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Compositionality and Modest Inferentialism 
 

James Trafford 
 
 
RESUMEN 

Este artículo presenta tanto una solución como un problema para la explicación 
de la composicionalidad en el inferencialismo modesto de Peacocke. El problema in-
mediato al que se enfrenta la explicación de Peacocke es que hace aparecer la compo-
sicionalidad como si sólo pudiera ser entendida al nivel de la semántica, algo que es 
difícil de reconciliar con el inferencialismo. Aquí, siguiendo una breve sugerencia he-
cha por Peacocke, presento un armazón formal dentro del cual al nivel de la relación 
determinante entre inferencia y semántica. Esto proporciona a su vez un “test” para la 
composicionalidad que, problemáticamente, el armazón de Peacocke de la deducción 
natural para la lógica clásica no puede superar. Para terminar, bosquejo brevemente 
un armazón alternativo bilateralista para el inferencialismo modesto para el que vale 
la composicionalidad.  
 
PALABRAS CLAVE: composicionalidad; inferencialismo; Peacocke; bilateralismo.  
 
ABSTRACT 

This paper provides both a solution and a problem for the account of composi-
tionality in Christopher Peacocke’s modest inferentialism. The immediate issue facing 
Peacocke’s account is that it looks as if compositionality can only be understood at 
the level of semantics, which is difficult to reconcile with inferentialism. Here, fol-
lowing up a brief suggestion by Peacocke, I provide a formal framework wherein 
compositionality occurs at the level of the determining relation between inference and 
semantics. This, in turn provides a “test” for compositionality, which, problematically, 
Peacocke’s natural deduction framework for classical logic cannot meet. To finish, I 
briefly outline an alternative, bilateralist, framework for modest inferentialism, for 
which compositionality holds.  
 
KEYWORDS: Compositionality; Inferentialism; Peacocke; Bilateralism. 
 
 

INTRODUCTION 
 

On Peacocke’s modest inferentialism, a specified set of natural deduc-
tion rules are taken to determine the truth-conditional content of logical con-
stants, where those rules have a substantive connection with ordinary inferential 
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practices. On Peacocke’s [(1987); (1992)] view, this is put in terms of “read-
ing-off” valuational semantics from inference rules that a thinker finds “prim-
itively compelling”. An inference is primitively compelling if a thinker finds 
it compelling, it is underived from other principles, and its correctness is not 
answerable to anything else [Peacocke (1992)]. Thus, in order for a thinker to 
have a concept, there are a substantial set of constraints, or acceptance condi-
tions, that a thinker must meet, which also determine the semantic content 
expressed (ensuring that those inferences are valid) [Peacocke (1986)]. These 
are a normative set of conditions that express what an agent becomes ration-
ally committed to when they judge a content.1  

A problem, leveled at modest inferentialism, perhaps most clearly in 
[Fodor (1991); (1998)], is that it fails to conform to certain intuitively correct 
constraints upon the compositionality of language. In brief, the claim there is 
that compositionality requires that the content of complex concepts is fully 
derivable from the content of their constituent concepts. But, if this is to be 
built up out of sets of inferences that are encoded within a concept’s ac-
ceptance conditions, then the complex content may not always be fully deriv-
able from those primitive conditions. In response, Peacocke [(2000)] suggests 
that an acceptable account of compositionality need only provide a principled 
means by which the relevant semantics of a complex content can be deter-
mined by the relevant semantics of its constituents. Then, the semantic value 
of a complex content will follow from the determination of the semantic val-
ues (by acceptance conditions) of its constituents. For example, Peacocke 
[(2004)] provides the following definition of compositionality: 
 

For something to be the complex concept A B�  is for there to be some opera-
tion  on semantic values such that the fundamental condition for an entity to 
be the semantic value A B�  is for it to stand in relation  to the semantic val-
ues of the concepts A  and B  respectively [p. 91].  

 
However, this response is both unclear, and potentially worrying from the 
point of view of modest inferentialism. First, the determination principle, and 
the relation , are never made formally precise, or generalisable, in Pea-
cocke’s work (see for example, [Peacocke (1992)]). Second, the response has 
the air of “giving the game away” from the point of view of modest inferen-
tialism since compositionality is accounted for only at the level of semantic 
value. Given that part of the motivation for adopting modest inferentialism is 
that we can distinguish between, for example ( )A B� � ��  and A B�  , this 
appears far from satisfactory. Thus, allowing for compositionality only at the 
level of semantic value is a significant loss for modest inferentialism.  

Fortunately, there is a fairly obvious salve, which Peacocke [(2005)] 
hints at: 
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We must distinguish sharply. There are  
 

(a) relations between semantic values, which […] are in general thought-
independent things in the world; 

 

and there are 
 

(b) relations between the condition for something to be the semantic value of 
the complex concept and the conditions for things to be the semantic values of 
its atomic constituents.  

 

It is the relation between conditions, (b), that I am appealing to in explaining 
conceptual structure, not the relations (a) between semantic values themselves. 
[…] In the case of a complex concept, as in the case of a simple concept, the 
concept can be individuated by the fundamental condition for something to be 
its semantic value [p. 173].  

 
It is this promissory note that I follow up here. In §I, I provide a formal 
framework for understanding the determination of valuation semantics by an 
inferentially defined logic. In §II, this is developed providing a definition of 
Peacocke’s relation  as the “preservation of V-validity” over a set of valua-
tions consistent with a rule. I use this to construct a simple “test” for compo-
sitionality, which in §III I use to analyse Peacocke’s preferred classical 
natural deduction rules. There, it is shown that both �  �  and  fail to meet 
this test. Resultantly, Peacocke’s account fails to be compositional. In §IV, I 
briefly suggest that a more liberal account of inferentialism, bilateralism, can 
meet this challenge. 
 
 

I LOGIC, SEMANTICS AND RULES 
 

This section outlines a formal framework for Peacocke’s modest infer-
entialism.2 First, I define a very general account of a logic L (§I.1), which, 
embellished with a set of rules (§I.2), constrains L in a way that is compatible 
with Peacocke’s account. §I.3 gives a generalised account of valuational se-
mantics, before in §I.4, providing a determination theory between the two. 
Completeness over this determination is outlined in §I.5 in terms of the con-
cept of absoluteness developed in [Hardegree (2005)]. 
 
I.1 Logic  
 
Definition 1. A logic L is an ordered pair, , LWFF� �L � , where WFF is the set 
of well-formed formulas in a language L (containing an enumerable set of 
sentences), and LL  is a relation between a subset of formula and a formula 
 ( )WFF WFF�� 	

)
(�( .3 
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I will assume throughout that  is reflexive, transitive and monotonic. I also 
assume that  is finitary, where, for all , ,WFF
 � � if
 �� , then there is a 
finite '
 
�  and '� ��  where ''
 � '� . Then, given that some form of 
conjunction exists in L, we have the equivalence: 1,..., nA A BB  iff 

... .1 n BA A� � .B   
In its most basic form, then, a logic is simply a pre-order over sets of 

formulas.4 This allows the characterisation of a sequent in L as an ordered 
pair ,
 �� �  where 
  is a set of formulae and �  a single formula 
(where � 
 �� ). 
 
I.2 Rules 
 
An n-premise rule in L is simply an n + 1-ary relation on the sequents of L. 
Where a rule is associated with a connective #, the set of WFF’s will be 
closed under the operation #( ,..., )1 nA A , such that, when all ( ,..., #)1 n 1A A � � , 
(and� ,..., ),1 n n 1A A WFF A WFF�� � . So, for example, typical natural deduc-
tion rules are simply a set of ordered pairs consisting of a set of premise se-
quents and a conclusion sequent (hence, we call this a SET-FMLA 
framework). Take natural deduction conjunction (written in sequent style): 
 
 

 
 
The rule, R� , is meant to make precise certain acceptance conditions that 
constrain agent’s commitments [Peacocke (1986), p.185ff], in terms of the 
way in which they are ordered and combined over arguments (the unit of 
which, to follow Peacocke, I take to be a proposition). For example, an agent 
accepting that ,A A A B�A B , may be said to be rationally committed to not 
simultaneously accepting A, B and rejecting A B� . Note that this way of 
putting things is deliberately inequivalent to saying that the agent accepting 
A, B is thereby rationally committed to accepting A B�  . This is because, 
whilst acceptance conditions play a key role in the fixation of beliefs, they 
neither commit an agent to logical omniscience, nor do they rationally oblige 
an agent to accept A B� where, for example A B�  is unreasonable against 
the backdrop of the beliefs that agent antecedently holds. These commitments 
are made perspicuous through the development of proof-systems. So, R� , on 
this view, constrains an agent’s commitments by saying that it is rationally 
prohibitive to reject A B� , given acceptance of A, B. 
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Closure under rules therefore puts constraints upon the pre-order, L, defined 
above. Call a logic L that is constrained in this way, proof-theoretically 
defined, when, for each ,WFF �
 � 
� � �  iff �  is provable by the 
successive application of the rules in L. Then L distributes WFF on L in 
terms of the collection of sequents that are valid according to L. 
 
Definition 2. Any sequent , L
 � �  is L-valid, so L
 �L � .5 
 
I.3 Semantics 
 
Definition 3. A semantic structure S is an ordered pair ,WFF V , where 
WFF is as above, and V a valuation space whereV U� , (U is the set of all 
possible valuations on L). V is a set of truth-values, and D �  V designated 
values.6 A valuation v is a function on L assigning a truth-value �  V to a 
WFF where v: WFF →{v}. 

Typically, when we approach logic by way of semantics, we expect V 
to be induced by the truth-conditional interpretation of each connective de-
fined in L. For example, we might define VCPL as containing those valuations 
v: WFF → {1,0}that obey the truth-conditional clauses for the connectives. 
In many cases, this is equivalent to taking those valuations recursively in-
duced by the defined truth-functions for the connectives. 
 
Definition 4. An n-ary truth-function nf is any function from {1,0}n to{0,1}. 
Call an n-ary connective # of L truth-functional w.r.t V if there exists a function f 
such that, for each v �  V and for all ... ,1 n WFF� � �  v(# ( ... ) n

1 n f� � �  
(v ( )...1�  v ( )).n�

8  
 
I.4 Determination Theory 
 

What we want, from the point of view of modest inferentialism, is not 
to let V be built-up from truth-conditional clauses on connectives, but rather 
to let V be “carved out” by the set of L-valid sequents defined proof-
theoretically. For this, we need a kind of “determination theory” invoked in 
[Peacocke (1986)], with the general requirement that: 
 

GENERAL REQUIREMENT: The given rules of inference, together with an account 
of how the contribution to truth-conditions made by a logical constant is 
determined from those rules of inference, fixes the correct contribution to the 
truth-conditions of sentences containing the constant [Peacocke (1993), p. 172]. 
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The general idea is to understand a valuation as providing a 
counterexample, or not, to the potential validity of a sequent in terms of 
whether or not truth is preserved when passing from l.h.s formulae to right. 
Then provable sequents determine a set of valuations from the universe of 
possible valuations over a language L. 
 
Definition 5. Where V = {0, 1} and D�  V =, {1}, a sequent ,
 �  
(where �  WFF
 �� � ), is refuted by a valuation v iff, when v ( � ) for 
each � 
� , v (α) Otherwise v satisfies the sequent (transitivity ensures ex-
tensibility to each WFF). 

The idea is to construct a valuation-space V U�  from a set of rules de-
fined in a logic, where V contains the set of valuations satisfying each valid 
sequent in L. 
 
Definition 6. (V-validity) A sequent ,
 �  is V-valid iff, for all v ,V� v 

satisfies ,
 � . 
We let V ( ,
 � ) be the set that consists of the valuations in U that 

satisfy ,
 � , and allow a valuation-space ��(L) to be built-up out of these 
sets over a logic L. Then, let a proof-theoretically defined logic L determine a 
valuation-space by determining the set of admissible valuations V that are 
consistent with L. 
 
Definition 7. (L-consistency) A valuation v U�  is L-consistent iff v satis-
fies each valid sequent in L. The define the corresponding valuation space: 
��(L) df� {v :U� v is L-consistent}. 

We should note at this point that it is also possible to work the other 
way around, starting with a valuation-spaceV U� , and determining the log-
ic or logics that are consistent with it. To do so, we say that a semantic struc-
ture, ,WFF V  determines a logic L w.r.t V (i.e. � (V)) when all the V-valid 
arguments are L-valid. 
 
I.5 Completeness 
 

Without placing anything other than the above minimal restrictions on 
S, L, we have two partially ordered sets P on L [Hardegree (2005)]:  
 

(P1) The set of all valuation-spaces V on L, ordered by set inclusion;  
 

(P2) The set of all logics L on L, ordered by set-inclusion. 
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With this, we can define a closure operator cl as a function on a 
poset , ,P �  iff cl obeys the following clauses for all x, y on P:  
 

(c1): ( )x cl x�  
 

(c2): ( ( ) (x)cl cl x cl�   
 

(c3): ( ) ( )x y cl x cl y� � �   
 
Put succinctly, where cl is a closure operator on a poset , ,P �  x is an ele-
ment of P, then x is closed iff ( )cl x x� . 

This provides a neat formulation of the closure relation between logics 
and valuation-spaces since the pair <�, ��  form an antitone Galois connec-
tion between valuation spaces U and logics L [Dunn and Hardegree (2001); 
Hardegree (2005); Hjortland (forthcoming); Humberstone (2011)]. 
 
Fact 8. For each V UU  and 'L L 'L  (for some WFF): 
 

(1.1) L  � (�(L)) 
 

(1.2) V  �(�(V)) 
 

(1.3) 'L L 'L  � ( ')L  �(V) 
 

(1.4) V UU  �(U)  �(V) 
 
Proof. Given at length in [Hardegree (2005)]. 
 

(1.1) indicates that when we determine�(L), and then induce a logic � 
from the valuation space determined, then � will contain L. Similarly, (1.2) 
tells us that, when we determine �(V), and then determine a valuation space 
� from the logic determined, that � will contain V. 

We may also define a stronger relation since the Galois map between 
the two form abstract completeness theorems, which, following Dunn and 
Hardegree [(2001)], I call absoluteness. 
 
Fact 9. [Hardegree (2005)] For any L, V; 
 

•  L is absolute iff L = �(�(L)) 
 

•  V is absolute iff V = �(�(V)) 
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When absoluteness holds, we have a guarantee that the determining relation-
ship between L, V is complete. Absoluteness on V tells us that V UU  is the 
only valuation-space consistent with ,WFF , and absoluteness on L tells 
us that L is the only set of sequents that can be associated with ,WFF V . 
So, absoluteness provides a standard by which to analyse the determining re-
lationship between a logic and a semantic structure. Our closure operator be-
comes an abstract completeness theorem.9 

Importantly, this ensures that, for each sequent that is derivable by 
some rule defined in L, it is satisfied by each v VV  (so long as LL  is closed 
under reflexivity, monotonicity, transitivity). 
 
Lemma 10. Let 
  be any set of formulas in WFF. Define v
, as: v
 (�) = 1 
if 
 ��  , and v
 (�) = 1 otherwise. Then v
 is L-consistent and v
  �(L). 
 
Proof. [Hardegree (2005)] If not, there must be an L-valid sequent, � �� �   
that is refuted by v
, so that v
 1� 1 and v
 0� 0 . v
 is defined such 
that 
 ��  
 �

y
� . Since � �� �  is L-valid, and given that the  associated 

with L is closed under transitivity, it follows that 
 �� , so by the definition 
of v
, v
 1� 1 , so v
  does not refute 
 �� . 

Now we can show that L = �(�(L)). 

Proof. [Hardegree (2005)] Suppose that some L
 �� L , to show that 

 �

f [
�  �(�(L)) (in other words, it is refuted by�(L). Take the valuation 

v
, which by Lemma 10 is in �(L). By definition, v
 satisfies all derivable 
sequents of L. Since L is reflexive, each element of 
 is derivable in L, so v
 
satisfies 
. But, since 
 ��  is not L-valid, � 

 , so v
 refutes�. Then 
v
 refutes 
 �

,
� , and so too does� (L), thus 
 �

,
��  �(�(L). 

 
 

II. COMPOSITIONALITY 
 

With the above framework in place, we now have a formal structure for 
analysing Peacocke’s claims regarding compositionality. The determination 
relation between L, and V is the satisfaction relation, and the compositional 
relation � that Peacocke alludes to can be recast as the preservation of V-
validity, as spelt out below. Defining compositionality in this way provides a 
means by which the modest inferentialist story can be upheld without “giving 
up” compositionality to the level of semantic-value, and also allows for the 
construction of a “test” of compositionality for a rule. 
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II.1 Defining compositionality  
 
For a language L to be compositional is for each complex formula E of L, 
consisting of sub-formulas ... ,1 nS S  to be constructible from the application 
of some rule R such that E = R[S1…Sn]. R is syntactical in the sense that it 
operates at the level of inference between WFF’s, with its analogue in the 
semantic domain in which we are interested (in other words, a valuation-
space V UU ) will be a function f. There, we require that there be a homo-
morphism preserving the structure of the application of the rule to some arbi-
trary set of WFF’s in the structure of valuations. 
 
Definition 11. Take a complex formula E, where ( )E �  is the immediate sub-
formulas of E, ( ... ).1 nS S Then, an n-ary function nf  is a function from 

0,1 n  to 0,1 , where for each v VV  and for all ( )E � , v(#(S1…Sn)) = 
nf (v(S1...Sn)) .

10 
The key point here is that the function on the right must be determined 

by the rule-form n-ary connective #. What we want is the stipulated inferen-
tial behaviour of the connective to determine a corresponding semantic func-
tion preserving the original structure (and so not requiring any sort of ad-hoc 
manouvering at the level of truth-functions as such like). 

With this in mind, we can formalise Peacocke’s relation � in terms of 
the notion of V-validity introduced in Definition 6. There, we defined V-
validity for sequents, and suggested constructing a set of valuations v UU  
satisfying a sequent, where all v  � ,
 �  are called L-consistent. This 
way of going about matters can be extended to a rule defining a connective 
R# in terms of the preservation of V-validity (since V-validity was defined for 
single sequents) over the total range of #R

L -consistent valuations. First, de-
fine �( #R

L ) to be the total range of v UU   satisfying every provable sequent 
of #R

L  (i.e. by successive application of R# over the language L). 
 
Definition 12. (Rule preservation of V-validity) A rule R#, consisting of a set of 
sequent premises and a sequent conclusion SEQ SEQ

,
SEQ  , preserves V-validity 

iff, for every v  �( #R
L ), and every WFF� WFF , whenever v 1SEQ

idity
1, 

v(SEQ) = 1. 
It is simple to see that, when Peacocke’s � is formalised as the 

preservation of V-validity over L-consistent valuations, we have the required 
operation on underlying valuations (over the total range of valuations 
consistent with a rule). 
 
Example 13. (Conjunction) Let � ( )

R
L )  be the total range of v :U :U  v is 

R
L -consistent. The conjunction rules defined above (�-I, �-Ea, �-Eb) pre-
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serve V-validity over�� ( )
R

L ) . Then, we know that for each v  � ( )
R

L ) , 
(from �-I) that when v(A) = 1 and v(B) = 1 then v ( ) 1A B) 1 ; (from -Ea) 
that when v(B) = 0, then v ( ) 1A B

( )
) 1 ; (from �-Eb) that when v(B) = 0, 

then v ( ) 0A B
( )
) 0 . In other words, by preservation of V-validity by R

)
 we 

have compositionality over formulas such that v 1 nS ,...,S f
va d ty by R we

1 nS ,...,S f1 n  
(v(S1)…v(Sn). Indeed, the function on the right f  is the classical truth-
function for conjunction: 
 

f  (x, y) = 1 1 1
0

if x and y
otherwise

1and y1  

 
Importantly, of course, the function on valuations follows from the determi-
nation relation on R , rather than assuming antecedent knowledge of the 
classical function. 

With this in place, we can construct a simple “test” for the composi-
tionality of formulas in the context of a rule R#. 
 
Definition 14. (Valuation agreement) Say that for some � #( )

R
L UU  con-

sistent with a rule R#, a pair of valuations v1, v2  � #( )
R

L � agree on � #( )
R

L  
when, for #R

L� #R
L� , then v1 (�) = v2 (�). 11 

It is obvious that compositionality for the #'
R

WFF s L #R
L

R
 requires (at 

least) that, if an arbitrary pair of valuations v1, v2  � #( )
R

L  agree on the 
subformulas of a complex formula (formed using R#), they must agree on the 
formula itself. 
 
Conjecture 15. (Compositionality Test) 
 

v1 v2  � #( )
R

L � ( )S E �( )S E �( ) �v1(S) = v2 (S)� → v1 (E) = v2 (E)}. 
 
This expresses the basic thought that, if an arbitrary pair of valuations agree 
on all ( )E �  of E, then they agree on E.12 
 
 

III. PROBLEMATIC COMPOSITIONALITY 
 

With this, however, we are far from home and dry for Peacocke’s 
account, since a number of the natural deduction rules for classical connectives 
fail the compositionality test. Take  as example. Sticking with the natural 
deduction  form for a moment, we schematise R

p
 as follows: 
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The issue arises for cases in which v(A) = v(B) = 0 for Euv. In this case, we 
can not ensure that v ( ) 0A B) 0  since we are able only to conditionally 
infer C from A BB , given independent sub-derivations to C (which will not 
figure in the immediate sub-formulas of complex formulas involving ). We 
don’t have in schematic form all of the relevant information encoded within 
the immediate sub-formulas involved in the derivation. Given that we are 
concerned here only with formally valid reasoning, what Euv tells us is just 
that, if there are proofs available from A to C and B to C, then we have proofs 
of A CC , and B CC . With these, and the disjunction elimination rule we can 
then show only that V-validity will include ( ),( ),( )A B A C B C C),( ),( )),( ),(),( ),( C .  

With this in mind, we may rewrite the rules in sequent form (again, call 
this R ): 
 

 
 
However, this won’t fix matters, since, again, we have a situation in which 
there are valuations agreeing on the immediate sub-formulas, A, B, but not on 
the formula A BB  itself. Again, the issues arise with the elimination rule, 
which only gives us something along the lines of: if we can infer C from A, 
and we can infer C from B, and v ( ) 1A B

g
) 1 , then v(C) = 1. If we consider 

the derivations of C from A, B in terms of V-validity, however, we require for 
, CA
 C  only that v ( ) 0C 0  when v ( ) 1A 1 . Then, for , CA


q
C  (and 

equally, , CB

y

C ), we need either that v(A) = 0 (= v(B)), or v(C) = 1. This 
provides a counterexample to compositionality for R

(
 since we need only 

find a pair of valuations v1, v2 for which v1(A, B) = v2(A, B) but 
v1 ( )A B

p
) v2 ( ).A B).  Set v1(A) = v2(B) = 0 = v2(A) = v2(B). The first 
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case has v1(C) = 0, and the second v2(C) = 1. As is obvious, this gives us 
v1 ( ) 1A B) 1 , but v2 ( ) 0A B) 0 . For example, if A = C, then both of the 
conditional premises are satisfied by v1. So, in order for v1 to satisfy the rule, it 
must be the case that the major premise is satisfied, and so v2 ( ) 1A B) 1 . 
Hence, there are valuations that are equivalent on the subformulas but that do 
not agree on v ( )A B) , and so R  is not compositional. 

This becomes particularly problematic when we consider formulas 
involving negation such as A AA . First, consider the valuation v* [Belnap 
(1990)], which is defined for each formula WFF� WFF  in relation to CSL-
admissible valuations (where a CSL-admissible valuation is one which 
satisfies the typical truth-functional conditions of classical sentential logic). 
Then let; 

 
v* (�) = 1 iff each CSL-admissible valuation verifies �. 
 

v* (�) = 0 otherwise. 
 
Lemma 16. v* is consistent with CSL, whilst v* is not CSL-admissible. 
 
Proof. [Hardegree (2005)] First, check that v* is CSL-consistent. Suppose 
otherwise, in which case v* CSLVCSLVC . Then, v* must refute at least one se-
quent, 
 �� , in � ( )CSLV . In other words, we must have v* ( ) 1
 1 whilst 
v*(�) = 0. Let � be some element of 
. Then v*(�) = 1, and, by the defini-
tion of v*, every CSL-valuation verifies � , so � is CSL-valid. We know, 
therefore, that every � 

  is CSL-valid. Since 
 ��  is CSL-valid, � must 
be CSL-valid. Then, every CSL-valuation verifies �, so, by the definition of 
v*, v*(�) = 1, which contradicts our hypothesis that v* refutes
 �� . 

To see that v* is not CSL-admissible, it is enough to see that v*(A) = 
v* ( ) 0A) 0 , which, of course, violates the typical truth-functional con-
straints on CSLV  . 

It is simple to see from that the fact that v* is consistent with CSL, that 
compositionality will not hold for derivations involving A AA . Set v1 to be a 
“typical” valuation, and let v1(A) = v1 ( )A) = 0 = v*(A) = v* ( )A) . Then, 
whilst v1 and v* are equivalent on relevant sub-formulas, v1 ( ) 0A A

)
) 0 , 

whilst v* ( ) 1A A) 1. So, again, we have a case in which there are valuations 
consistent with R

)
 that are equivalent on sub-formulas, yet disagree on the 

formula itself. 
Resultantly, then, Peacocke’s preferred natural deduction framework 

fails to be compositional. In effect, whilst we can now avail ourselves of a 
possible means of compositionality which is respectable from the point of 
view of modest inferentialism, we have simply formalised the Fodorian ob-
jection with which we started. The valuation of a complex formula is underde-
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termined by the valuations of its immediate sub-formulas, where those valua-
tions are determined by the inferential rules for negation and disjunction. 
 
 

IV. BILATERALISM 
 

Whilst Peacocke’s formulation of modest inferentialism fails to be 
compositional, this is not the case for alternative frameworks, particularly 
those allowing for multiple succedents. Here, I briefly outline the bilateralist 
account developed by Greg Restall [(2005); (2009)], before showing that it 
passes the compositionality test. 
 
IV.1 The Bilateralist Framework 
 

Bilateralism is a form of inferentialism developed in [Restall (2005)] , 
which takes the view that the validity of inferences concerns not only ac-
ceptance conditions, but both acceptance and rejection conditions, and the 
connections between the two.13 The inference rules defining logical connec-
tives are then understood in terms of coherence constraints over how an agent 
should treat the acceptance and rejection of formulas of a language. Crucial-
ly, both acceptance and rejection are taken to be primitive in the sense that 
both the structural and inferential rules of a proof-theory are explained in 
terms of these prior notions. Hence, rejection is not understood as simply the 
acceptance of a negation, since the rules for negation are themselves built out 
of constraints over acceptance and rejection. One obvious motivation for bi-
lateralism lies in its ability to secure an inferentialist account of first-order 
classical logic. As such, we can see the bilateralist account in relation to the 
problems diagnosed above regarding Peacocke’s attempt to do the same. 

Restall’s [(2005)] suggestion is to think of logic as governing positions 
involving accepted and rejected sets of formulas. 
 
Definition 17. (Position) A position :
 �  is a pair of sets of formulae 
where 
 is the set of accepted formulas, and � the set of rejected formulas. 

A position expressed in a language may be used to represent an agent’s 
rational commitments in terms of the coherence between acceptance and re-
jection. Where :
 �  is a position, we allow that , : ,A B
 �  is the state 
adding the formula A to the left set 
, and B to �. Think of the above coher-
ence constraints over rational commitment as saying that, a position :
 �  
is incoherent if it contains some formula in both the left set and the right set, 
so that 
 �� . Thinking of this in terms of an agent, such a position in-
dicates that some statement is both accepted and rejected, and so incoherent. 
Incoherence allows us to characterise sequent provability. 
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Definition 18. (Sequent provability) If :A B  is incoherent, then A BB  . 
 

This is because, if a position consisting of accepting A and rejecting B 
is incoherent, then A BB , and an agent who accepts A and rejects B, as said 
above, has made a mistake. 

The definition generalises in cases involving sets of accepted and rejected 
propositions. In a multiple-conclusion (SET-SET) framework, A BB  may be 
read in terms of the underlying atomic formulae 11 ,... ,,... n n�� ��

,
1,... n� �  which 

is (classically) equivalent to 1 2... n� � �2 n� �2...  → 1 2... n� � �
n 1,�
2 n� ��2... . 

 
Definition 19. (Sequent provability generalised) If :
 �  is incoherent, then 

 �� .  

By incoherence, we mean any position :
 �  for which an agent who 
accepts each member of 
, and rejects each member of � is incoherent. Then, 

 �

p
� , and an agent is mistaken to accept all � 

  and reject all � �� . 
The general idea is to construct a sequent calculus out of these con-

straints over acceptance and rejection. For example, since both accepting and 
rejecting the same formula is incoherent, from , : ,AA
 �  and Definition 
19, we have the usual identity axiom for all atomic formulas. We also have 
weakening, since, if a position is incoherent, the addition of accepted and re-
jected formulas will not bring it back to a coherent position. Contra-
positively, if :
 �  is coherent, and '
 

  and '� �� , then ' : '
 �  
will be coherent. Restall also suggests that we construct cut by thinking of 
extensibility constraints on accepted and rejected formulas. For a position 

:
 � , if the positions , :A
 �  or : , A
 �  are incoherent, then the orig-
inal position :
 �  must already be incoherent. In other words, if a position 
is coherent, it should be extensible by a formula A to a coherent position 
where A is either accepted or A is rejected. So, where :
 �  is coherent, ei-
ther , :A
 �  or : , A
 �  is coherent. 

More importantly, operational rules for the connectives can also be con-
structed out of positions. For example, if the position : , A B
 � B  is coherent, 
then, : , A
 � , : ,B
 � or both, are coherent. Contra-positively, if : , A
 �  
and : ,B
 �  are incoherent, then so too is : ,A B
 �

p
B . In this case, we 

know that ,A
 �,A� , and ,B
 �,B� , so that ,A B
 � B,A� B . This gives us: 
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We construct the rules for classical negation by taking a negation AA  to be 
acceptable when A is rejectable, and vice-versa. So, if : , A
 �  is incoher-
ent, then so too is , A :
 �

j
A : �A : . This gives us Gentzen’s classical negation 

rules: 
 

 
 
Analogous accounts can be provided for all of the classical sequent rules 
[Restall (2005)]. This gives us a construction of the classical sequent rules in 
multiple-conclusion form, which is built out of a simple and plausible account 
of agents’ rational commitments.14 
 
IV.2 Semantics for Bilateralism 
 

Before we even consider a determination theory for bilateralism, it 
should be fairly clear that, unlike Peacocke’s system, we can derive identity 
( A AA ) for all complex formulas, given only the assumption that we have 
identity for atomic formulas. That is, because we are building up the accounts 
of sequent rules from both acceptance and rejection, we already have compo-
sitionality for complex formulas involving inferential rules. This carries over 
to the valuational semantics, which we can see on the above determination 
theory with just a few tweaks. 
 
Definition 20. For a set of formulae WFF in a language L, a multiple-
conclusion sequent is an ordered pair, ,
 �  (where WFF,
 � WFF,�  and 
where ,
 �  are sets of formulae of WFF). A multiple-conclusion logic L is 
an ordered pair WFF,L , where L is the set of binary relations LL  between 
finite subsets of WFF and finite subsets of WFF. We call the set of provable 
sequent in L, L-valid, such that df
 �� df�  � ,
 �  is L-valid}. 
 
Definition 21. A sequent 
 ��  is satisfied by a valuation v just in case 
v(�) = 0 for some � 

 , or v ( ) 1� 1  for some � �� , otherwise v refutes 
the argument. 

Then, let L determine a valuation-space by determining the set of admis-
sible valuations V that are consistent with L as before: �(L) df

g
df  �v :U :U  v es 

L-consistent}. 
 
IV.3 Compositionality for Bilateralism 

Again, we formulate Peacocke’s relation � as the preservation of V-
validity by a rule R# (over �( #R

L ). 
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Definition 22. (Rule preservation of V-validity) A rule R#, consisting of a set 
of sequent premises and a set of sequent conclusions P CSEQ SEQ

g
CSEQC , 

preserves V-validity iff, for every v  �( #R
L ), and every �  WFF, whenev-

er v ( ) 1.PSEQ
y

1.  
Bilateralism gives us a compositional theory for all #'

R
WFF s L #R

L
R

. The 
reason is that, unlike the SEQ SEQ

p
SEQ  formulation, the characteristic func-

tion on �( #R
L ) allows us to carve up valuations in �( #R

L ) into two sets by 
assigning 1 to every element of �( #R

L ), and 0 to every element of U  
�( #R

L ). As a result, we no longer have to worry about valuations such as v*. 
 
Example 23. (Disjunction) In this setting, we schematise R  as follows: 
 
 

 
 

Let � ( )
R

L )  be the total range of v  U : v is LR� -consistent. R  pre-
serves V-validity over � ( )

R
L ) . Now, if we take any arbitrary pair of valua-

tions v1, v2  � ( )
R

L ) , then, where v1, v2 agree on sub-formulas A, B, they 
will agree on the complex formula A BB . The problematic case identified 
above occurred when v(A) = 0 = v(B). Here, we know (from V-L) that, for 
each v  � ( )

R
L ) , when v(A) = 0 and v(B) = 0, then v ( ) 0A B

)
) 0 . In other 

words, in the bilateralist framework, preservation of V-validity by R  gives 
us compositionality over formulas such that v( (S1,…,Sn)) = f

g
(v 

(S1)…v(Sn)). 
 
Example 24. (Negation) Define R  as above (§IV.1). Let � ( )

R
L )  be the to-

tal range of v  U:v is LR��-consistent. R
(§

 and R  preserve V-validity 
over � ( )

R
L ) . Unlike before, we no longer have it that v* is LR��-

consistent, and it is also the case that R  is compositional by preservation of 
V-validity (example 23). It follows, straightforwardly, that for an arbitrary 
pair of valuations v1, v2  � ( )

R
L ) , when v1(A) = v1(�A) = 0 = v2 (A) = 

v2 (A), v1(A � �A) = 0 = v2 (A � �A). 
 
 

CONCLUSION 
 

This paper has presented both a solution and a problem for the account 
of compositionality in Peacocke’s modest inferentialism. In providing a for-
mal framework for the determination of a valuational semantics by an infer-
entially defined logic, I suggested reformulating the “compositional” relation, 
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�, alluded to by Peacocke, as the preservation of V-validity by a rule. This 
provides a “test” for the compositionality of a logic, which, problematically, 
the classical natural deduction framework cannot meet. To finish, I briefly 
outlined an alternative account of modest inferentialism, bilateralism, that is 
capable of meeting this challenge.15  
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NOTES 
 

1 I stick with Peacocke here in talking of the cognitive states of acceptance and 
rejection, rather than speech acts of assertion and denial. However, I take it that for 
the purposes of this paper at least, since assertion and denial at least typically express 
acceptance and rejection, respectively, both are equally rationally constrained in the 
ways discussed here. 

2 Further details can be found in [Trafford (under submission-1)]. 
3 Assuming the standard formulation SET-FMLA. We will have cause to dis-

cuss other formulations later. 
4 See Strassburger (2007) for further details. 
5 Hereafter, I drop LL  for , assuming the definition is relative to a logic 

throughout. 
6 There are a number of plausible candidates for V, D, depending upon the logic 

in question, but here I will be interested only in cases where V = {1,0, and D = �1. 
7 See also Hardegree (2005). 
8 On this, and for further detail, see Humberstone (2011), §3. 
9 Though I won’t go into it here, it should be said that absoluteness for V = 

�(�(V)) does not hold for classical propositional logic (in SET-FMLA). For details, 
see Hardegree (2005); Hjortland (forthcoming). 

10 On this, and for further detail, see Humberstone (2011), §3. 
11 A similar notion can be found in Humberstone (2011). 
12 It should be noted that this is a fairly basic account of compositionality which 

does not directly deal with issues regarding intersentential compositionality regarding 
inferences that exploit the particular constituent structure of premises and conclusion. 
Nonetheless, I am confident that the account here can be extended to deal with these 
issues since the valuations of compound sentences formed with connectives of will be 
compositionally determined from their components. I leave the details for further 
work. Thanks to an anonymous referee for drawing my attention to this matter. 
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13 Restall’s (2005) account puts things in terms of assertions and denials, rather 
than acceptance and rejection. I take the liberty of putting the account in terms of the lat-
ter for uniformity with Peacocke’s approach, and with the rider expressed in note 1 above. 

14 Further details regarding bilateralism in the context of modest inferentialism, 
the semantic account briefly alluded to in §IV.2, and problems involving liar-like sen-
tences can be found in Trafford (under submission-2). 

15 Thanks to Ole Hjortland and Alex Tillas for insightful conversations relating 
to the issues discussed in this paper. Thanks also to an anonymous review for helpful 
comments on an earlier draft. 
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