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RESUMEN 
El objetivo de este artículo es exponer dos cosas. En primer lugar, lo que entendemos 

por una prueba de tipo semántico del teorema de corrección–completud fuerte de la lógica 
clásica. En segundo lugar presentar una prueba de ese estilo, usando el teorema de compaci-
dad y otros resultados semánticos. Los elementos usados son conocidos, sin embargo la prue-
ba es original, elegante y sencilla porque evita la manipulación sintáctica en un sistema 
axiomático dado. Usaré la lógica de primer orden clásica y el concepto de sistema axiomático en 
una concepción ligeramente diferente a la tradicional, donde la definición de derivación formal 
incluye la posibilidad de establecer restricciones a la aplicación de las reglas de inferencia. 
 
PALABRAS CLAVE: semántica, compacidad, corrección, completud y metateorema de la 
deducción. 
 
ABSTRACT 

This paper has a twofold aim. On one side, it explains what is understood by a semantic 
approach proof of the strong soundness–completeness theorem. On the other, it introduces 
such a proof for Gödel’s famous theorem, using the compactness theorem and other semantic 
results. The ingredients of the proof are well–known, but the proof itself is original, elegant 
and clear, because it avoids the unintuitive syntactic manipulations derived from the use of a 
given deductive calculus. We will be working within first order classical logic and a slightly 
modified version of the formal system concept, where the definition of formal derivation in-
cludes the possibility to establish restrictions to the applications of inference rules. 
 
KEYWORDS: semantics, compactness, soundness, completeness, and deduction metatheorem. 
 
 

I. BASIC NOTIONS 
 

Let us assume that the notions of first order language with equality and the in-
terpretation for it ––as they are presented in most mathematical logic books–– are 
well known. In this section we will go over some basic notions such as “logical con-
sequence”, “formal derivation in an axiomatic system” and the related theorems of 
strong soundness–completeness and compactness, in order to clarify concepts or 
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simply refresh the reader’s memory. We will also define the meaning of “a system 
satisfies Modus Ponens” and “a system satisfies the Deduction Metatheorem”. 

In Section II the main ideas about the correctness–completeness theorem will 
be shown. In Section III, we introduce the semantic theorems of compactness, 
Skolem and Herbrand; we will explain what is understood by a semantic approach 
proof, with a special emphasis on the difference between semantic and syntactic 
heuristics for the completeness theorem. Then we will generalize a proof due to J. 
Malitz [Malitz (1979)], that works as a semantic approach proof of the weak (or re-
stricted) soundness–completeness theorem, but it does not for the strong one. With 
the outline of Malitz proof we will then use two metalogical results previously in-
troduced to define ––in a semantic approach–– an axiomatic system in order to get 
the strong version of soundness and completeness. Our system will be named MA, for 
it is a modification of that of Malitz, and it will be formally defined in Section IV. It is 
in our notion of derivability of MA the most interesting contribution, since it was not 
obvious how to adapt the notion of derivability so as to get the strong soundness proof. 
In Section V we will introduce the related heuristic ideas and some conclusions. 

In what follows we will refer only to first order formal languages with equality 
and to first order classical logic. We will be working with Hilbert type axiomatic 
systems, though with a version slightly different from the usual one, which is really 
just an improvement, as we will see later. 

The basic semantic relational concept of being forced to be true by other truths 
is known as “logical consequence”.  

DEFINITION 1.1 φ is a logical consequence of Σ or Σ logically implies φ (Σ⊨ϕ) if and 
only if in every interpretation A every variable–assignment s that satisfies α for 
every α ∈ Σ, also satisfies ϕ. 

Notice that the definition of “ϕ is a logical consequence of Σ” means that it is 
impossible to have an interpretation and an assignment where all the formulas of the 
set Σ are satisfied but the formula φ is not. 

The particular case Σ=∅ denoted ⊨ϕ instead of ∅⊨ϕ, means according to the 
above definition, that in every interpretation A every variable assignment s satisfies 
ϕ. In this case we say that ϕ is logically valid. 

The basic syntactic concept of getting a formula from a set of formulas in an 
axiomatic system S is known as formal derivability in the system S. We say that a 
formula α is derivable from a set of formulas Σ in an axiomatic system S, if there is 
a formal derivation of α from Σ in S. 

DEFINITION 1.2  
a) An axiomatic system S is defined by the following two conditions: 

1) A decidable set Δ of formulas.1 The formulas of Δ are called the axioms of S. 
2) A finite set of decidable inference rules2 of S. 

b) A formal derivation of a formula α from a set of formulas Σ in an axiomatic sys-
tem S is a finite list of n formulas α1,…,αn, with n≥1, such that αn=α and for all i 
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(1≤i≤n) αi is either an axiom of S, or αi is a formula of Σ3 or αi is obtained from 
previous formulas in the list by means of some inference rule of S. Some restric-
tion to the application of a rule can be established in advance, but it must always 
be effectively decidable.4 If such a derivation exists, this is denoted by Σ⊢Sα  
and it is read as “α is derivable from Σ in the system S”. 

The particular case Σ=∅ denoted ⊢Sϕ , instead of ∅⊢Sϕ , is defined as “α is a 
formal theorem in the system S”. The only difference is that there are no hypotheses. 

DEFINITION 1.3 
a) An axiomatic system S satisfies strong soundness if and only if every formula 

obtained with the process of derivation from a set of formulas Σ is a logical con-
sequence of the same set Σ. In symbols: 

if Σ⊢Sα  then Σ⊨α. 

b) An axiomatic system S satisfies weak soundness if and only if every formal theo-
rem is a logically valid formula. This is just the particular case Σ=∅. In symbols: 

if ⊢Sα  then ⊨α. 

c) An axiomatic system S satisfies strong completeness if and only if all logical 
consequences from Σ can be obtained with the process of derivation from Σ in S. 
In symbols: 

if Σ⊨α then Σ⊢Sα  

d) An axiomatic system S satisfies weak completeness if and only if all logically 
valid formulas are formal theorems in S. This is also the particular case Σ=∅. In 
symbols:   

if ⊨α then ⊢Sα  

DEFINITION 1.4 Given an axiomatic system S, we define the following:  
a) The system S satisfies Modus Ponens (MP) if and only if for any set of formulas 

Σ∪{α,β}, 

Σ,α,(α→β)⊢Sβ  

b) The system S satisfies the Deduction Metatheorem (DMT) if and only if for any 
set of formulas Σ∪{α,β}: 

if Σ,α⊢Sβ  then Σ⊢S (α→β) 

c) Let Σ be a set of formulas, then: Σ is S–consistent if and only if there is no for-
mula α such that Σ⊢Sα  and Σ⊢S¬α. Cf. [Amor (2003)]. 
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II. THE STRONG SOUNDNESS–COMPLETENESS THEOREM 
 

To figure out whether or not there is a semantic approach proof for the strong 
soundness–completeness theorem, using the compactness theorem, was the origin of 
this paper. Now we can gratefully say it is possible to define an axiomatic system 
from a semantic perspective, such that all its logical consequences are just the for-
mal derivations. In other words, we can say that the proof we were searching for ex-
ists and, as we will show later, it can be carried out without working within the 
given system, but instead by using the semantic properties of the system and some 
other semantic results such as the compactness theorem, a semantic version of a 
theorem due to Skolem and a semantic version of Herbrand theorem.5 Of course we 
need to define a few syntactic concepts because the theorem itself involves them and 
we need to use some elementary syntactic results that follow trivially from the defi-
nitions and are fulfilled in any axiomatic system. However the arguments that we 
will give throughout the proof are purely semantic. 

This paper introduces not only the semantic approach proof mentioned above 
but also a general way of understanding and formulating the strong soundness–
completeness theorem, as a result about the existence of certain axiomatic systems and 
not as a theorem that refers to particular properties of an alleged axiomatic system. 

From now on we will say “soundness–completeness theorem” instead of 
“strong soundness–completeness theorem” and maintain “weak soundness–
completeness theorem” for the weak form of the theorem. It must be noticed that 
within the formulation of the soundness–completeness theorem, the axiomatic sys-
tem mentioned plays a fundamental role (that is usually not recognized). So from a 
metalogical point of view, our aim is that of emphasizing the existence of an axio-
matic system in the theorem’s assertion, relative to which the properties of sound-
ness and completeness are fulfilled. Let us consider the following two equivalent 
forms of the theorem: 

THEOREM 2.1 (Soundness–Completeness Theorem. First form) There exists a formal 
axiomatic system S such that for any set of formulas Σ∪{α}, 

Σ⊨α if and only if Σ⊢Sα  

THEOREM 2.2 (Soundness–Completeness Theorem. Second form) There exists a for-
mal axiomatic system S such that: 
a) S satisfies MP 
b) For all formulas β and γ, ⊢S(β→(¬β→γ)). 
c) For any formula α, ⊢S(¬α→α)→α. 
d) S satisfies DMT 
e) For any set of formulas Γ,  

 
Γ is S–consistent if and only if Γ is satisfiable. 
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In this paper we will give a semantic approach proof of the first form of the 
theorem. Notice that property e) of the second form includes Henkin theorem.6 It 
must be said that in order to have the equivalence between these two forms, proper-
ties a) to d) of the second form are necessary. 

THEOREM 2.3 The two forms of the Soundness–Completeness Theorem are equivalent. 

Proof (sketch): Suppose the first form and let S be the given system. It is clear 
that for any set of formulas Σ∪{α,β}: Σ,α,(α→β)⊨β; for all formulas β and γ: 
⊨(β→(¬β→γ)); for any formula α: ⊨(¬α→α)→α; and for any set of formulas 
Σ∪{α,β}: if Σ,α⊨β then Σ⊨(α→β). Now by using the first form we have a), b), c), 
d). For e) let Γ be any set of formulas. Suppose Γ is unsatisfiable, then Γ⊨α for any 
formula α, then (by first form) Γ⊢Sα  for any formula α, then Γ is S–inconsistent. On 
the other hand, suppose Γ is S–inconsistent, then there is a formula β such that Γ⊢Sβ 
and Γ⊢S¬β. Then (by first form) we have Γ⊨β and Γ⊨¬β, therefore Γ is unsatisfiable. 

Now suppose the second form and let S be the given system. Let Σ∪{α} be 
any set of formulas. For the “only if” part, suppose that Σ⊬Sα . Then Σ∪{¬α} is S–
consistent because if not, there would be a formula β such that Σ∪{¬α}⊢Sβ  and 
Σ∪{¬α}⊢S¬β, but then by b) and a) of the second form we have Σ∪{¬α}⊢Sγ  for 
any formula γ; in particular Σ∪{¬α}⊢Sα . Now by d) we have Σ⊢S(¬α→α) and by 
c) and a) we have Σ⊢Sα . So Σ∪{¬α} is S–consistent. Finally by e) we have that 
Σ∪{¬α} is satisfiable and therefore Σ⊭α. 

For the “if” part, suppose that Σ⊭α. Then Σ∪{¬α} is satisfiable and by e) 
Σ∪{¬α} is S–consistent. Then Σ⊬Sα , because if Σ⊢Sα  then Σ∪{¬α}⊢Sα  by monot-
ony of any formal system and Σ∪{¬α}⊢S¬α against the S–consistency of Σ∪{¬α}. 

For the proof of the equivalence of this two forms, cf. [Amor (2006), pp.140–
141]. The first form, with the particular case Σ=∅, will be called weak soundness–
completeness. 

THEOREM 2.4 (Weak Soundness–Completeness Theorem) There exists a formal 
axiomatic system S such that for any formula α, 

⊨α if and only if ⊢Sα  

It is quite clear that soundness–completeness trivially implies the weak sound-
ness–completeness, because the last one is just the particular case Σ=∅ of the first. 
On the other side, weak soundness–completeness together with Modus Ponens (MP) 
and the Deduction Metatheorem in the system (DMT) along with the compactness 
theorem, imply soundness–completeness. 
 

III. A SEMANTIC APPROACH TO SOUNDNESS–COMPLETENESS 
 

There is a direct proof of the soundness–completeness theorem, which consists 
on defining an axiomatic system, and proving that it satisfies soundness and com-
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pleteness. This proof is usually done by working inside the axiomatic system and 
making many formal derivations until both properties are shown to be fulfilled by 
the system. 

There is an alternative way: a semantic approach proof, which consists on de-
fining, in an ad hoc way and with a semantic perspective, an ad hoc system whose 
axioms and rules have semantic grounds and that satisfies soundness and complete-
ness. In this case the justification is semantic and avoids working inside the defined 
system except for using some general properties of all systems. This proof is an ex-
tension and essential modification of the proof of Malitz, who introduced a system 
and proved that it satisfies weak soundness–completeness, but satisfies neither 
soundness nor completeness. 

In the proof we use the Compactness theorem, a Skolem semantic theorem and 
Herbrand semantic theorem which by the way, is proved by using the Compactness 
theorem. The proofs of these theorems are semantic and appear in Malitz’s book. Cf. 
[Malitz (1979)]. 

We introduce now the compactness theorem, which is a purely semantic theo-
rem proved also by Gödel in 1930. We give here two equivalent versions of that 
theorem. 

THEOREM 3.1 (Compactness Theorem. First form) Given a set of formulas Σ of a first 
order language with equality, if for each finite subset Γ⊆Σ, Γ is satisfiable, then Σ is 
satisfiable. 

Proof (sketch): First let us take an infinite set of formulas Σ such that each fi-
nite subset of it is satisfiable (call this property “finitely satisfiable”). Two results 
need to be proven, the first one consists in getting a set Γ such that Σ⊆Γ and Γ is a 
maximal finitely satisfiable set of formulas; for that the Zorn Lemma is used. The 
second result consists in getting a set Ω such that Σ⊆Ω, Ω is closed under existential 
“witnesses” and is a finitely satisfiable set of formulas. Then these two results are it-
erated by recursion and the union of all those sets is a set Σ* such that Σ⊆Σ* and Σ* 
is a maximal closed under witness and finitely satisfiable set of formulas. Then we 
build a structure interpretation for the language and an assignment for variables that 
satisfy all formulas of Σ*. That interpretation and assignment obviously satisfy all 
formulas of Σ and so we can conclude that Σ is satisfiable. Actually Σ* equals the set 
of all formulas satisfied by that assignment in that structure. 

THEOREM 3.2 (Compactness Theorem. Second form) If Σ∪{φ} is a set of formulas of 
a first order language with equality and Σ⊨φ, then there is a finite subset Γ⊆Σ, such 
that Γ⊨φ. 

Proof: Assume that Σ⊨φ. Thus Σ∪{¬φ} is unsatisfiable, and hence by first 
form, there is a finite Δ⊆Σ∪{¬φ} which is unsatisfiable. But then (Δ\{¬φ})∪{¬φ} 
is also unsatisfiable and therefore there is Γ=Δ\{¬φ} finite, Δ\{¬φ}⊆Σ and 
Δ\{¬φ}⊨φ. 
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This second form is which we will use in our main result. Notice that the com-
pactness theorem is a purely semantic assertion; it does not involve deductions at all. 
It refers only to semantic notions and it must be pointed out here that there exist sev-
eral purely semantic proofs for it; that is, proofs based on semantic properties.  

What we have called “Skolem theorem” should not be confused with Skolem 
famous theorem about the existence of countable models for sets of formulas. We 
are rather referring to a theorem about the special form of formula that can be asso-
ciated to each formula, known as its Skolem Form of Validity (SFV). 
 
DEFINITION 3.1 Let φ, ψ be formulas. We say that φ and ψ are equivalid formulas if 
and only if it happens that: ⊨φ if and only if ⊨ψ. 

The relationship between a formula and its associated Skolem form of validity 
is which we have called equivalidity and is strictly weaker than that of logical 
equivalence, but it is still quite useful, since it establishes “equivalence” in terms of 
logical validity, as we will see later with Skolem’s theorem. 

A sentence can be transformed by means of an algorithm to its “Skolem Form 
of Validity”, SFV(φ). This algorithm gives out always a “pure” existential quantifi-
cation (without universal quantifiers) that affects a matrix formula without quantifi-
ers. In other words, for any sentence φ, SFV(φ)=(∃x1…∃xkψ), where ψ=ψ(x1,…,xk) is 
a formula without quantifiers. 

We will next show how to get these Skolem forms. Given any sentence φ, the 
SFV(φ) is obtained through the following algorithmic process: (1) the first step is re-
placing conditionals (α→β) with (¬α∨β), and biconditionals (α↔β) with 
((¬α∨β)∧(¬β∨α)), so we get a well known logically equivalent sentence that in-
cludes only the connectives ¬, ∨, ∧; followed by (2) introducing negations by means 
of the well known logical laws of negation; followed by (3) renaming all bounded 
variables, to avoid repeated variables in different quantifications. (4) Transforming 
the formula to get the Prenex Normal Form (PNF), and finally (5) eliminating, from 
left to right, universal quantifiers by introducing “witnesses” that are new Skolem 
constants or functions.7 

We can summarize and “name” the steps of this procedure (which shows how 
to get SFV(φ) from φ) in the following way: replacing conditionals (RC), replacing 
biconditionals (RB), introduction of negations (IN), renaming  quantified variables 
(RV), prenexing all the quantifiers (PNF),8 dual Skolemizing (D(x,t)) where “x” is 
the eliminated universal variable and “t” is the new Skolem constant or function that 
substitutes it. We finally get SFV(φ).9 

Logical equivalence is denoted by “≡”. It is important to keep in mind that the 
steps of dual Skolemization, consisting of universal quantifier’s elimination, differ 
from the other steps in that they do not preserve logical equivalence. To illustrate 
this, we give an example of the application of this algorithm using the abbreviations 
introduced before: 
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φ=[∃y∀xP(x,y)∧¬∃z∀x∀yQ(z,x,f(y))] 
≡[∃y∀xP(x,y)∧∀z∃x∃y¬Q(z,x,f(y))] IN 
≡[∃y∀xP(x,y)∧∀z∃v∃w¬Q(z,v,f(w))] RV 
≡∃y∀x∀z∃v∃w[P(x,y)∧¬Q(z,v,f(w))] PNF 
Sk1=∃y∀z∃v∃w[P(g(y),y)∧¬Q(z,v,f(w))] D(x,g(y)) 
Sk2=∃y∃v∃w[P(g(y),y)∧¬Q(h(y),v,f(w))] D(z,h(y)) 

Thus  

PNF(φ)=∃y∀x∀z∃v∃w[P(x,y)∧¬Q(z,v,f(w))] 
SFV(φ)=∃y∃v∃w[P(g(y),y)∧¬Q(h(y),v,f(w))] 

Skolem theorem establishes that a formula ϕ is logically valid if and only if the 
Skolem Form for Validity of ϕ (SFV(ϕ)) is  logically valid. We say that φ and 
SFV(φ) are equivalid formulas. Formally: 

THEOREM 3.3 (Skolem Theorem). For any formula φ: 
a) ⊨φ if and only if ⊨SFV(φ). 
b) ⊨[φ→SFV(φ)]. 
c) There are formulas ψ such that ⊭[SFV(ψ)→ψ]. 

For a proof of Skolem theorem cf. [Malitz (1979), p.157] or [Amor (2006), p.92]. 
As a second example, we will apply the algorithm to a formula we will use in 

Section IV: Let φ=[∃x∀yP(x,y)→∀y∃xP(x,y)]. Then 

ϕ≡[¬∃x∀yP(x,y)∨∀y∃xP(x,y)] RC 
≡[∀x∃y¬P(x,y)∨∀y∃xP(x,y)] IN 
≡[∀x∃y¬P(x,y)∨∀z∃wP(w,z)] RV 
≡∀x∃y∀z∃w[¬P(x,y)∨P(w,z)] PNF 
Sk1=∃y∀z∃w[¬P(c,y)∨P(w,z)] D(x,c) 
Sk2=∃y∃w[¬P(c,y)∨P(w,f(y)] D(z,f(y)) 

Thus:  

PNF(φ)=∀x∃y∀z∃w[¬P(x,y)∨P(w,z)] 
SFV(φ)=∃y∃w[¬P(c,y)∨P(w,f(y)] 

DEFINITION 3.2 A grounded term is a term without variables. Let ψ be a formula 
without quantifiers, then a grounded instance of ψ is a formula obtained by substi-
tuting all free variables of ψ by grounded terms. 

THEOREM 3.4 (Herbrand Theorem) If ψ(x1,…,xn) is a formula without quantifiers 
then, ⊨(∃x1…∃xnψ) if and only if there exists a finite series ψ1,…,ψm, of grounded 
instances of ψ, such that ⊨ψ1∨…∨ψm. 
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Note that the “if” part is actually a direct consequence of the following ele-
mentary result: if ψ(x1,…,xn) is a formula without quantifiers and ψ1,…,ψm is any fi-
nite series of grounded instances of ψ, then (ψ1∨…∨ψm)⊨(∃x1…∃xnψ). This result 
will be used latter. The “only if” part of Herbrand theorem is the strong one and it is 
proved using the compactness theorem. For a proof, see [Malitz (1979), p.185] or 
[Amor (2006), p.95]. 

Now let us go through the semantic approach proof of the soundness–
completeness theorem. Let ∑⊨φ be a logical consequence of a formula φ from a set 
of formulas Σ. Then by the compactness theorem there is some Γ⊆∑, Γ finite, such 
that Γ⊨φ. Let Γ={α1,…,αm}. As we know, this is equivalent to α1,…,αm⊨φ. So, by 
applying m times the elementary semantic property: 

∑,α⊨φ if and only if ∑⊨(α→φ), 

we see that α1,…,αm⊨φ is equivalent to: 

⊨(α1→(α2→…→(αm→φ)…)) 

Now let γ=(α1→(α2→…→(αm→φ)…)) be the above logically valid formula. The 
sentence ∀γ is the universal closure of the formula γ, that is, if γ=γ(x1,…,xn) where 
x1,…,xn are all the free variables in γ, then ∀γ=∀(γ(x1,…,xn))=∀x1…∀xnγ(x1,…,xn). 
Since γ is equivalent in terms of logical validity (or equivalid) to its universal clo-
sure ∀γ, the sentence ∀γ is also logically valid. 

On the other hand, by Skolem theorem, the logical validity of the sentence ∀γ 
is equivalent to the logical validity of SFV(∀γ),10 and this is in turn equivalent, by 
Herbrand theorem, to the existence of a series of grounded instances of the matrix ψ 
of SFV(∀γ), whose disjunction is logically valid. In other words, we have the fol-
lowing semantic argument: 

∑⊨φ iff {α1,…,αm}⊨φ, for some {α1,…,αm}⊆∑ and m∈ℕ 
iff ⊨(α1→(α2→…→(αm→φ)…)) 
iff ⊨γ since γ=(α1→(α2→…→(αm→φ)…)) 
iff ⊨∀γ 
iff ⊨SFV(∀γ) 
iff ⊨(∃x1…∃xkψ) with SFV(∀γ)=(∃x1…∃xkψ) and ψ=ψ(x1,…,xk)  
 without quantifiers 
iff there are grounded instances ψ1,…,ψn of ψ, such that 
⊨(ψ1∨…∨ψn) 

 
We have to expand the original language with an infinite denumerable number 

of new constants and function symbols for each arity. This is necessary in order to 
have enough grounded instances of formulas without quantifiers. 
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Let us start by defining our system in such a way that its axioms are precisely 
all the formulas that share the properties of the formula (ψ1∨…∨ψn) obtained with 
the semantic argument displayed above. In other words, the axioms will be all the 
logically valid disjunctions of grounded instances of formulas without quantifiers. 

We must say that even though axioms defined in this way are not instances of 
axiom schemas, there are an infinite number of them. On the other hand, since an 
axiom is by definition logically valid, then whether a formula of the proposed form 
is or is not an axiom must be effectively decidable. But this is the case, because dis-
junctions of grounded instances of formulas without quantifiers are propositional 
formulas, and so their logical validity is effectively decidable in propositional logic.  

Now, we go reverse in the previous semantic argument. We define as the first 
inference rule the reversed step in Herbrand theorem. However we do so in the gen-
eral form (ψ1∨…∨ψn)⊨(∃x1…∃xkψ) introduced by the observation that followed  
Herbrand theorem. Then from any disjunction of grounded instances of substitution 
of a formula ψ(x1,…,xk) without quantifiers, we obtain the existential quantification 
of ψ. This existential quantification of ψ is precisely SFV(∀γ). This rule, whose 
premise could be logically valid (axiom) or not, will be called Herbrand rule or HB: 

ψ∃∃
ψ∨∨ψ

k

n

xx ...
...

1

1  

where ψ=ψ(x1,…,xk) and every ψi (1≤i≤n) is a grounded instance of ψ. 
Let us define now, as the second inference rule, the reversed step in Skolem 

theorem: from SFV(∀γ), we obtain ∀γ. This rule will be called Skolem rule or SK: 

γ∀
γ∀ )(SFV  

Let us define now, as the third inference rule, the reversed step in the universal 
closure equivalidity property “⊨γ if and only if ⊨∀γ”. But let us do so in the more 
general form ∀γ⊨γ, so that from ∀γ we obtain the variable instantiation γ. This rule 
applied to any formula of the form ∀γ (that is, a sentence, logically valid or not), 
will be called Variable Instantiation rule or VI: 

γ
γ∀  

Observe that ⊨(∀γ→γ) and so ∀γ⊨γ, but that generally ⊭(γ→∀γ). However, once 
again, we are speaking about two equivalid formulas: ⊨∀γ iff ⊨γ.  

Remember that γ=(α1→(α2→…→(αm→φ)…)). Now let us define, as the fourth 
inference rule, the reversed step in the elementary semantic property “Γ,αi⊨φ iff 
Γ⊨(αi→φ)” that was applied m times in our semantic argument. Each time in re-
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verse will be an application of the following rule: from α and (α→φ) we get φ, with 
α and φ any formulas. This rule is called Modus Ponens or MP: 

ϕ
ϕ→αα )(,  

Notice that up to here we have, by definition, a schema of formal derivation of 
the formula φ from the set of formulas Σ (given in four plus 2m steps, with m≥0). All 
this within the axiomatic system we have just defined, motivated by our previous 
semantic argument. The following list of 4+2m formulas shows the formal deriva-
tion of the formula φ from the set of formulas Σ: 

1. (ψ1∨…∨ψn)    Axiom 
2. (∃x1…∃xk ψ)    Rule HB to 1 
3. ∀γ     Rule SK to 2 (∃x1…∃xkψ)=SFV(∀γ) 
4. γ     Rule VI to 3 
4. (α1→(α2→…→(αm→φ)…)) This is the same formula γ 
4+1. α1     Hypothesis 
M  
4+m. αm     Hypothesis 
4+m+1. (α2→…→(αm→φ)…)) Rule MP to 4+1,4 
M  
4+m+(m–1). (αm→φ)   Rule MP to 4+(m–1), 4+m+(m–2) 
4+2m. φ     Rule MP to 4+m, 4+m+(m–1) 

Therefore α1,…,αm⊢φ, by definition, from 1 to 4+2m and hence Σ⊢ϕ by elementary 
property of monotony. 

It should be clear by now that the compactness theorem, the elementary se-
mantic property “Γ,αi⊨φ iff Γ⊨(αi→φ)”, the universal closure semantic property, 
Skolem and Herbrand semantic theorems, justify completeness and weak soundness 
of the given system in the case Σ=∅, m=0, γ=φ and only four steps. Since decidabil-
ity is a main feature of axiomatic systems, it is very important to point out that the 
axioms and inference rules we defined are indeed decidable. 

Let us call S the axiomatic system of Malitz where the axioms are the same as 
the ones defined by us, but the inference rules are only HB and SK and the definition 
of derivation is the traditional one without restriction in the application of rules. This 
system satisfies weak soundness–completeness only for sentences. However it does 
not satisfy the strong version. To show this we have the following examples: 

 
1) Consider the formula ∀xP(x). Since SFV(∀xP(x))=P(c), using the rule SK we get 
P(c)⊢S∀xP(x). However P(c)⊭∀xP(x). This shows that S does not satisfy soundness. 
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2) On the other hand we have that ∀xP(x)⊨P(c). However an analysis of all possi-
ble formal proofs in S shows that ∀xP(x)⊬SP(c), because if ∀xP(x)⊢SP(c), then 
there is a derivation of P(c) from ∀xP(x) in S where ∀xP(x) is an hypothesis that 
cannot be a formal theorem (because ⊭∀xP(x)) and HB or SK cannot be applied to it 
because of its form and with VI we get only P(x). So, we can eliminate ∀xP(x) from 
the derivation and we get ⊢S P(c). But ⊭P(c), contradicting weak soundness of S. Cf. 
[Amor (2001), pp.64–66]. This means that S does not satisfy completeness. 

It seems natural to wonder how we can modify the system S so that it satisfies 
the strong theorem. The answer to this question goes through two general metalogi-
cal results about axiomatic systems that satisfy the weak soundness–completeness 
property. It should be mentioned here that these results are proved using the com-
pactness theorem cf. [Amor (2003)]. The first one refers to the metalogical relation 
between completeness and Modus Ponens (MP): 

THEOREM 3.5 If S is an axiomatic system that satisfies weak completeness, then S 
satisfies completeness if and only if S satisfies MP. 

The second refers to the metalogical relationship between soundness and the Deduc-
tion Metatheorem (DMT): 

THEOREM 3.6 If S is an axiomatic system that satisfies weak soundness and com-
pleteness, then S satisfies soundness if and only if S satisfies the DMT. 

COROLLARY 3.7 If S is an axiomatic system that satisfies weak soundness–
completeness, then S satisfies soundness–completeness if and only if S satisfies MP 
and DMT. 

For a proof of these results, cf. [Amor (2003)]. 
These general metalogical relations clearly show that given a system that satis-

fies weak soundness–completeness, in order to satisfy the soundness–completeness 
theorem, the system must also satisfy both, Modus Ponens and the Deduction 
Metatheorem. Notice then that the system S of Malitz cannot satisfy MP and DMT. 
So these two properties are not a matter of personal preference or practical conven-
ience. In fact, they can be considered intrinsic structural properties of first order 
logic that play a fundamental role in soundness and completeness. 

Observe that in general ⊭(SFV(∀γ)→∀γ) but here we have ⊨(∀γ→SFV(∀γ)). 
However this two formulas are equivalid: ⊨SFV(∀γ) iff ⊨∀γ. Now we impose a re-
striction to the application of the second inference rule called Skolem rule (or rule 
SK). In this case, the restriction imposed is that the inference rule SK cannot be ap-
plied to hypotheses or to formulas that depend on hypotheses. This restriction is mo-
tivated by the semantic restriction pointed out just after Skolem theorem and it is 
precisely the restriction to the Skolem rule what guarantees that the logical conse-
quences are preserved. With this restriction as part of our definition of derivation, 
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our axiomatic system will satisfy soundness and equivalently the Deduction 
Metatheorem. 
 
 

IV. THE AXIOMATIC SYSTEM MA 
 

Following what has been said, we can give our system MA (for Malitz–Amor) 
that fulfills soundness–completeness. Language has been expanded with infinite de-
numerable–many new constants and function symbols of each arity. 

DEFINITION 4.1. The axiomatic system MA is given as follows: 
a) Axioms of MA: all logically valid disjunctions (ψ1∨…∨ψn) of grounded instances 

of formulas ψ without quantifiers are axioms of MA. All ground terms of the ex-
panded language are used here. 

b) Inference Rules of MA: 
1) Herbrand Rule, HB:  

ψ∃∃
ψ∨∨ψ

k

n

xx ...
...

1

1  

with ψ(x1,…,xk) a formula without quantifiers, and each ψi is a ground instance of ψ. 
2) Skolem Rule, SK:  

ϕ∀
ϕ∀ )(SFV , if ⊢MASFV(∀φ) 

with SFV(∀φ)=(∃x1…∃xkψ) the Skolem Form of Validity for ∀ϕ, where 
ψ=ψ(x1,…,xk) is a formula without quantifiers. 
3) Variable Instantiation, VI:  

ϕ
ϕ∀  

for ϕ any formula. 
4) Modus Ponens, MP: 

ϕ
ϕ→αα )(,  

for α and φ formulas. 
A derivation of a formula α from a set of formulas Σ in MA,11 is a finite list of n 
formulas α1,…,αn, with n≥1; such that αn=α and for all i (1≤i≤n), either αi is an 
axiom of MA or αi is a hypothesis (formula of Σ), or αi is obtained from earlier for-
mulas in the list by means of the inference rules HB, VI, MP, of MA, or there exists a 
list of formulas δ1,…,δm such that δm=αi and such that: 
1) For all i (1≤i≤m) δi=αk for some k (1≤k≤n). 
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2) If 1≤k≤j≤m and δk=αs and δj=αp then 1≤s≤p≤n. 
3) δ1,...,δm is a formal proof of MA, using only the axioms and the four rules HB, SK, 

VI, MP, but without hypotheses. 
If such a derivation exists, this is denoted by Σ⊢MAα and it is read “α is derivable 
from Σ in the system MA”. 

Observe that the sequence δ1,…,δm is a sequence that is a part of the original one 
keeping its order and that there are neither formulas of Σ that are not axioms nor for-
mulas obtained from formulas of Σ that are not axioms, because it is a formal proof. 

This definition of derivation corresponds with the intuitive idea that a formula 
is derived from a set of formulas in the system determined by the formal theorems of 
our system (which of course include axioms) and with inference rules that are appli-
cable to all formulas that are HB, VI and MP. Notice as well that the above defini-
tion retrieves rigorously our intuitive original idea of the restriction: do not apply 
rule SK to hypotheses and to formulas which depend on hypotheses. 

In order to understand better the definition of the system MA, we give an ex-
ample of a derivation in MA: 

∃x∀y (Px,y) ⊢MA∀y∃x (Px,y) 

First, observe that ψ1=[¬P(c,f(c))∨P(c,f(f(c)))] is the grounded instance {y/f(c), w/c} 
of the formula ψ=[¬P(c,y)∨P(w,f(y))]. Second, that ψ2=[¬P(c,c)∨P(c,f(c))] is the 
grounded instance {y/c, w/c} of the same formula ψ. Finally, the disjunction of these 
two grounded instances [¬P(c,f(c))∨P(c,f(f(c)))]∨[¬P(c,c)∨P(c,f(c))] is logically 
valid since it is a tautology of the propositional form (¬A∨B∨¬C∨A). Hence ψ1∨ψ2 
is an axiom of MA. 

Let ϕ=(∃x∀yP(x,y)→∀y∃xP(x,y)) then SFV(ϕ)=∃y∃w(¬P(c,y)∨P(w,f(y))).12 
Then the derivation is the following: 

1. [¬P(c,f(c))∨P(c,f(f(c)))]∨[¬P(c,c)∨P(c,f(c))] Axiom of MA (ψ1∨ψ2) 
2. ∃y∃w(¬P(c,y)∨P(w,f(y))) Rule HB to 1 (SFV(ϕ)) 
3. [∃x∀yP(x,y)→∀y∃xP(x,y)] Rule SK to 2 (ϕ) 
4. ∃x∀yP(x,y) Hypothesis 
5. ∀y∃xP(x,y) MP to 4, 3 

LEMMA 4.1 (Weak soundness–completeness of the system MA). For every formula φ: 

⊨φ if and only if ⊢MAφ. 

Proof: We will use compactness and Skolem theorems. The proof comes directly 
from the definition of the system MA, based on the semantic argument of Section III. 
Let φ a formula and suppose ⊨φ. Then ⊨∀φ because the universal closure semantic 
property, then ⊨SFV(∀φ) because of Skolem theorem, then ⊨(∃x1…∃xkψ) where 
SFV(∀φ)=(∃x1…∃xkψ) for some ψ=ψ(x1,…,xk) without quantifiers. Then there are 
grounded instances ψ1,…,ψn of ψ, such that ⊨(ψ1∨…∨ψn) because of Herbrand theo-
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rem, so by definition (ψ1∨…∨ψn) is an axiom of MA and the succession of four formu-
las (ψ1∨…∨ψn, ∃x1…∃xkψ, ∀φ, φ) is by definition a formal proof of φ in MA, justified 
respectively per “axiom”, “rule HB”, “rule SK” and “rule VI”, therefore ⊢MAφ. 

On the other hand, suppose ⊢MAφ and let (α1,α2,…,αm=φ) be a formal proof of 
φ in MA. We show by mathematical induction on i that for all i≤m, ⊨αi. In the case 
i=m we are done. Suppose ⊨αj for all j<i≤ m. There are five cases for αi: αi is an 
axiom, αi is obtained by HB, αi is obtained by SK, αi is obtained by VI and αi is ob-
tained by MP. Since there are no hypotheses, the restriction to application of rule SK 
is not used at all. 

i) If αi is an axiom then ⊨αi. 
ii) If αi is obtained by HB from αj=(ψ1∨…∨ψn) with j<i and αi=(∃x1…∃xkψ) then 

by inductive hypothesis ⊨(ψ1∨…∨ψn). Then because of Herbrand theorem 
⊨(∃x1…∃xkψ), that is ⊨αi. 

iii) If αi is obtained by SK applied to αj=SFV(αi) with j<i, then by inductive hy-
pothesis ⊨SFV(αi). Then because of Skolem theorem, ⊨αi. 

iv) If αi is obtained by VI applied to αj=∀αi with j<i then by inductive hypothesis  
⊨∀αi. Then because of universal closure semantic property, ⊨αi. 

v) If αi is obtained by MP applied to αj and αk=(αj→αi) with j,k<i then by inductive 
hypothesis ⊨αj and ⊨(αj→αi). Then we conlude, ⊨αi. 

We will now show that MA satisfies soundness–completeness. Notice that all 
this has been proven in a semantic way, using only the necessary syntactic defini-
tions and elementary syntactic properties that all axiomatic systems satisfy purely by 
definition. 

THEOREM 4.2 There is an axiomatic system (MA), such that for any set of formulas 
Σ∪{φ}, satisfies: 

Σ⊨φ if and only if Σ⊢MAφ 

Proof: We will use compactness and Skolem theorems. Let MA be the system 
we have just defined and let Σ∪{φ} be any set of formulas. 

(⇒) We suppose Σ⊨φ. Then, by the Compactness Theorem, there is Γ⊆Σ, Γ 
finite, such that Γ⊨φ. Let Γ={α1,…,αm}. Thus, by the Semantic property applied m 
times ⊨(α1→(α2→…→(αm→φ)…)). Therefore, by the Weak Completeness of MA 
(Lemma 4.1), ⊢MA(α1→(α2→…→(αm→φ)…)). But then, by MP applied m times, 
α1,…,αm⊢MAφ. Hence, there is Γ⊆Σ, Γ finite, such that Γ⊢MAφ and, therefore by the 
Monotony general property Σ⊢MAφ. 

(⇐) We suppose Σ⊢MAφ. Then by definition there is a finite list α1,α2,…,αn=φ, 
which is a formal derivation of φ from Σ in MA. We will show by mathematical in-
duction on i that for all i ≤n, Σ⊨αi. In the case i=n we are done. 
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We suppose Σ⊨αj for all j<i≤n. We show it for αi. There are six cases: αi is an 
axiom, αi is a hypothesis of Σ, αi is obtained by HB, αi is obtained by SK, αi is ob-
tained by VI and αi is obtained by MP. 

i) If αi is an axiom of MA then ⊨αi and so Σ⊨αi. 
ii) If αi is a hypothesis of Σ then obviously Σ⊨αi. 
iii) If αi is obtained by HB from αj=(ψ1∨…∨ψm) with j<i and αi=(∃x1…∃xkψ) 

then by inductive hypothesis Σ⊨(ψ1∨…∨ψm). But we have 
(ψ1∨…∨ψm)⊨(∃x1…∃xkψ), so Σ⊨(∃x1…∃xkψ), that is Σ⊨αi. 

iv) If αi is obtained by SK applied to αj=SFV(αi) with j<i, then because of the 
definition of derivation (restriction to the application of the rule SK to SFV(αi) in the 
given deduction), we know that SFV(αi) is not an hypothesis and was obtained with-
out use of hypotheses. So by definition we know that ⊢MASFV(αi) and then by weak 
soundness of the Lemma 4.1 we have ⊨SFV(αi). Using now Skolem theorem we 
have that ⊨αi and finally we can conclude Σ⊨αi. 

v) If αi is obtained by VI applied to αj=∀αi with j<i then by inductive hypothe-
sis Σ⊨∀αi. But we know that ∀αi⊨ αi, and we conclude Σ⊨αi. 

vi) If αi is obtained by MP applied to αj and αk=(αj→αi) with j,k<i then by in-
ductive hypothesis Σ⊨αj and Σ⊨(αj→αi). But αj,(αj→αi)⊨αi and we conclude Σ⊨αi. 

Notice that the restriction in the definition of derivation, introduced for the ap-
plication of rule SK, was fundamental in case (iv). 

COROLLARY 4.3 (Deduction Metatheorem for the system MA) For all Σ∪{α,β} set of 
formulas:  

if Σ,α⊢MAβ, then Σ⊢MA(α→β) 

It is an immediate consequence of the main theorem and the metalogical result 
presented in Section III. 
 
 

V. HEURISTICS AND CONCLUSIONS 
 

In this section we give a description of the intuitive ideas and the heuristics 
that helped us to obtain this axiomatic system. The definition of our axiomatic sys-
tem MA came out as an ad hoc system, from a semantic point of view, because its 
axioms and inference rules do not have syntactic grounds. They rather respond to a 
reversed semantic process that we outline next. For any formula φ and any set of for-
mulas Σ, we start with a logical consequence φ from Σ. Because of the compactness 
theorem, this can be thought as an implicative form formula, say A, where A=(α1→ 
(α2→…→(αm→φ)…)) is logically valid. So the sentence ∀A=∀(α1→(α2→ …→ (αm→ 
φ)…)) is also logically valid. On the other hand, a special Skolem form B=SFV(∀A) is 
algorithmically obtained. B is a logically valid sentence because of Skolem theorem. 
Then we get a logically valid grounded propositional sentence C, without free vari-
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ables and without quantifiers, whose logical validity is decidable because it is a pro-
positional sentence. 

Once we had this ad hoc system we proved directly soundness by mathemati-
cal induction and got the Deduction Metatheorem as consequence, even though the 
construction of the system was highly inspired by it. In fact it must be noticed that it 
is precisely the restriction to the application to the Skolem rule what guarantees that 
the logical consequences are preserved.  

It seems then we have successfully given an affirmative answer to the problem 
of establishing a semantic approach proof for the Soundness–Completeness theorem 
that may be thought of as a corollary of the compactness and Skolem theorems. Fi-
nally it can be said that we have shown how powerful semantic ideas are to prove 
syntactic results. 
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NOTES 
 

*I am quite grateful to two anonymous referees for their critics and to a referee of 
teorema for his (her) comments on a previous version of this paper, which highly improved it. 

1 For each formula there must be an effective procedure for deciding if it is a member 
of Δ or it is not. 

2 For each inference rule there must be an effective procedure for deciding if a formula 
follows or not from other formulas using that rule. 

3 In this case we say that αi is a hypothesis of Σ. 
4 In fact if such a restriction exists it must be part of the very definition of formal deri-

vation. Cf. [Amor (2004)]. 
5 This work is part of that presented in [Amor (2001)]. 
6 It is one way of the double implication: If Σ is S–consistent then Σ is satisfiable. Cf. 

[Henkin (1949)]. 
7 These functions (called “Skolem”) depend on the variables of the existential quantifi-

ers previous to the universal quantifier that is being eliminated. In case that there is no exis-
tential quantifier previous to the universal quantifier that is being eliminated, the substitution 
is made by a constant (called “Skolem”). Cf. [Amor (2004)]. 

8 Up to here, all the generated sentences are logically equivalent between each other. 
9 The Skolem Form of Validity SFV, could be given in terms of the so–called Skolem 

Form of Satisfaction, written SFS. The following establishes, for the interested reader, the 
dual relation between the two mentioned Skolem forms: if φ is a formula, then 
SFV(φ)=PNF[¬(SFS(¬φ))] as well as SFS(φ)=PNF[¬(SFV(¬φ))]. 

10 Observe that ∀γ is a sentence, and then SFV(∀γ) is also a sentence. This is important 
for the use of Herbrand theorem if it is applied to the sentence SFV(∀γ) that is of the form 
(∃x1…∃xkψ). 
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11 I am grateful to the anonymous referee who suggested me this definition that corre-
sponds with the original idea, but it is more rigorous and more intuitive. I am indebted to her 
or him because this definition improved the proof. 

12 Cf. the second example of Section III. 
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