ,K}) (8)
Ski—‘rcij —L(l—Xi‘Cj) < Skj
(Vije{l,..,N},Vke {1,....K}) (9)

The objective function is described in Equation (1). Equa-
tion (2) denotes that a vehicle must travel from one node to a
different one. Equation (3) indicates that a route between two
customers can or cannot be covered by a vehicle. Equation (4)
states that a customer is visited once by exactly one vehicle.
Equation (5) ensures that the goods supplied by a given vehicle
k cannot exceed its capacity Q*. Equation (6) specifies that
there are up to K routes going out of the delivery depot,
while Equation (7) guarantees that the vehicles depart from
and return to the depot. Let s;; be the sum of the distances
travelled by vehicle k before arriving at customer j, Equation
(8) ensures that time windows are observed. Given a large
scalar, L, the inequality represented in Equation (9) specifies
that, if vehicle k is travelling from customer i to customer j,
the vehicle cannot arrive at customer j before si; + Cj;. As

ANN. MULT. GPU PROG.

vehicle k=2 route={1,5,6,7,8,1} 5
ENor
5,5 C =5
5,7 C,#C,=5+3=8 SN)__"17.4(7)
26 C = (11)
5,= C, #C, +C =5+3+2=10 ' h -® .
C =5+ k=2 8 vehicle k=3 route={1,9,10,11,12,1}
55 C +C +c 4G, =54342+4=14 s L R
o o 5,7 C 5
" =3 (12) N
O C=3(: _ -
o 12341 I =2,/.\‘ BRI o k=3 G50 51 ¢ +C9 104+2 =6
vehicle k=1 route={1,2,3,4,1} W T, : C +C +C =442+6=12
(4)0_‘ _‘Cuz C19= ,,,,,,, o B ,11 19 9,10 710,11
Sl.2= C1.2=2 k=1 ..) ’ (9):_: C +C9 ldl-qo I-II-C“ 124+2+6+5 17
' : C=2:-=s
s =C +C =243=5 Vool R
1,3 1,2 23 C;4=4" IC _3 -‘
94 \ 1 -

s, = C;+C,C, 73+2+4=9 '\\ ', > (10)

¥

[}

A3)

Fig. 1: Determining sx; from a sample solution.

specified by [13], variable si; corresponds to the time vehicle
k starts to service customer j. If vehicle & does not provide
any service j, si; is not calculated. With the aim of clarifying
this graph-based formulation, Figure 1 provides an example of
how the s;; values are calculated for a problem having twelve
customers which demand is supplied by three vehicles.

III. ALGORITHMS
A. The Multi-temperature Simulated Annealing (MT-SA)

The Multi-Temperature Simulated Annealing (MT-SA) [2]
is population-based algorithm that uses mutation operators
to vary the individuals of the population, and Simulated
Annealing [17] as selection criterion for each individual of the
population. Results obtained by MT-SA in single- and multi-
objective contexts [2], [3] show its good performance when
solving vehicle routing problems.

MT-SA manages the population of solutions P using an
integer representation. P consists of p individuals (solutions),
P={I,,I,...,I,}, where each individual represents the routes
travelled by K vehicles to deliver all the customers. Thus,
each individual, [;, is represented by a set of chromosomes,
C;r, which consists of a variable number of genes, Cj, =
{1,G},,G?.,...,Gl,., 1} representing the route of the k-th
vehicle in the i-th individual (2 < G, < N). For example,
chromosome Cy4 = {1,127,9,23,85,1} indicates that the
fourth vehicle of the second individual departs from the depot
and visits customers 127, 9, 23, and 85, before returning to
the depot, which is represented by identifier 1. The first and
last genes are necessary to verify the constraint described in
Equation 7.

The initial routes are built by assigning customers to
vehicles until all the former are visited by the latter, such
that the constraints are fulfilled. The individuals are optimized
by applying ten variation operators often used in this con-
text [13], [24]. Some of them are based on choosing one

1"

customer and reallocating it in a different visiting order of
the same vehicle (the so called Customer random realloca-
tion operator, and the Customer best reallocation operator),
other operators modify the vehicle assigned to the customers
(Customer random migration, Customer best migration, Cus-
tomer random exchange, Customer best exchange, Customer
exchange with similar time-window), while other operators
divide (Route partition), create (New route), or remove (Route
elimination) a given route. When applying variation operators,
MT-SA accepts or rejects offspring individuals according to the
Metropolis criterion [20] often used by Simulated Annealing
(SA) [17]. SA optimizes a solution by exposing it to a high
initial temperature, 7', cooling it by means of a cooling rate,
Teooling, until the temperature falls below a given threshold,
Tstop- Therefore, better neighbouring solutions are always
accepted, whereas worse solutions are accepted with a certain
probability, which is dependent on the current temperature, ¢
(when ¢ diminishes, the probability of accepting worse solu-
tions decreases). Our approach considers an interval of initial
temperatures [T,nin, Timaz), SO that the initial temperature of
individual /; i T",4r,, While individual 7, starts in 7', 4., and
the others are equally distributed along this interval.

B. Parallelization of MT-SA

Since VRPs are very complex problems, there is an in-
creasing interest on the design of parallel strategies for solving
them [6]. Several parallel algorithms have been implemented
for solving VRPs [18], including some approaches that have
applied parallel simulated annealing using clustered SMP
architectures by using OpenMP and MPI [11]. The goal of the
parallel implementations presented here is to obtain solutions
of a higher quality than the sequential algorithms and also
to obtain higher quality solutions than the sequential versions
without increasing the runtime required by the latter. With the
aim of implementing parallel algorithms that present the same
characteristics of the sequential code (a parallel simulation of

the sequential code), both the master-worker and the island
implementations have been implemented using synchronous
communications, i.e. asynchronous message passing (MPI) and
the nowait clause (OpenMP) have not been considered. Both
paradigms and their hybridization have been adapted to our
problem in the following way:

o Master-worker paradigm with OpenMP: the master
thread initializes the population of solutions (each
one containing a valid set of routes to visit all the
customers satisfying the constraints), and, in each
iteration, the master thread distributes the p individuals
of population P into the number of threads executed
(NTH), including itself, so that each thread is in
charge of optimizing p/NTH individuals according to
the variation operators and the Metropolis function.
Once the worker threads have computed their assigned
solutions, they return them to the master thread, which
computes which is the global best solution, replaces
a given percentage of individuals with that solution,
and distributes again the work among all the available
threads. The master thread is also responsible of
controlling the termination condition.

o Island paradigm with MPI:. each process initializes
and optimizes p/NP individuals autonomously, where
NP is the number of processes (islands). Periodically,
the best solution of each island is sent to a central pro-
cess which, temporally, is responsible of determining
the global best solution and distributing it between the
remaining islands. These islands are responsible for
copying the received solution in a given percentage of
solutions of the population, after which they continue
the search process. When the termination condition is
fulfilled, all the islands send the solutions to the central
process, which returns the global best solution.

e Hybrid MPI/OpenMP implementation: the general
framework of the hybrid MPI/OpenMP implemen-
tation is based on dividing the entire initial popu-
lation into a set of islands, then applying a para-
llel scheme based on the master-worker implemented
with OpenMP to apply the search operators to the
individuals of the island, while MPI is used to es-
tablish the communications between the islands by
means of message passing. Figure 2 is graphically
summarizes the hybrid model in case of having NP=4
processes/islands, and NTH=2 threads per island.

IV. EMPIRICAL ANALYSIS
A. Parameters

The parallel computer used in our empirical study is a
workstation with a single Intel Core 2 Quad Processor Q6600
(4 cores, 2.40 GHz, 1066 MHz front-side bus, 8MB Cache,
4 GB RAM). The sequential algorithm, coded in C++, has
been parallelized using MPI (MPICH2 version 1.2.1p1), and
OpenMP (version 3.1). The performance evaluation of the
implemented algorithms is analyzed using some of the Gehring
& Homberger test problems [14] having 200, 400, and 600
customers have been considered (see below the first column
of the tables).

12

ANN. MULT. GPU PROG.

The sequential algorithm uses a population of 160 in-
dividuals (|P|=p=160),which are initialized using the three
heuristics described above. These individuals have a particular
annealing scheduling, so that an initial interval of temperatures
7i=[1,100] and a slow cooling rate (T¢.,01ing=0.995) is conside-
red. If the termination condition is not fulfilled and the current
temperature falls below T0p (Ts:0p=0.001), the temperature
is reinitialized (¢=Ti) and the search process continues. The
probability of applying a mutation operator is 25%. If mutation
is applied, each of the ten mutation variants is applied with
a probability that oscillates between 5% and 15%. When
processes or threads communicate to share their best found
solutions, the best one is copied in the 25% of the solutions
of the population (master-worker paradigm) or of each island
(island paradigm).

With the aim of analyzing the advantages provided by
the multi-core processor, the parallel implementations using
the master-worker model with OpenMP, the island paradigm
with MPI, and the hybrid MPI/OpenMP implementations are
compared in a single processor using several versions having
different number of processes and threads. When comparing
different algorithms or implementations, it is possible to deter-
mine that one technique is better than another one if it obtains
a better performance at a given amount of computational effort.
Many authors have commonly proposed the to establish a given
number of iterations or fitness evaluations as termination crite-
rion, but it supposes to assume that the cost of other operations
is not significant, which is not true in real applications such as
VRPTW. This is why in this paper the computational cost is
measured in terms of runtime. A total of 15 independent runs
with each of these configurations are executed, then analyzing
the statistical results obtained.

B. Experimental Results

Table I shows the results obtained by each implementation
when establishing a runtime of 60 seconds as termination
criterion. Although the best known solutions for those bench-
marks have been obtained by other approaches using runtimes
of hours or days, to consider a short runtime (60 seconds)
is enough to compare different implementations of the same
meta-heuristic. Columns 2 to 10 in Table 1 provide the results
obtained by each implementation. Each column is marked by
two numbers: NP/NTH, where NP indicates the number of
processes, and NTH the number of threads. Therefore, co-
lumn 1/1 denotes the sequential algorithm (MT-SA), columns
having values of NP or NTH equal or higher than 2 denote
executions of MPI or OpenMP (OMP), respectively, while
hybrid MPI/OpenMP implementations correspond to those
columns where both, the value of NP and NTH, are equal or
higher than 2. The results displayed correspond to the median
fitness obtained by each configuration in 15 independent runs
per benchmark. It is observed as, given a fixed number of
processes (NP), the use of additional threads increases the
quality of the results, but not when the product NP*NTH>4,
i.e. a performance degradation is observed in the presence
of oversubscription [15]. Similarly, a fixed number of threads
(NTH), the use of additional processes increases the quality of
the results, but not when the product NP*NTH>4. On overall,
the results are obtained by the configuration that uses NP=4
processes and NTH=1 thread, i.e. the parallel implementation
that considers the island model with MPI using a number

ANN. MULT. GPU PROG.

POPULATION V W vm Q‘L QB W W ﬁ
creating islands (MPI_Init)
osgst] fest st fostst] st
OpenMP (#pragma omp parallel for)
v 777777777777 P v 77777777777 P v 77777777777 : P v 77777777777 ‘

communication (MPI):

islands send their best individual
central island computes the best
central island distributes the best

Y

communication (stop criterion): ;
islands send their best individual =
central island computes the best

central island returns the best

BEST SOLUTION OBTAINED

Fig. 2: Graphical description of the hybrid MPI/OpenMP parallelization.

of processes (islands) equal to the number of physical cores
available, are slightly better than those obtained by the other
parallel versions, while hybrid MPI/OpenMP implementations
also obtain good solutions. It can be seen that, when using two
processes, the hybrid MPI/OpenMP implementations (columns
7 and 8 of Table I) outperform to the results obtained by the
implementation that only uses MPI (column 6). However, it
is seen that the best results are obtained by the configuration
NP=4/NTH=1, i.e. a pure MPI implementation. The reason
arises from the fact that the population size of each island when
using NP=4 is smaller (40 individuals per island) than in case

13

of using NP=1 (160 individuals) or NP=2 (80 individuals). This
involves that the former configuration is able to perform more
iterations within the same runtime (higher intensification),
which leads to the rapid convergence of the parallel algorithm.

Whenever several experiments are performed it is important
to determine whether or not the variation in the results is
significant, i.e. the observed spread of mean values that would
not normally arise from the chance variation within groups.
With the aim of determining if there is a significant difference
between these groups of results obtained in the experiments an

ANN. MULT. GPU PROG.

TABLE I: Comparing MT-SA and pMT-SA using different number of processes/islands and threads (15 executions per parallel

version and benchmark).

version eria ybri ybri ybri

NP/NTH 1/1 1/2 1/4 1/8 2/1 2/2 2/4 4/1 4/2 p-critical
RT_2_ 37 . 7814. 7880.74 7562. 7150. 7205. . 7055. S52E-
R1.2.8 797226 741190 727233 7313.67 706643 6657.84 668594 6411.80 6507.33 1.20E-61
R2.2 3 841432 788246 7739.64 7776.39 752637 722628 729338 6898.30 7019.86 5.31E-55
R2_2 8 840596 7809.67 753040 7467.80 7374.60 6896.41 6937.61 6642.51 6618.69 3.95E-59
Cl 2.3 851833 7976.75 7671.98 7759.77 7431.71 7016.04 7142.79 6724.82 6825.20 4.01E-56
Cl_2 .8 722624 6830.63 6593.76 6654.88 6451.87 6154.73 6165.89 594555 5923.03 1.92E-48
C2.2.3 785391 7459.69 7032.65 7215.11 7002.92 6633.57 6593.90 5988.00 6342.65 3.49E-55
C2_2 8 2408.72 2373.98 2368.83 2363.87 2347.29 2326.20 2303.37 2233.06 2252.59 4.00E-21
RIT_4_3 24148.31 23479.45 23102.62 23127.13 23527.81 22726.62 22835.59 21940.21 22557.47 4.38E-41
R1_4_8 25440.55 24687.79 24275.50 24259.41 24359.92 24011.24 23962.57 23663.68 23693.81 8.98E-49
R2_4 3 23701.78 23235.58 22774.32 22769.57 22663.70 22342.52 22213.23 21940.21 22059.07 2.90E-26
R2_4 8 26845.46 26275.67 25622.80 25760.39 25356.72 25181.23 24813.58 24878.75 24783.61 5.89E-33
Cl_4.3 26536.13 26022.09 25632.92 25440.84 25922.48 25447.81 25450.36 25087.54 25223.98 1.87E-48
Cl_4 8 20695.45 20452.01 20241.49 20252.41 20545.15 20227.58 20275.51 20023.83 20103.95 5.31E-28
C2_4 3 23702.81 23163.89 22716.10 22616.76 22899.04 22407.35 22384.43 21894.37 22202.47 4.91E-35
C2.4 8 8204.18 8083.89 7997.70 7970.28 8135.00 8098.51 8048.97 7954.78 7969.40 2.92E-14
RI_6_3 51705.89 51319.97 50862.12 5084590 5I21I8.85 50649.75 50666.40 50518.97 50451.73 4.13E-26
R1_6_8 5923832 58792.84 58301.67 58228.27 58639.93 58208.97 58162.19 57706.28 57628.25 1.71E-21
R2_6_3 57815.29 56930.08 56526.83 56054.73 56190.02 55975.89 56072.31 55250.38 55385.22 2.09E-07
R2_6_8 67900.86 66383.01 65977.14 65290.33 66451.94 65127.31 65586.43 64309.57 65002.45 2.93E-22
C1_6_3 4737499 47012.68 46756.57 46796.16 47081.30 46486.99 46558.18 46267.20 46183.19 3.43E-28
C1_6_8 3432497 34212.52 34180.70 34168.41 34079.43 33993.98 34013.65 33940.60 34007.59 5.93E-22
C2_6_3 52830.02 51959.49 51512.67 51509.26 51948.42 51178.83 50963.05 50728.43 50666.69 4.44E-34
C2_6_8 15786.09 15721.31 15748.39 15698.85 15716.41 15657.65 15642.66 15604.28 15657.61 9.93E-06

one-way ANOVA test is applied. Given the typical confidence
level of 95%, the null hypothesis is rejected if the probability
value (p-value) is smaller than or equal to the critical value
(p-critical=0.05). The last column of Table I shows that p-
value<0.05, i.e. the null hypothesis is rejected in all cases,
which denotes the existence of a significant variation between
the results of the different groups.

Taking into account the previous results, it is now analyzed
how the parallel implementations are able to reduce the run-
time required to obtain a solution of equal or better quality than
the median result obtained by MT-SA after executing 15 inde-
pendent runs during 60 seconds. Three configurations are ana-
lyzed: an OpenMP implementation ({NP=1,NTH=4}), a MPI
implementation {NP=4,NTH=1}, and a hybrid OpenMP/MPI
implementation {NP=2,NTH=2}. Table II shows the mean,
and average deviation of the 15 independent runs carried
out by these configurations of pMT-SA. Figure 3 shows the
speedup obtained using all the benchmarks using the infor-
mation contained in Table II. Black bars correspond to the
OpenMP implementations, white bars are related to MPI, while
grey ones describe the results of the hybrid MPI/OpenMP
implementations. These results show that the parallel imple-
mentations in all cases need less than 60 seconds to reach a
solution of at least the same quality than that obtained by the
serial algorithm, i.e. the parallel algorithms obtain an improve-
ment in terms of speedup. At first sight, yielding speedups
of ~2 could be considered poor in terms of scalability, but
it should be considered that MT-SA is a stochastic approach
and, therefore, it is possible that some threads do not perform a
given instruction (e.g.: if the conditional expression of a while
structure results as false when computed on its own data),
and therefore this stream processor is simply put into idle
mode during the remaining loops performed by the others. This
phenomenon, known as thread divergence [21], often causes

14

serious performance degradation. It is noticeable that the
implementations using OpenMP often converge faster that the
MPI-based implementations, while MPI outperformed to pure
OpenMP implementations when establishing a fixed runtime
(see Table I). Here again, the reason if this behaviour seems
to be the different degrees of intensification/diversification of
MPI/OpenMP implementations.

V. CONCLUSIONS AND FUTURE WORK

The design of efficient methods for solving vehicle routing
problems has become an area of research that has attracted
much attention due to its influence in transportation, logistics,
and supply chain management. Since this problem is NP-hard,
most algorithms presented to solve this problem are based on
heuristic and meta-heuristic approaches. Nevertheless, when-
ever the number of customers is very large, it is necessary to
apply techniques, such as parallel processing, to improve the
efficiency of these heuristics. Thanks to the generalized use of
multi-core processors from supercomputers to laptops, parallel
programming has become popular in the scientific community.
This paper analyzes the advantages provided by multi-core pro-
cessors to obtain good quality solutions to the vehicle routing
problem with time windows. With this aim, a population-
based meta-heuristic based on Simulated Annealing has been
parallelized using MPI, OpenMP, and hybrid MPI/OpenMP
schemes. Results obtained in a workstation with a single
multi-core processor show that these parallel implementations
improve the quality of the solutions obtained by the sequential
algorithm. Moreover, some theoretical phenomena, such as
oversubscription and thread divergence have been observed in
our experiments. As future work, it is planned to analyze the
behavior of these hybrid parallel algorithms in a cluster, and
also to apply them to solve multi-objective formulations of this
problem dealing with several objectives and constraints.

ANN. MULT. GPU PROG.

TABLE II: Runtime (seconds) required by pMT-SA to obtain a solution of similar quality than that obtained by the serial MT-SA

with a runtime of 60 seconds.

174 (OMP) 272 (Hybrid) 471 (MPT)
mean avg. dev. mean avg. dev. mean avg. dev.
RI_2 3 30.91 3.99 25.17 1.87 3022 436
R1_2 8 3454 3.29 2949 3.80 4034 495
R2 2 3 3134 4.10 24.61 4.00 31.62 7.29
R2 2 8 3406 290 29.07 440 36.03 4.62
Cl 2.3 2997 4.5 29.15 3.05 3827 529
Cl 28 35.61 5.94 30.11 4.13 42.88 9.54
C2.23 35.17 4.58 31.56 278 40.20 5.65
C2.28 38.57 8.39 40.10 8.53 45.58 7.26
RI_43 3430 454 4234779 4648 585
R1_4 8 29.52 349 3852 8.09 40.67 6.33
R2 4 3 3396 6.83 40.65 7.30 44.00 9.10
R2_4 8 41.73 559 49.08 3.93 4794 3.19
Cl 4.3 3275 4.11 47.83 4.14 42.75 8.08
Cl1_4.8 3496 7.02 4726 4.84 43.81 6.32
C2.43 3730 3.45 45.64 595 36.25 439
C2 4.8 4287 7.10 4739 3.13 4549 934
RI_6_3 29.89 857 39.87 432 3338 492
R1_6_8 39.31 7.61 4554 5.84 40.18 7.36
R2_6_3 39.60 8.67 4472 441 44.23 6.15
R2 6_8 31.72 6.18 39.73 5.74 4525 4.86
Cl1.6_3 30.32 545 38.23 5.01 4335 446
Cl1_6_8 2474 9.20 33.69 8.08 30.06 7.84
C2_6_3 2841 4.80 31.68 6.01 2979 759
C2_6_8 39.10 9.51 32.28 8.06 4098 8.10

The application of computational optimization methods for
solving complex scientific and industrial applications requires
the perform a enormous number of calculations. The number
of calculations per unit of time is dependent of the frequency
of a chipset, and this frequency depends on semiconductor
technology as well as processor architecture. During several
decades the processors manufacturers have been able to double
the number of transistors every two years, but in practice
scaling of semiconductor transistors has reached a limit due
to the physical properties, which is why it is expected that
CPUs will be limited in frequency for several years. Having
in mind this fact as well as the success of multi-core and
multi-threading technologies, it is supposed that processors
manufacturers, such as Intel or AMD, will continue working in
these technologies, probably minimizing the power consump-
tion, and increasing the temperature dissipation and number of
cores included in the chip, among other aspects. As commented
above, an important advantage of having processors with
multi-core and multi-threading technologies is the possibility
of applying parallel processors even on desktop and laptop
computers. Thus, from the perspective of the efficiency it
would be desirable to take advantage of these systems to
parallelize not only scientific optimization problems, but also
any other tasks associated to software applications. Coming
back to the problem at hand, the VRPTW, the application
of independent and hybrid parallel implementations of MPI,
OpenMP, can be extended to the multi-objective case [16],
[4], in which several objectives, such as the travelling distance,
number of vehicles, load imbalance, route imbalance, etc. are
considered.

In the following, several hybrid MPI/OpenMP implemen-
tations are briefly commented: i) A first alternative would
be to consider a hybrid implementation in which each island
would evolve in parallel, then applying the variation operators

15

to optimize the different objectives simultaneously. In this
case, OpenMP would be applied to speedup the algorithm
calculations within each island, while MPI communications
would be occasionally performed to spread better solutions.
Finally, a central island would combine its non-dominated front
of solutions with those received from the other islands; ii) A
second alternative is to consider a hybrid implementation in
which each island would evolve in parallel, but only consi-
dering a particular objective to optimize, i.e. there is at least
one island responsible to optimize each objective. OpenMP
would be applied to speedup the algorithm calculations within
each island, while MPI communications would be occasionally
performed to spread better solutions. Finally, the different non-
dominated fronts generated by each island would be composed
into a single front that would represent the output of the
algorithm; iii) A third alternative is to divide the search space
such that each island is responsible of the search in a particular
area. For example, since the VRPTW involves using a given
number of vehicles, it would be possible to include a new
constraint in each island, such that it only considers feasible
a given number or interval of vehicles which intrinsically
involves that each island explores different areas of the search
space. OpenMP would be applied to speedup the algorithm
calculations within each island, while MPI communications
would be occasionally performed to spread better solutions.
Finally, the different non-dominated fronts generated by each
island would be composed into a single front that would be
returned as the result of the parallel algorithm; iv) It would
be also possible to implement hierarchical parallel schemes to
address the previous alternative approaches at different levels.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness and FEDER funds

Speedups

ANN. MULT. GPU PROG.
T T T T T T T 25 T T T T T T T T
- 2 | -
- 1_5 |- -
g
L]
L]
o
0]
4 1 | 4
- 0_5 | 4
0
2 3 4 5 6 7 8 1 2 3 4 5 G 7 8
Benchmarks Rx-2-x Cx-2-x (Tabla Il) Benchmarks Rx-4-x Cx-4-x (Tabla Il)
25 T T T T T T T T
2 3 4 5 6 8

Benchmarks Rx-6-x Cx-6-x (Tabla Il

7
)

Fig. 3: Speedup according to the benchmark type (OpenMP - black, MPI/OpenMP - grey, MPI - white).

under project TIN2012-32039. R.Bafios also acknowledges the
support of a Juan de la Cierva postdoctoral fellowship.

REFERENCES
[1] G.B. Alvarenga, G.R. Mateus, G. de Tomic, A genetic and set partitioning
two-phase approach for the vehicle routing problem with time windows,
Computers & Operations Research 34(6) (2007) 1561-1584.

R. Bailos, J. Ortega, C. Gil, A. F. Molina, F. de Toro, A multi-start hybrid
algorithm for vehicle routing problems with time windows, World Online
Conference on Soft Computing in Industrial Applications, 2011.

R. Bafios, J. Ortega, C. Gil, A. Ferndndez, F. de Toro, A simulated
annealing-based parallel multi-objective approach to vehicle routing
problems with time windows. Expert Systems with Applications 40(5)
(2013) 1696-1707.

R. Bailos, J. Ortega, C. Gil, A.L. Mérquez, F. de Toro, A hybrid meta-
heuristic for multi-objective vehicle routing problems with time windows,
Computers & Industrial Engineering 65(2) (2013) 286-296.

(2]

(3]

(4]

16

[5] G. Blake, R.G. Dreslinski, T. Mudge, A survey of multicore processors,

IEEE Signal Processing Magazine 26(6) (2009) 26-37.
O. Briysy, M. Gendreau, Vehicle routing problem with time windows,
part II: Metaheuristics, Transportation Science 39(1) (2005) 119-139.
D.R. Butenhof (1997) Programming with POSIX Threads. Addison-
Wesley.
B. Chapman, R. Jost van der Pas, D.J. Kuck (foreword), Using OpenMP:
Portable shared memory parallel programming, The MIT Press, 2007.
M.J. Chorley, D.W. Walker, Performance analysis of a hybrid
MPI/OpenMP application on multi-core clusters, Journal of Computa-
tional Science 1(3) (2010) 168174.

C.A. Coello, G.B. Lamont, D.A. Van Veldhuizen, Evolutionary algo-

rithms for solving multi-objective problems, Genetic and Evolutionary
Computation Series, Springer, 2007.

(6]
(7]
(8]

[9]

[10]

[11] Z.J. Czech, W. Mikanik, R. Skinerowicz, Implementing a parallel
simulated annealing algorithm, Springer Lecture Notes in Computer

Science 6067 (2009) 146-155.

[12] G.B. Dantzig, J.H. Ramser, The truck dispatching problem, Manage-

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

ment Science 6(1) (1959) 80-91.

N.A. El-Sherbeny, Vehicle routing with time windows: An overview
of exact, heuristic and metaheuristic methods, Journal of King Saud
University (Science) 22(3) (2010) 123-131.

H. Gehring, J. Homberger, A parallel two-phase metaheuris-
tic for routing problems with time windows, Asia-Pacific Jour-
nal of Operations Research 18(1) (2001) 35-47. [available at:
http://www.sintef.no/Projectweb/TOP/VRPTW/Homberger-benchmark/]

C. Iancu, S. Hofmeyr, Y. Zheng, F. Blagojevi, Oversubscription on mul-
ticore processors, IEEE International Parallel and Distributed Processing
Symposium, 2010, pp. 1-11.

N. Jozefowiez, F. Semet, E-G. Talbi, Multi-objective vehicle routing
problems, European Journal of Operational Research 189(2) (2008) 293-
309.

S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated
annealing, Science 220(4598) (1983) 671-680.

A. Le Bouthillier, T.G. Crainic, A cooperative parallel meta-heuristic for
the vehicle routing problem with time windows, Computers & Operations
Research 32(7) (2005) 1685-1708.

A.L. Miarquez, C. Gil, R. Baiios, J. Gomez, Parallelism on multicore
processors using Parallel. FX, Advances in Engineering Software 42(6)
(2011) 259-265.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A. Teller, E. Teller,
Equation of state calculations by fast computing machines, The Journal
of Chemical Physics 21(6) (1953) 1087-1092.

D. Robilliard, V. Marion, C. Fonlupt, High Performance Genetic Pro-
gramming on GPU, Proceedings of the 2009 Workshop on Bio-inspired
Algorithms for Distributed Systems, 2000, pp. 85-94.

S. Santander-Jimenez, M.A. Vega-Rodriguez, J.A. Gémez-Pulido, J.M.
Sanchez-Pérez, Evaluating the Performance of a Parallel Multiobjective
Artificial Bee Colony Algorithm for Inferring Phylogenies on Multicore
Architectures, Proceedings of the 2012 IEEE 10th International Sympo-
sium on Parallel and Distributed Processing with Applications, 2012, pp.
713-720.

M. Snir, S. Otto, S. Huss-Lederman, D. Walter, J. Dongarra, MPI: The
complete reference, MIT Press, Boston, 1996.

K.C. Tan, Y.H. Chew, L.H. Lee, A hybrid multiobjective evolutionary
algorithm for solving vehicle routing problem with time windows,
Computational Optimization and Applications 34(1) (2006) 115-151.

17

ANN. MULT. GPU PROG.

