

-56-

Abstract — Nowadays, business models are in permanent

evolution since the requirements belongs to a rapidly evolving

world. In a context where communications all around the world

travel so fast the business models need to be adapted permanently

to the information the managers receive. In such world,

traditional software development, needed for adapting software

to changes, do not work properly since business changes need to

be in exploitation in shorter times. In that situation, it is needed to

go quicker from the business idea to the exploitation environment.

This issue can be solved accelerating the development speed: from

the expert to the customer, with no –or few, technical

intervention. This paper proposes an approach to empower

domain experts in developing adaptability solutions by using

automated sets of production rules in a friendly way.

Furthermore, a use case that implements this kind of development

was used in a real problem prototype.

Keywords — business rules, domain experts, software

adaptability, software architecture

I. INTRODUCTION

USINESS environments and business needs are changing

rapidly, thus a progressive change and adaptation of the

systems development is unavoidable in order to maintain the

customer satisfaction. Even though, it is an expensive and

difficult task for software engineers and developers to align the

changing business requirements with actual software systems

to keep them working properly [1]. Software adaptability must

therefore be taken into account throughout the full software

life cycle. Systems adaptation may be undertaken using two

different levels in most of the cases: simple adaptations usually

performed by using configuration files and complex

adaptations where solutions are commonly structural ones.

This paper focuses on the latter type of system adaptation, the

complex or logical systems. These systems can be modified by

using rules that solves first order logical issues over the

predicates in order to assist decision making process [2].

The difficulty in ensuring systems adaptability is highly

related with the software development lifecycle. Usually,

human knowledge is transformed into software systems by the

mediation of requirements documents and design models.

These documents and models provide a high level view of the

system and guide developers in producing running systems

from the specification. Even though, the original requirements

textual descriptions of system functions are separated from the

developed design models, which lack the capability to capture

the exact behavioral semantics from what is stated in the

functional requirements [3].

Hence, these behavioral semantics need to be expressed in a

more flexible and abstract manner to avoid coupling with

actual developed systems and at the same time ease the

adaptability process. The domain expert’s role in defining the

behavior of the systems expressed in comprehensible business

rules is then a matter to take into account since their business

knowledge can be transformed in adaptability solutions. There

are a number of proposals that include tools with interfaces for

non-skilled users, more than personalization, they either allow

rapid development of prototypes [4], [5] or provide for the

visual expression of simple rules, which, although powerful

enough in certain cases, is somewhat limited in the application

domain. Therefore, it would be beneficial to explicitly involve

the final users and allow them to provide part of the desired

configuration for system adaptation, since they will be familiar

with their own environment and their requirements.

II. BACKGROUND

There are some methods used usually to adapt applications

to existent business models. One of such methods include the

Model-Driven Architecture (MDA) [3], [6] and [7] which

promotes the production of business models with sufficient

detail so that they can be used to generate or be transformed

into executable software, running on target systems [8].

MDA proposes a Platform-Independent Model (PIM), a

highly abstracted model, independent of any implementation

technology. This is translated to one or more Platform-specific

Models (PSM). The translation is based on a particular

technological implementation including specific constructs and

features of the implementation [9]. PSM is translated into code

in a similar pattern.

The transformation process of PIM to PSM and finally code

starts from the design products rather than requirements

models. Hence, it requires highly creative work [6] to build a

PIM from narrative requirements documents. This results in

high costs in requirements change because of the need of

Using rules to adapt applications for business

models with high evolutionary rates

Juan Fuente, A. A.
1
, López Pérez, B.

1
, Infante Hernández, G.

2
, Cases Fernández, L. J.

2

1
Computer Science Department, University of Oviedo, Asturias, Spain

2
Laboratory of Software Architecture, University of Oviedo, Asturias, Spain

B

DOI: 10.9781/ijimai.2013.227

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-57-

skilled software engineers. Furthermore, as stated in [13],

UML alone is not able to capture some semantics in its

diagrams and a combination of UML and OCL [7] is used in

MDA. However, OCL constraints are static and used in the

design stages rather than the requirements stages. Moreover,

MDA relies heavily on the tools which are supposed to have

strong transformation capabilities from PIM to PSM and then

to code.

MDA can reproduce object oriented OO systems despite the

intrinsic static nature of object structure and behavior, code

being regenerated from models. However, changes cannot be

made to systems at runtime without interruption. Another

important issue is that some business representation cannot be

directly formed as objects, such as business rules. Additional

maintenance problems would be otherwise added to systems if

business rules were hard-coded [10]. These weaknesses MDA

have led to the exploration of an alternative component

technology at a higher level abstraction, being capable to

retrieve, understand, as well as interpret business knowledge

directly and dynamically.

There are a number of different technologies that may be

used to express this sort of information. Almost any language

that supports some form of rule-based inference can be used;

this includes rule engines such as Drools [11], Jena [12] and

Jess [13]. The Java specification request JSR-94 [14] covers

the definition of a Java rule engine API, and most commercial

rule engines are implementations of this standard. Drools, is an

open source business rule management system and inference

rule engine implemented in Java [11]. Inference rules are

evaluated using an enhanced implementation of the Rete

algorithm [15]. Drools natively provides an expressive textual

language for defining inference rules, but also supports the

integration of a custom rule DSL to improve the productivity

of defining rules within certain domains. The underlying

model that Drools operates within is simple plain old java

objects (POJOs), making it easy to integrate into an existing

Java-based software system. The structure of inserted POJOs

does not need to be defined as part of the rule base; this means

that all metamodel properties and operations are always

accessible to a Drools rule. These are the main reasons why to

choose Drools in this approach in order to build and execute

the rule sets.

III. RELATED WORK

There are some significant studies aimed at providing a

mechanism for not skilled users to specify the rules needed by

the system in order to be better adapted to their needs. Authors

in [4] present an application prototyping tool which does not

require coding and instead uses a graphical interface based on

controls, which allows context and devices to be collected and

rules to be constructed from them by taking only logical–

relational operators and restrictions on types of complex

conditions. The technique might not be considered suitable for

domain users to modify the applications since is actually a

prototyping support intended for developers.

In [16] the authors present a programming prototyping

environment intended for domain users. The system provides a

series of data flows from different inputs where users can

select the input flows required for the behavior they want to

express. It also specifies the actions to be executed. This

proposal makes use of machine learning algorithms to interpret

the annotated flows in order to determine the user’s intention.

Since domain users are familiar with their own activities and

environments they are able to tell the environment how it

should behave, but they might have

The work described in [17] sketches a visual interface that

specifically targets non-expert users based on a drag-and-drop

metaphor. It relies on a rule grammar for expressing conditions

and rule alternatives. This tool is intended to be implemented

in future with an emphasis on providing visual hints and

suggestions to facilitate incremental rule construction by end-

users, but has not yet been tested with real non-skilled users.

Although these systems are intended to be used by domain

experts, they fail in the way to represent the information in a

comprehensible way for not skilled domain experts. Some of

them use programming languages or domain specific

languages that are more suitable for developers in order to

express the adaptation rules. The solution proposed in this

paper can be more suitable for domain experts since the

representation of the rules is done graphically with no special

knowledge of the technology used. Moreover, the rules

predicates are expressed with a very simple way close to

natural language, avoiding complex logical structures.

IV. MATERIALS AND METHODS

A target application developed to be in permanent

adaptation by the use of rules needs a previous architecture

design where the modules that will be affected by the

adaptation process along with invariant ones need to be

defined. Moreover, these rules need to be edited and

manipulated by domain experts instead of undertake the

development of new features by software engineers.

In order to develop such applications using rules, an

engineering model able to support integration [18] have been

used. The method is composed by the following steps:

Problem statement

The study of the business issues and those exposed to high

evolutionary rates is addressed in this step. This step

represents an important task within the whole process since the

accuracy in identifying these issues will impact future

developments or avoid them if possible, saving money and

gaining efficiency in a long term.

 Domain experts’ knowledge represents a valuable source of

information in this step. This information describes the general

business features and the most frequently scenarios to take into

account by software engineers. The business knowledge is

taken by software engineers to identify the main core of the

system (which is more immutable and thus less subject to

change), along with the more dynamic elements that may vary

the most in exploitation time.

-58-

 From the identified elements, those which bring the

possibility to be adapted with simpler techniques (e.g.

configuration files) are separated. The remaining dynamic

elements are classified whether they are sensitive to be adapted

with rule-based systems or require new developments.

The final number of dynamic elements sensitive to be

adapted by rules, resultant from this classification is big

enough to justify the use of rule-based systems.

The elements that require new development in order to be

adapted are studied apart. These elements must be designed

with architectural patterns that minimize the interdependencies

among them and simplify the systems evolution.

Architecture design

This step follows the attribute driven design (ADD) used in

[18]. The most dynamic modules are incorporated with a

“modifiability” quality attribute and quality scenarios are

designed to check this feature. Each of the modules that are

adapted by rules receives the classification of rule-based

architectural style modules within the architecture context [2].

Rule-based system design

This step describes the design of an architecture module that

will be adapted by rules. The rules to be applied along with

their attributes and predicates are identified. The component

that enables domain experts to interact with the rules’

management in an intuitive way is also designed. There are

four basic elements needed to address systems adaptability

with rule-based systems:

Attributes. Bring the possibility to query any object feature

in the system.

Predicates. Code elements that perform complex queries to

system elements, evaluates them and return a value that can be

processed by rules.

Actions. Situated in the rules consequent, they have effects

over the system since they can modify its behavior, reason why

it is important not to extra limit their scope. To properly

establish actions scope, a set of services are defined (i.e.

façade, web services, etc.) this way actions can only trigger

these services and do not affect other parts of the system.

Rules. These are the most dynamic aspect of the system.

They are intended to be dynamically inserted in the system.

Domain experts use the set of rules to design new actions to be

executed by the system.

In order to ease domain expert in designing new rules, a rule

editor is constructed following the business vocabulary. It is

only necessary that the expert have a little notion of logic to

interact with the editor. Even though, the editor is intuitive

enough to assist the expert in creating syntactically correct

rules.

The rules’ structural modifiability is restricted only to the

set of attributes, predicates and possible actions. In the case

that this modifiability has a broader scope, then its structural

significance gets bigger than the logical adaptation and the

module can be classified as complex system where the

adaptations which solutions are commonly structural ones,

therefore, they out of this paper scope. In order to solve future

structural issues, the intervention of technological teams aided

by domain experts is necessary. This roles’ combination

enables the construction of modules (which insertion in the

system is previously set) typed as: new attributes, new rules

and new actions. All modules must be created with the same

previously defined constraints.

V. USE CASE

This work presents a design model to adapt a traceability

management that is able to handle, in sufficiently short times,

the alarms triggered by user actions that do not follow

established procedures. The use case address the establishment

of a traceability system integrated in the enterprise

applications of a transportations company. This company has

several quality procedures that require certain records in some

specific moments over time within its activities. In particular,

the activity studied is the personnel hiring for driver positions.

 The process under investigation is composed by the

activities performed by the actors involved in hiring a new

driver. Every activity generates a corresponding record that is

stored in a record control system (see Fig. 1)

The company’s product manager (PM) needs to know

whether the procedures are performed properly or not and

most important if the drivers’ interviews are carried out.

Furthermore, he/she requires that the information queries be

recorded in order to later be aware of the time spent between

the interviews and the actual hiring. It is worth to mention that

these queries have a very short lifetime, e.g. the PM might

need to have this data during a month with a special increment

in accidents, while the next month this information is no longer

required. For this reason, to undertake and ad-hoc

development in order to achieve the adaptation of queries’

information needs results expensive and repetitive. The

solution proposed in this work has a reasonable low cost to

make viable these kinds of adaptations.

Drivers ManagerHuman Resources
Management

Driver

Create Driver data
into the system

Insert documents into
the System (ID card,

Driving card, etc.)

Makes a formative
course (learning

company driving rules)

Have an interview
with the driver and

propose to accept or
to reject his
contracting

Review all documentation
and the drivers manager

report and proceed
to accept or to reject

the contract

PROCEDURE P01

R01-01

R01-02

R01-03

R01-04

R01-05

Generates

Generates

Generates

Generates

Generates

Fig. 1. Description of the procedure for contracting drivers

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-59-

This kind of queries can only be executed against the record

database. This represents an issue for the PM since he/she

needs this information available all the time without expressly

perform the query. Hence, the system needs to be proactive

and inform the PM in an autonomous way. This situation

cannot be solved with a traditional development technique

since every query needs to be adapted to fulfill PM

information needs. This context fosters the implementation of

rule-based architectural style for this module.

VI. PROPOSED SOLUTION

There are several reasons to decouple traceability systems

from business modeling systems, the following are some of the

most significant:

 The procedures, in general, are items subject to changes

which cannot be executed in monolithic systems that require

new developments constantly.

 Actual legacy systems are not integrated with traceability

systems. This situation hinders to perform changes in their

behavior in order to avoid unordered activities.

 Highly dynamic systems may violate the strict path

predetermined for the activities execution within a

procedure.

The evolution of business models brings the adaptation to

new standards which demand a change in the rules that handle

the traceability of the products in a reasonable time. This

scenario may not be suitable for traditional software

development.

Once identified the main changing points, the system

proposed was enriched with a rule-based adaptable module

easy to modify by domain experts with no technical skills. This

enables the performance of business adaptations in a very short

period of time and with a very low cost. In order to achieve

such adaptation, a graphical rule editor was implemented.

General system context

The proposed system is formed by three main components:

1. Legacy systems component (green) to model the

business without traceability integrated.

2. Record systems component (blue) to interact with

legacy systems in order to produce records at the right

moment.
Information exploitation systems component (orange) to apply the rule-based

architectural style in the architecture.

Fig. 2 shows the general context of the proposed

architecture.

The Information exploitation systems component retrieves

the information from the records warehouse and processes it to

obtain reports, indicators, etc. that enables the responsible

actors to have data about the events and situations being

gathered by the traceability system.

As can be shown in Fig. 2, the Information Exploitation

Component has two basic modules:

 Rules Manager. Manages the rules that respond to the

events and explores the available system information.

 Communications. Manages the users’ information

communication systems.

A more detailed description of the Information Exploitation

Component is depicted in ¡Error! No se encuentra el origen

de la referencia..

Basically, the process consists of the application of a set of

rules that identifies different situations that need to be

documented in some specific way. These rules are executed in

two different ways:

 On-line rules. Executed in the precise moment of

recording the registration in the database.

 On demand rules. Executed on demand by the users

with privileges.

Once the rules are executed, if the conditions are met the

associated actions are triggered.

The data mining system retrieves the business information

needed to fire a rule or to complement the communication of

an alarm action. There are four types of actions:

 Just in time information (Alarms). Information that

detects situations where some users wants to take just in time

information from. These alarms can be configured by non-

technical users.

 Configurable reports. Generic reports that can be

configured to multiple purposes by non-technical personnel.

 On demand reports. Specialized reports that require

technical personnel intervention.

 On demand alarms. Alarms version that cannot be

handled by the rule configurable system and requires a

technical service intervention.

On demand components perform solutions to more complex

design that could not be designed at the development time.

Reports are sent to specific people or to another system by

using different information channels; this requires the

information adaptation depending on the channel used to send

the data. This adaptation task is performed by the

Communications Component.

Rules

The rules used follow the predicates logic format. The

REGISTER MANAGER

REGISTER
DATABASE

REGISTER EDITOR

WEB SERVICES

ADAPTERS

RULES MANAGER

BUSINESS APPLICATIONS
LEGACY SYSTEMS

BUSINESS
DATABASE

COMMUNICATIONS

SMARTPHONESMARTPHONE

TELEPHONETELEPHONEREPORTSREPORTS

OTHER SYSTEMSOTHER SYSTEMS

E-MAIL

Fig. 2. Architecture context for the entire system

-60-

quantifiers are eliminated since they can be included in the

predicates. The rules are fired by triggered events; the basic

functioning can be described as (1):

event: evaluation(rules_set) (1)

For each rule, if its evaluation is true, the associated actions

are triggered as in (2):

IF Evaluation (Predicates) = TRUE →Execute (Actions) (2)

The general appearance of the rules used is the following

(3):

P_1 (x,…) ∧ P_2 (y,…)…→Action (Info, Stakeholders)

(3)

Where Info represents the information required for the report,

which will be composed by the Action itself along with the

data mining component that seeks the information in the

database. Stakeholder is the user that will receive this

information. The parentheses are allowed in order to establish

the priorities and associations when evaluating the predicates.

The connectors are ˄: Connective “AND”, ˅: Connective

“OR”, ¬: Denial and →: Implication.

As a further constraint every predicate must be an object that

allows a Boolean evaluation as in (4):

Record_written_at_DB_event∶
IsProcedure(P1)∧IsRegistry(R1.5)∧¬(ExistsRegistry(R1.3)∨E

xistsRegistry(R1.4)→Alarm(Info,Stakeholders) (4)

Previous rule formulates the following predicate: IF the

procedure is P1, the registration in course is registry R1.5 from

the mentioned procedure and the registries R1.3 or el R1.4

does not exist then the alarm is raised.

Every time an alarm or report is created, rules that triggers

actions related to them are generated. These rules are in a rule

set that has different subsets which are evaluated against the

rule engine depending on events detected. For example, there

is a subset of temporal events that contains all the rules to be

executed when a time-out is reached. When this event takes

place, the rules related with it are evaluated. Another important

subset is the one that is evaluated every time the system

receives a new registry. The objective is to optimize system

responses in order to enable the growing of rules number since

not all of them are evaluated in every event.

The identified predicates list by default is depicted in Table

II.

All the predicates should be in context. The possible contexts

are:

 Default Procedure. It is the procedure that is generating

TABLE II

PREDICATES CLASSIFICATION

Predicate Description

IsProcedure(string) Returns TRUE if the procedure name matches with the given string.

IsRegistry(string) Returns TRUE if the registry name matches with the given string.

ExistsRegistry(string) Returns TRUE if the registry named by string exists in the execution of the procedure

RegistryNumberGreaterEqual(string, num) Returns TRUE if during the execution of the current procedure, the registry name (string) has been

repeated equal or more times than the number in num.

RegistryNumberGreater(string, num) Returns TRUE if during the execution of the current procedure, the registry name (string) has been

repeated more times than the number in num.

RegistryNumberEqual(string, num) Returns TRUE if during the execution of the current procedure, the registry name (string) has been

repeated equal times than the number in num.

RegistryNumberLess (string, num) Returns TRUE if during the execution of the current procedure, the registry name (string) has been

repeated less times than the number in num.

RegistryNumberLessEqual (string, num) Returns TRUE if during the execution of the current procedure, the registry name (string) has been

repeated equal or less times than the number in num.

TimeBetweenTwoRegistriesGreaterEqual

(string1, string2, num)

Returns TRUE if the time consumed between two registries named as string1 and string2 is greater or

equal to num in milliseconds.

TimeBetweenTwoRegistriesGreater (string1,

string2, num)

Returns TRUE if the time consumed between string1 and string2 is greater than the num in

milliseconds.

TimeBetweenTwoRegistriesEqual(string1,

string2, num)

Returns TRUE if the time consumed between string1 and string2 is equal to the num in

milliseconds.

TimeBetweenTwoRegistriesLess(string1, string2,

num)

Returns TRUE if the time consumed between string1 and string2 is less than the num in

milliseconds.

TimeBetweenTwoRegistriesLessEqual(string1,

string2, num)

Returns TRUE if the time consumed between string1 and string2 is equal or less than the num in

milliseconds.

LastRegistryTimeGreaterEqual(num) Returns TRUE if the time consumed from the last registry of the studied procedure is greater or

equal to num in milliseconds.

RULES MANAGER

Rules

REGISTER
DATABASE

On-line rules

On demand
rules

Actions

COMMUNICATIONS

Jus-in-time
information
(alamrms)

Configurable
reports

On demand
reports

Authomatic system Tecnical intervention

Persons
Other

systems

BUSINESS
DATABASE

DATAMINING

O
n

-l
in

e
p

ro
ce

ss
M

u
lt

ip
le

 p
ro

ce
ss

On demand
alarms

Fig. 3. Basic architecture for the Information Exploitation Component

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 2.

-61-

the current register to be stored. It refers to the procedure

template.

 Instance procedure. It refers to the current execution of

the procedure.

The predicates could be added to the system by means of

new development processes, for improving the configuration

possibilities.

Actions identification

Actions associated with system are basically those that

generate reports. Generally, actions’ information processing

goes across three stages:

 Information recovery

 Information treatment

 Presentation to users

These stages can be executed on-line, just like alarms, or

require elements to store the information temporally

(recovered and/or treated) in order to compose the report when

a period ends.

Alarms

Alarms are information from specific identified events

usually on-line. When an event or an unexpected situation that

has been programmed as an alarm appears, the traceability

system sends the configured information to the defined users.

For example, when registering the information in the

database, if a rule detects that some procedure step has been

ignored and that step is important enough to inform some

person then an alarm is programmed as in (5).

IF R1.3 ∧¬R1.2 →Alarm (Info, list (Stakeholder)) (5)

A more complex example can be the following: when R1.5

(last registry that closes the procedure) arrives and some of the

previous registries are missing (i.e. R1.0, R1.1, R1.2, R1.3 or

R1.4), then the corresponding alarm is raised as in (6).

IF R1.5 ∧¬ (R1.0 ∨R1.1 ∨R1.2 ∨R1.3 ∨R1.4) →Alarm

(Info, list (Stakeholder)) (6)

Configurable reports

These reports can be configured by domain experts with no

technical skills and may be used in different scenarios. A

report can be received periodically containing a set of

completed procedures, i.e. those which has completed the last

registry. These reports may also contain information about

procedures opened but not completed, or lacking of some step

registration. Generic reports like these enable to obtain

information about some processes execution, this information

represent a business report for domain experts. When adapting

these reports to be sent by email, e.g. to the personnel

manager, they contain the last month hiring processes

summaries, the hiring that did not followed the process

correctly, the people hired and the ongoing hiring.

On demand reports

This is the component that tries to solve the structural

modifications the system allows. These reports or alarms are

adapted to a specific situation and created with software

development processes by software engineers. They are

integrated in the system by means of plug-ins and behave like

basic actions. On the other hand the events the system

responds to are:

 New registry event. Launched when a new registry is

stored in the database.

 Error event. Launched when some of the next errors is

generated: incomplete registry error, repeated registry error

or login error.

Rules editor

The last step is the construction of a rules editor in order

to simplify domain expert’s work. The editor enables experts

to model the conditions as a predicates tree and the actions

as lists that can be configured. Fig. 4 depicts the rules editor

interface where the left panel shows the available predicates

 Fig. 4. Rules editor interface

-62-

and the logical operators. These options allow the graphical

composition of the rules in the central panel with a tree style.

This prototype enables the configuration of the events that

fires the rules’ evaluation along with the configuration of

each predicate and action. It also brings the visualization of

the rule list defined for the system. In Fig. 4, the composed

rule is being performed at the bottom of the window editor.

VII. CONCLUSIONS

This work proposed a solution to software adaptability

reducing the development time with no, or few, technical

intervention. A set of automated production rules has been

used to achieve software adaptability. Furthermore, a use case

that implements this kind of development was used in a real

scenario and a prototype developed. It can be said the

development time needed to adapt new software solutions to

business model is reduced by using the approach presented in

this work. Also, this proposal increases the possibilities of

domain experts in modeling the most frequent adaptations by

using the graphical rules editor developed. As far as the

concern of the authors, evaluating the results of this work, rule

systems have shown a high suitability for the adaptation of

very dynamic systems in reducing the time and cost of putting

those systems into exploitation. Furthermore, the rule-based

architectural style has been implemented in order achieve

systems adaptation to frequent changes with minimal effort.

REFERENCES

[1] M. Fayad and M. P. Cline, “Aspects of software adaptability,”

Communications of the ACM, vol. 39, no. 10, pp. 58–59, 1996.

[2] R. . Gamble, P. . Stiger, and R. . Plant, “Rule-based systems formalized

within a software architectural style,” Knowledge-Based Systems, vol.

12, no. 1–2, pp. 13–26, Apr. 1999.

[3] M. Fowler, UML Distilled. Addison-Wesley, 2004, p. 192.

[4] T. Sohn and A. Dey, “iCAP: an informal tool for interactive prototyping

of context-aware applications,” in Human-Computer Interaction, 2003,

vol. 2, pp. 974–975.

[5] Y. Li, J. I. Hong, and J. A. Landay, “Topiary: a tool for prototyping

location-enhanced applications,” in Proceedings of the 17th annual

ACM symposium on User interface software and technology, 2004, vol.

6, no. 2, pp. 217–226.

[6] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model

Driven Architecture: Practice and Promise. 2003.

[7] Omg, “OMG Model Driven Architecture,” Object Management Group,

vol. 2009, no. Marh 13th. pp. 1–5, 2009.

[8] S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for

Model-Driven Architecture. Addison-Wesley Professional, 2002, p. 416.

[9] J. Huamonte and K. Smith, The use of roles to model agent behaviors

for model driven architecture. IEEE, 2005, pp. 594–598.

[10] T. Morgan, Brought to you by Team-Fly Business Rules and

Information Systems : Aligning IT with Business Goals. Addison-

Wesley Professional, 2002, p. 384.

[11] “Drools Expert,” 2013. [Online]. Available:

http://www.jboss.org/drools/drools-expert.html. [Accessed: 21-Mar-

2013].

[12] B. McBride, Jena: a semantic Web toolkit, vol. 6, no. 6. IEEE Computer

Society, 2002, pp. 55–59.

[13] E. F. Hill, Jess in Action: Java Rule-Based Systems. Manning

Publications Co., 2003.

[14] D. Selman, “JSR 94: Java Rule Engine API,” Java Community Process,

2004. [Online]. Available: http://www.jcp.org/en/jsr/detail?id=94.

[Accessed: 13-Apr-2013].

[15] D. Sottara, P. Mello, and M. Proctor, A Configurable Rete-OO Engine

for Reasoning with Different Types of Imperfect Information, vol. 22,

no. 11. 2010, pp. 1535–1548.

[16] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, “a CAPpella:

programming by demonstration of context-aware applications,”

Proceedings of the 2004 conference on Human factors in computing

systems CHI 04, vol. 6, no. 1, pp. 33–40, 2004.

[17] L. De Russis, F. Corno, and D. Bonino, “A User-Friendly Interface for

Rules Composition in Intelligent Environments,” in Ambient

Intelligence Software and Applications, 2011, vol. 92, pp. 213–217.

[18] R. Hilliard, “IEEE-Std-1471-2000 Recommended Practice for

Architectural Description of Software-Intensive Systems,” IEEE

httpstandards ieee org, no. IEEE-Std-1471–2000, 2000.

Juan Fuente, A. A. is a lecturer of Computer Sciences at the

University of Oviedo (Spain). He received PhD in Computer

Engineering in 2002. His research interests are Software

Architecture, Web engineering and e-learning Architectures.

He has published more than 30 books and papers in refereed

scientific journals and conferences, and he has taken part in

more than 20 research projects.

López Pérez, B. has a Ph.D. on Computer Science

Engineering from the University of Oviedo. He’s actually a

tenured Associate Professor at the Computer Science

Department of the University of Oviedo. Research interests

are Computational reflection, Aspect Oriented Software

Development, Meta-level systems and meta-object

protocols, Web Engineering and software architecture

applied to e-government domain. He has participated in several research

projects funding for Microsoft Research, Spanish Department of Science and

Innovation, and Regional Government. He has held various positions. He is

currently Director of the Computer Science Engineering School at University

of Oviedo.

Infante Hernández G. has a Web Engineering Master

degree 2010, from University of Oviedo. Has worked as

research fellow in University of Holguin, Cuba from 2006

to 2010 as part of the Computer aided Design and

Computer aided Manufacture (CAD/CAM) research

department team. From 2010 to the present he has been

working on his doctoral thesis at the Computer Science Department of

University of Oviedo. Some of the research interests he is working on include

Software Architectures, Model Driven Engineering, Rule driven software

development and Web Engineering among others.

Cases Fernández L. J. has a computer engineering

degree from University of Oviedo. Has been collaborating

in the development of several research projects related

with the use of rule-based systems for business models

management included the one described in this paper. He

is currently pursuing the master degree in Web

Engineering from the University of Oviedo.

