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Abstract—The use of auto-tuning techniques in a matrix mul-
tiplication routine for hybrid CPU+GPU platforms is analyzed.
Basic models of the execution time of the hybrid routine and
information obtained during its installation are used to optimize
the execution time with a balanced assignation of the computation
to the computing components in the heterogeneous system.
Satisfactory results are obtained, with experimental execution
times close to the lowest achievable.

I. INTRODUCTION

In most scientific and engineering problems, computations
are carried out using basic BLAS type matrix routines. Level
3 BLAS collects all the matrix-matrix operations, which are
the set of the most computational intensive BLAS routines.
The basic kernel of BLAS and of many of the scientific codes
is matrix multiplication. Therefore, the improvement in the
performance of scientific codes is achieved in many cases by
the efficient use of this routine.

Efforts have been devoted to the optimization of linear
algebra routines (and in particular of the matrix multiplication)
in computational systems of different characteristics [1], [2],
[3], [4], [5]. The decisions to take depend on the type of
computational system for which the routines are developed.
For example, it is necessary to adapt the original ideas de-
veloped for homogeneous parallel systems to heterogeneous
or dynamic systems [6], [7], [8], [9], and the omnipresence
today of multicore+GPU systems makes the adaptation of pre-
vious auto-tuning techniques to these heterogeneous systems
compulsory.

This paper studies empirical auto-tuning techniques to
achieve optimum load balance between GPU and CPU when
they are performing a matrix-matrix multiplication. The CPU
part can be carried out with a multithread BLAS library. Many
BLAS implementations exist, for both multicore (vendors
implementations: Intel MKL [10], IBM ESSL [11], etc.; or
free implementations: ATLAS [2], Goto BLAS [12], etc.) and
GPU (CULA Tools [13], CUBLAS [14] and MAGMA [15]).
The CPU and GPU implementations used here are MKL and
CUBLAS, but the same techniques can be applied with any
other basic libraries, and experiments carried out with these
provided similar performance results.

The rest of the paper is organized as follows. Section
2 comments on some adaptations of linear algebra software
to GPU and combinations of CPU+GPU. Section 3 shows
the structure of the matrix multiplication and the auto-tuning
methodology. Experimental results are shown in section 4.
Section 5 concludes and outlines possible research lines.

II. LINEAR ALGEBRA IN MULTICORE+GPU PLATFORMS

Due to the omnipresence of multicore systems with GPU
accelerators, efforts are being devoted to the development of
software for these systems, and especially to the design of
linear algebra routines which manage the heterogeneity of the
whole system to obtain maximum performance.

In [16] a strategy is presented to perform matrix-matrix
multiplications on hybrid NVIDIA GPU systems. The basic
idea is to carry out a matrix multiplication A = BC by
splitting the data of matrices B and C between the CPUs of
the multicore and a single GPU, and perform the operations
simultaneously on both devices. The final result is obtained
by aggregation of the results independently obtained in CPU
and GPU. A similar approach is used in the core numerical
kernels included as part of the NVIDIA LINPACK TOP
500 benchmark suite [17] to rank the fastest heterogeneous
supercomputers in the world.

The PHIGEMM [18] library extends the basic mapping
presented in [16] and uses a work-load distribution based on a
pre-defined split factor and the latest capabilities of CUDA to
efficiently control asynchronous data transfer and overlapping
multi-device computations. Users must define this split factor
manually according to the ratio of computational power of the
CPU and the GPU. PHIGEMM is freely available as open-
source code in QEF [19].

In [20] a hybrid programming model combining MPI,
OpenMP and streaming computing is described. The LAPACK
task, thread and data parallelisms are exploited. The main idea
to optimize the load distribution across the CPUs and GPUs
is to use a two-level adaptive method, to measure the relative
performance of GPUs and CPUs at runtime, and to split the
workload for the next computation accordingly. Additionally,
a software pipelining technique is used to bypass the low-
bandwidth communication between CPU and GPU.

In [21] a variable block size auto-tunig scheme on
CPU+GPU hybrid systems for the QR factorization in
MAGMA is proposed. The approach is to fit the CPU and GPU
cost via two independent regression models and to define a cost
objective function to balance the workloads between CPU and
GPU.

In this work, we use a static approach to decide the split
of the matrices between the components of the heteroge-
neous computing system. The dynamic selection is discarded
because it would suppose high overheads when the matrix
multiplication is used inside higher-level codes (for example,
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LU, QR or Cholesky factorizations). Experimental and model-
based empirical techniques previously used for the selection
of algorithmic parameters in the installation of the routine in
NUMA systems [22], [23] are studied for this new computing
system.

III. AUTO-TUNING A MULTI-DEVICE MATRIX
MULTIPLICATION

The matrix multiplication is computed simultaneously on
CPU and GPU. The multiplication C = αAB + βC can
be expressed as C = α(AB1 + AB2) + β(C1 + C2), and
AB1 +βC1 can be performed in the GPU and AB2 +βC2 in
the CPU (Figure 1). In the experiments, the CUBLAS library
(cublasDgemm routine) is used for the computation in the
GPU, and the MKL library (dgemm routine) in the CPU, but
the same methodology works when other basic libraries are
used.

K
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NGPU NCPU

C1 C2

B1 B2K

N

Fig. 1. Distribution of the computation of a matrix multiplication on a
CPU+GPU system. The blue portion (left part) is performed in the GPU and
the orange portion (right part) in the CPU.

An optimum split of the matrix would keep the time
consumed by the GPU and CPU balanced [16], [24]. The
multi-device (GPU and CPUs) computations are overlapped
and the data transfers between GPU and CPU are performed
asynchronously, which allows computation and communica-
tion overlapping, so increasing the performance. To reduce the
data transfer time between CPU and GPUs, we use the pinned
memory mechanism provided by CUDA.

In this work, we have considered two different auto-tuning
methods to obtain a balanced distribution of the matrix be-
tween CPU and GPU according to the machine characteristics:
an experimental method (guided search [22]) and a mixed
theoretical-experimental method (empirical modeling [23]). In
the next subsections these methods are described.

A. Method I: Guided search

The working scheme of the guided search method is
shown in Figure 2. The installation of the hybrid dgemm
routine in the system is done by executing the routine for
each matrix size specified in an Installation Set, varying the
amount of data of matrices B and C between CPU (N CPU )
and GPU (N GPU ), with N = N GPU + N CPU . The
Installation Set contains significant values, from small to large
sizes, so the installation gives satisfactory results for a wide
range of values. For low installation time, the search begins
with the smallest problem size in the Installation Set and
uses a value 0 for N CPU . Then the value of N CPU
is increased (and the value of N GPU is decreased) by a
predetermined amount until the execution time exceeds by
a threshold the previous lowest execution time. For other
problem sizes, the search starts with the value of N CPU that
provides the best execution time for the previous problem size
in the Installation Set. The search is made in two directions,
decreasing and increasing N CPU , and it finishes for each
problem size when the execution time exceeds the minimum
for that size by an amount greater than the threshold.

B. Method II: Empirical modeling of the execution time

An alternative approach consists on the empirical modeling
of the execution time of the hybrid routine. The working
scheme of this method is shown in Figure 3. A theoretical
model of the execution time is used to determine the optimal
split of the matrices. There are two routines for which the
model of the execution time must be obtained: the matrix
multiplication on CPU and the matrix multiplication on GPU.
Considering only square matrices of size m×m for simplicity,
the time to run a matrix multiplication with the hybrid dgemm
routine can be written Tdgemm(m,n) = k1m

2n+k2m
2+k3m,

where n takes the value corresponding to the amount of data
of matrices B and C between CPU (n = ncpu) and GPU
(n = ngpu). The value of the coefficients ki may be obtained
with least-square. We obtain a set of values of the coefficients
ki for the multiplication in CPU (routine Intel MKL dgemm)
and another set for the multiplication in GPU (routine CUDA
cublasDgemm). In this way, the models of Tdgemm cpu and
Tdgemm gpu are

Tdgemm gpu(m,n) = k1 gpu m
2 n+ (1)

k2 gpu m
2 + k3 gpu m

Tdgemm cpu(m,n) = k1 cpu m
2 n+ (2)

k2 cpu m
2 + k3 cpu m

On the other hand, since the GPU contains its own memory,
before the execution of the GPU kernel the input data must be
copied from the CPU memory to the GPU memory. Likewise,
when the kernel completes its execution, the output data
must be copied from the GPU memory to the CPU memory.
Therefore, in the execution model of the hybrid dgemm routine
it is necessary to consider the cost of the transfers between
GPU and CPU memory. As discussed in [25], data transfers
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Fig. 2. General scheme of the guided search method.
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INSTALLATION

Fig. 3. General scheme of the empirical modeling method.

between the CPU and GPU when pinned memory is used can
be modeled with a fixed overhead representing the latency of
sending the first byte, ts, plus the time required to send each
subsequent byte, tw. Therefore, the time to transfer n bytes can
be written as Tcomu(n) = ts + ntw, in the same way to the
traditional message-passing paradigm. Since the hybrid dgemm
routine copies to device memory (GPU) the entire matrix A
of size m ×m and the panel of matrix B of size m × ngpu,
and the panel of C of size m × ngpu is copied back to the
host memory (CPU), the cost of the transfers between CPU
and GPU can be written

Tcomu = tsh2d
+m2 twh2d

+ tsh2d
+m ngpu twh2d

+ (3)
tsd2h +m ngpu twd2h

where h2d and d2h indicate the direction of transfer (host to
device, h2d, or device to host, d2h). Empirically, the values for
ts and tw are different depending on the direction in which data
are transferred. As mentioned, in the hybrid dgemm routine
the CPU work is overlapped with the GPU work and the data
transfers between GPU and CPU are asynchronous in order to
improve performance. So, the routine can be modeled as

Texec = max (Tdgemm cpu, Tdgemm gpu + Tcomu) (4)

if the CPU work is overlapped with work on the GPU and the
data transfers, and as

Texec = max (Tdgemm cpu, Tdgemm gpu) + Tcomu (5)

if the CPU work only overlaps with work on the GPU but not
with data transfers. Finally, these two models can be combined,
obtaining a general model for any platform:

Texec = max (Tdgemm cpu + γ Tcomu, (6)
Tdgemm gpu + Tcomu)

where the value of the coefficient γ for a particular system
is obtained experimentally. A value 0 (corresponding to the
model in equation 4) or 1 (equation 5) could be obtained, as
can values between 0 and 1, which represent partial overlap-
ping of computation on CPU with data transfers of CPU to
and from GPU. The values of Tdgemm cpu, Tdgemm gpu and
Tcomu are different for equations 4, 5 and 6, and, once the
model corresponding to our system (the value for γ) has been
determined, the work distribution for CPU and GPU which
minimizes Texec in equation 6 is obtained.

IV. EXPERIMENTS FOR THE MATRIX MULTIPLICATION ON
MULTICORE CPU+GPU

Experiments were carried out on two platforms:

ANN. MULT. GPU PROG.

3



• 12CK20 is a shared-memory system with two hexa-
cores (12 cores) Intel Xeon E5-2620 with a GPU
device Tesla K20c (based on Kepler Architecture)
with 4800 Mbytes of Global Memory and 2496
CUDA Cores (13 Streaming Multiprocessors, with
192 Streaming Processors per SM).

• 6CGTX690 is a hexa-core AMD 1075T with a GPU
device GeForce GTX 590 with 1536 Mbytes of Global
Memory and 512 CUDA cores (16 Streaming Multi-
processors, with 32 Streaming Processors per SM).

A. Method I: Guided search

1) Guided search: installation: The Installation Set was
{384, 1152, 1920, . . . , 9600, 10368, 11136} for 12CK20 and
{384, 1152, 1920, . . . , 6528, 7296, 8064} for 6CGTX690. The
value of N CPU is initially 0, and is then increased by 16.
Figure 4 shows, for thresholds 2%, 5% and 10% and for the
matrix sizes in the Installation Set, the value for N CPU (in
%) with which the highest values of GFLOPS are obtained on
12CK20 and 6CGTX690. The behavior in the two systems is
different, with a greater increase in the percentage of N CPU
in 6CGTX690 than in 12CK20, which is due to differences
in the relative speeds of CPU and GPU. Furthermore, an
unexpected behavior is observed on 12CK20, where for matrix
sizes between 8064 and 10368 there is a decrease in the
percentage of N CPU , probably because MKL dgemm is
not able to handle pinned memory efficiently for some matrix
sizes.

This small difference in the partition size produces small
differences in the GFLOPS obtained when using the three
thresholds. The GFLOPS for different matrix sizes are shown
in Figure 5. The highest values are always obtained with a
threshold of 10%, but there are no significant differences with
the other thresholds considered, and the 5% threshold gives
similar results to those with a threshold of 10% (in 6CGTX690
the values coincide, and in 12CK20 there are differences in
only 2 of the 15 sizes).

The installation times with the three thresholds in the two
computational systems experimented with are shown in Table I.
The installation time increases with the threshold, and is larger
in 6CGTX690, which has slower computational components.
In the two systems the installation times are affordable, and
there are no significant differences in the installation time or
in the prediction when the threshold varies.

Threshold 12CK20 6CGTX690
2% 92 319
5% 98 370

10% 229 489
TABLE I. INSTALLATION TIME (IN SECONDS) WITH DIFFERENT

THRESHOLDS IN TWO COMPUTATIONAL SYSTEMS.

2) Guided search: validation: Different problem sizes are
used for validation (Validation Set). We recall that, given a
problem to solve of size n, the value for N CPU is selected
by applying an interpolation process to the closest information
stored during the installation phase (Installation Set). Tables
II (12CK20) and III (6CGTX690) show the results obtained
with guided search and the different thresholds considered. The
column “OPTIMUM” shows the highest values of GFLOPS
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Fig. 4. Comparison of the N CPU (in %) with which the highest values
of GFLOPS are obtained with thresholds of 2%, 5% and 10% for the hybrid
dgemm routine. In 12CK20 (top) and 6CGTX690 (bottom).

experimentally obtained and the values of N CPU with which
they are achieved. The partition given by the installation
with the different thresholds is close to the optimum partition
experimentally obtained, and such a small difference can be
due to variations in the experiments. On 12CK20 the guided
search with a threshold of 10 % gives an average deviation of
3% with respect to the optimum. With a threshold of 5% the
average deviation is 3.3%, while on 6CGTX690 the average
deviation for 10% and 5% is 1.3%. Finally, with a stopping
criterion of 2% the average deviation increases to 3.6% in
12CK20 and to 1.4% in 6CGTX690, which are not significant
values for the deviation, and the results are also satisfactory. On
12CK20 the average value for the GFLOPS achieved for the
hybrid dgemm routine with a threshold of 2% is 767.38, with
a threshold of 5% it is 770.03 and with a threshold of 10 % it
is 773.18. On 6CGTX690 the average value for the GFLOPS
achieved for the hybrid dgemm routine with a threshold of 2%
is 181.39, and with a threshold of 5% and 10% it is 181.44.
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Fig. 5. Comparison of GFLOPS obtained with the value of N CPU selected
with thresholds of 2%, 5% and 10% for the hybrid dgemm. In 12CK20 (top)
and 6CGTX690 (bottom).

So, the differences for the three thresholds are minimal in
both systems, and satisfactory results are achieved with the
guided search, regardless of the threshold used, with improved
installation time for small thresholds.

Figure 6 compares the GFLOPS achieved with the hybrid
dgemm routine with the CUBLAS and MKL versions. For
the CUBLAS dgemm the cost of the asynchronous copies
between host and device is taken into consideration. The figure
illustrates that the hybrid dgemm routine with the guided
selection of N CPU with, for example, a threshold of 10%
(Hybrid DGEMM threshold 10%), outperforms CUBLAS
dgemm.

On 12CK20 the average GFLOPS achieved with the
CUBLAS and the MKL routines are 705.09 and 133.12,
respectively. On 6CGTX690 the average GFLOPS are 138.37
(CUBLAS) and 55.34 (MKL). Indeed, the hybrid dgemm
routine with a threshold of 10% obtains an improvement of
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Hybrid DGEMM Optimum

MKL + CUBLAS

Fig. 6. Comparison of the GFLOPS of the hybrid dgemm routine with
those achieved with the CUBLAS and MKL routines, in 12CK20 (top) and
6CGTX690 (bottom).

10% in the GFLOPS on 12CK20 and an improvement of 31%
on 6CGTX690 over the CUBLAS routine. This improvement
is similar to that obtained with the optimum distribution
(Hybrid DGEMM Optimum), and very close to the addition
of GPLOPS that can be obtained ideally working with MKL
dgemm and CUBLAS dgemm separately (MKL+CUBLAS).
There is a significant difference in the relative performance
of CUBLAS and MKL in the two systems, which is due to
the relative speed of CPU and GPU and to the number of
cores in the system; so, in systems with more cores or with
another speed ratio the performance would be different, but
the installation technique works in the same way.

On the other hand, if the simplest method to split the matrix
is used, that is, if the partition of matrices between CPU and
the GPU is implemented with a strategy based on the average
GFLOPS achieved with CUBLAS and MKL, the performance
improvement is worse. For example, in the system 6CGTX690
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2% 5% 10% OPTIMUM
n n cpu GFLOPS n cpu GFLOPS n cpu GFLOPS n cpu GFLOPS

768 0 251.78 0 251.78 0 251.78 0 251.78
1536 40 378.74 40 378.74 40 378.74 0 424.89
2304 184 505.72 192 490.78 192 490.78 240 595.42
3072 320 592.51 368 612.77 368 612.77 336 688.49
3840 408 749.46 488 750.84 504 763.37 512 776.42
4608 536 807.22 632 819.57 648 827.17 640 829.48
5376 736 820.57 792 828.41 792 828.41 800 873.33
6144 928 879.27 944 901.75 944 901.75 960 909.48
6912 1072 940.93 1088 928.64 1088 928.64 1072 940.93
7680 1200 966.40 1200 966.40 1200 966.40 1200 966.40
8448 1264 979.93 1264 979.93 1264 979.93 1280 983.98
9216 1280 990.65 1280 990.65 1280 990.65 1280 990.65
9984 1280 922.64 1280 922.64 1280 922.64 1280 922.64

10572 1297 957.47 1297 957.47 1314 981.42 1552 1023.00
11520 1344 997.14 1344 997.14 1408 995.54 1392 1005.17

TABLE II. COMPARISON OF THE HIGHEST EXPERIMENTAL GFLOPS, AND N CPU WITH WHICH THEY ARE OBTAINED, WITH THOSE OBTAINED WITH
THRESHOLDS 2%, 5% AND 10% FOR THE HYBRID DGEMM ROUTINE. IN 12CK20.

2% 5% 10% OPTIMUM
n n cpu GFLOPS n cpu GFLOPS n cpu GFLOPS n cpu GFLOPS

768 64 89.77 64 89.71 64 89.77 16 101.46
1536 280 151.35 304 154.85 304 154.85 336 158.55
2304 576 178.33 584 175.41 584 175.41 576 178.33
3072 792 185.29 792 185.29 792 185.29 800 187.60
3840 1008 191.16 1008 191.16 1008 191.16 1024 191.80
4608 1216 195.45 1216 195.45 1216 195.45 1216 195.45
5376 1440 198.50 1440 198.50 1440 198.50 1440 198.50
6144 1664 199.02 1644 199.02 1644 199.02 1632 199.56
6912 1872 201.64 1872 201.64 1872 201.64 1888 202.78
7680 2096 203.26 2096 203.26 2096 203.26 2112 204.33
8448 2208 201.49 2208 201.49 2208 201.49 2336 205.56

TABLE III. COMPARISON OF THE HIGHEST EXPERIMENTAL GFLOPS, AND N CPU WITH WHICH THEY ARE OBTAINED, WITH THOSE OBTAINED
WITH THRESHOLDS 2%, 5% AND 10% FOR THE HYBRID DGEMM ROUTINE. IN 6CGTX690.

and for matrix sizes {384, 1152, 1920, 2688, 3456, 4224} the
average GFLOPS achieved are 126.88, and with the guided
search the average GFLOPS achieved are 154.27. On 12CK20
the average GFLOPS achieved are 660.15 while with the
guided search 773.16 GFLOPS are obtained.

Our method is a 31% improvement on 6CGTX690 and a
10% improvement on 12CK20 compared with the dgemm rou-
tine of CUBLAS, and the improvement is 21% on 6CGTX690
and 17% on 12CK20 compared with a selection based on the
average GFLOPS.

As conclusion, the results with the guided search method
are similar to the optimum obtained experimentally, and close
to the ideal performance, considering the aggregation of the
individual performances of MKL and CUBLAS.

B. Method II: Empirical modeling

1) Empirical modeling: installation: When the hybrid
dgemm routine is installed in a specific platform, the values
for the different ts, tw and the values of the coefficients ki
are experimentally obtained. To determine the value of ts
and tw, we measure the transfer time by a simple benchmark
that invokes the CUDA routines cublasSetMatrixAsync
and cublasGetMatrixAsync for different sizes of data
to copy. Then the values for tsh2d

, twh2d
, tsd2h and twd2h

are
estimated by a linear regression. Similarly, the coefficients ki
are estimated by least-square using the experimental results
of simple benchmarks for the basic operations dgemm and
cublasDgemm with previously specified data in an Instal-
lation Set. Furthermore, the benchmarks obtain the running

times of the basic operations with the data storage and access
scheme used in the hybrid dgemm routine.

Experiments are guided in a similar way as in the guided
search. Experiments begin with the smallest problem size in
the Installation Set and use a value 0 for N CPU . Then the
value of N CPU is increased (and the value of N GPU
is decreased) by a predetermined amount until the execution
time exceeds by a threshold the previous lowest execution
time. In this way, the time of experimentation is reduced, and
the experiments to estimate the values for the parameters are
carried out with values close to the optimum, and consequently
the values obtained represent better the behavior of the routine
for the values with which it will be used.

Empirically, the model in equation 5 best predicts the time
cost for the computational system 12CK20, that is, in the
summarized model in equation 6, the value for γ is 1. The
reason is that the CPU is not idle during the copy of matrices
A and B from CPU to GPU. The average deviation between
the modeled time and the measured time for the hybrid dgemm
routine ranges from 4.14%, for medium and large matrix sizes,
to 11.44% for small matrix sizes.

2) Empirical modeling: validation: The model of the hy-
brid dgemm routine should provide information of the value
of N CPU to use according to the problem size and on
the size and relative speed (CPU/GPU performance) of the
computational system. Once the routine has been installed, the
model and the possible values for the N CPU are stored. At
execution time, the value of N CPU with which the lowest
time is obtained for each problem size is selected by using
the information provided by the model. The possible values of
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N CPU are substituted in the model, and the one providing
the lowest modeled time is used in the solution of the problem.

Table IV shows, for different matrix sizes, n, in a Vali-
dation Set, the execution time (in seconds) obtained for the
hybrid dgemm routine with optimum selection of N CPU
and the selection provided by the empirical model. The column
“Deviation” shows the deviation with respect to the optimum
execution time. The value of N CPU is well predicted only
in 3 of the 15 cases, but it has not a great influence on
the mean of the relative deviation from the optimum, with
a value of approximately 4% in 12CK20. The average value
for the GFLOPS achieved with the selection provided by the
empirical model is 785.12, better than guided search, which
makes empirical modeling the preferred installation technique
in 12CK20.

Model OPTIMUM Deviation
n n cpu time GFLOPS n cpu time (%)

768 0 0.0036 251.78 0 0.0036 0.00
1536 48 0.0199 364.38 0 0.0171 16.61
2304 224 0.0424 577.29 240 0.0411 3.14
3072 384 0.0846 685.37 336 0.0842 0.46
3840 512 0.1459 776.42 512 0.1459 0.00
4608 640 0.2359 829.48 640 0.2359 0.00
5376 768 0.3562 872.47 800 0.3558 0.10
6144 896 0.5110 907.83 960 0.5100 0.18
6912 1008 0.7093 931.10 1072 0.7019 1.06
7680 1136 0.9618 941.99 1200 0.9375 2.59
8448 1264 1.2305 979.93 1280 1.2255 0.41
9216 1376 1.9682 795.41 1280 1.5803 24.55
9984 1504 2.1745 915.33 1280 2.1573 0.80

10572 1616 2.3111 1022.55 1552 2.3101 0.04
11520 1744 3.3041 925.40 1392 3.0419 8.62

TABLE IV. COMPARISON OF THE TIME (IN SECONDS) OBTAINED FOR
THE HYBRID DGEMM ROUTINE WITH THE VALUE OF N CPU SELECTED
WITH THE EMPIRICAL MODEL, THE OPTIMUM EXPERIMENTAL TIME AND

N CPU WITH WHICH IT IS OBTAINED. IN 12CK20.

V. CONCLUSIONS AND FUTURE RESEARCH

Two load-balancing methods for the matrix multiplication
in hybrid multicore+GPU systems are compared. One method
is based on experimental analysis of the behavior of the
routine. Experiments are conducted when the routine is being
installed in a system, with experiments for a number of
problem sizes and varying the size of the matrices partition.
The search of the preferred partition is guided in order to
reduce the installation time. The other method is based on
a theoretical model of the execution time of the routine, with
parameters representing the relative speed of the computational
components in the system and the cost and overlapping of the
communications. The values of the parameters are estimated in
the installation through experiments with selected matrix and
partition sizes, and the model is then used at running time
to decide the matrices partition. The two methods provide
partitions close to the optimum for the two systems where
experiments were conducted and, consequently, the execution
time is close the the maximum achievable with a perfect
combination of the basic libraries in use for CPU and GPU,
and improvements over the use of optimized libraries for CPU
or GPU are obtained. Figure 7 compares the results with the
two optimization methods with those with optimized routines
in only one computational component and with the added
performance of the two libraries.

At present, we are working on extending the methodology
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Fig. 7. Comparison of the GFLOPS of the hybrid dgemm routine when using
guided search and empirical modeling with those achieved with the CUBLAS
and MKL routines and with the added performance of the two libraries, in
12CK20.

to higher-level routines, for example, LU, QR and Cholesky
factorizations. The use of the information generated for the
matrix multiplication when it is used inside a routine is being
analyzed, as is the direct application of the methodology to
higher-level routines. The same techniques are being analyzed
for the Intel Many-Integrated-Core Xeon Phi, and the work
can be extended to more heterogeneous systems: multiGPU,
multiMIC, hybrid CPU+GPU+MIC systems, and, in general,
clusters with those components.
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