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Section On theory and methods

Updating weighting matrices by Cross-Entropy

Esteban Fernández Vázquez *

Abstract: The classical approach to estimate spatial models lays on the choice 
of a spatial weights matrix that reflects the interactions among locations. The rule 
used to define this matrix is supposed to be the most similar to the «true» spatial 
relationships, but for the researcher is difficult to elucidate when the choice of this 
matrix is right and when is wrong. This key step in the process of estimating spa-
tial models is a somewhat arbitrary choice, as Anselin (2002) pointed out, and it 
can be seen as one of their main methodological problems. This note proposes not 
imposing the elements of the spatial matrix but estimating them by cross entropy 
(CE) econometrics. Since the spatial weight matrices are often row-standardized, 
each one of their rows can be approached as probability distributions. Entropy 
Econometrics (EE) techniques are a useful tool for recovering unknown probabi
lity distributions and its application allows the estimation of the elements of the 
spatial weights matrix instead of the imposition by researcher. Hence, the spatial 
lag matrix is not a matter of choice for researcher but of empirical estimation by 
CE. We compare classical with CE estimators by means of Monte Carlo simula-
tions in several scenarios on the true spatial effect. The results show that Cross 
Entropy estimates outperform the classical estimates, especially when the specifi-
cation of the weights matrix is not similar to the true one. This result points to CE 
as a helpful technique to reduce the degree of arbitrariness imposed in the estima-
tion of spatial models.

JEL Classification: C15, C21.

Keywords: Spatial econometrics, cross entropy econometrics, spatial models 
specifications, Monte Carlo simulations.

Actualización de matrices de pesos espaciales por Entropía Cruzada

El enfoque clásico para estimar modelos espaciales parte de la elección de una ma-
triz de pesos espaciales que refleje la interacción entre las diferentes zonas. Se asu-
me que la regla para definir esta matriz es que sea lo más parecida a la «verdadera» 
red de relaciones espaciales, pero para el investigador es difícil dilucidar cuándo la 
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elección de esta matriz es correcta. Este paso clave en el proceso de estimación de 
modelos espaciales es una elección arbitraria, como Anselin (2002) señaló, y pue-
de ser visto como uno de sus principales problemas metodológicos. En esta nota se 
propone no imponer los elementos de la matriz, sino su estimación basándose en la 
técnica de Entropía Cruzada (CE). Como las matrices de pesos espaciales son fre-
cuentemente normalizadas por filas, cada una de ellas se puede entender como una 
distribución de probabilidad. La econometría basada en medidas de entropía es una 
herramienta útil para la obtención de distribuciones de probabilidad desconocidas, 
y su aplicación permite la estimación de los elementos de la matriz de pesos espa-
ciales. Así, la matriz ya no depende de una elección impuesta por el investigador, 
sino de una estimación empírica. Este artículo compara los estimadores clásicos 
con los basados en medidas de entropía por medio de simulaciones de Monte Carlo 
en varios escenarios. Los resultados muestran que estas estimaciones superan a las 
obtenidas por estimadores tradicionales, especialmente cuando la especificación 
de la matriz no es similar a la real. Este resultado destaca la utilidad de las técnicas 
CE a la hora de reducir el grado de arbitrariedad impuesta en la estimación de 
modelos espaciales.

Clasificación JEL: C15, C21.

Palabras clave: Econometría espacial, econometría basada en entropía cruzada, 
especificación de modelos espaciales, simulaciones de Monte Carlo.

1.  Introduction

The literature distinguishes several types of spatial models depending on the as-
sumptions made about the way in which spatial correlation affects the dependent 
variable. Specifically, Anselin (2003) presents a wide taxonomy of different types of 
spatial models. Although it can be easily extended to other situations, in this paper 
we focus on a situation where the externalities spread across space through a spatial 
lagstructure.

Traditionally, for a set of N locations and T observations in time, the so-called-
spatial lag model is written as:

y X Wy= + +β ρ e ( )1

y I W X= − +−[ ] [ ] ( )ρ β1 2e

where y is the (NT × 1) vector with the values of the dependent variable, W is the 
(N × N) matrix of a priori spatial weights which is assumed constant along time, X 
is a (NT × H) matrix of exogenous variables, b is a (H × 1) vector of parameters to 
estimate and e is a (NT × 1) stochastic error. In addition, r is a spatial interaction 
parameter that measures how the variable y is spatially influenced. The weighting 
matrix W represents the spatial structure of the spillovers.

05-ESTEBAN.indd   54 22/2/12   11:19:56



Updating weighting matrices by Cross-Entropy  55

The selection of a specific spatial weights matrix W is a key issue when estima
ting spatial models, but at the same time there is not a unanimous criterion to choose 
the most appropriate spatial weights for a given empirical application 1. Basically, 
there are two alternative approaches to the problem of the specification of spatial 
weights. One of the streams promotes fixingthe W matrix exogenously to the model 
basing on some concept of geographical proximity. For example, a very simple way 
to characterize their elements wij is by defining them as binary variables that take 
value 1 when locations i and j are neighbor and 0 otherwise (depending on the exis
tence or not of a common border, for example). The geographical distance between 
locations i and j can be used in a more direct way, defining wij as a distance decay 
function. Other authors prefer using some economic measure of distance based on 
interregional trade flows, income differences, etc. 2.

Some other authors, on the contrary, propose the construction of W matrices based 
on some «empirical» evidence about the variables of the model. They are critical of 
the «exogenous approach», because the spatial lag operator imposed can be very dif-
ferent from the real spatial structure underlying in the data. For example, Kooijman 
(1976) or Boots and Dufornaud (1994) define as one criterion the choice of W that 
maximizes the Moran statistic. Following a similar idea, Mur and Paelinck (2010) 
base their specification of W on the so-called complete correlation coefficients. Two 
papers by Getis and Aldstadt base their specification of W on the values of the G*

i   lo-
cal statistic (Getis and Aldstadt, 2004) and on the use of a multi-directional algorithm 
(Aldstadt and Getis, 2006). Bhattacharjee and Jensen-Butler (2006) suggest a method 
to estimate W based on the real structure of the spatial autocovariance, while Conley 
(1999) proposes the direct estimation of the spatial autocovariances. This data-driven 
selection of W has been, however, subject to strong criticism from authors supporting 
the exogenous approach (see, for example, Manski, 1993).

This note explores the use of Generalized Cross Entropy (GCE) econometrics 
to estimate such models. The GCE approach can be considered an extension of the 
Generalized Maximum Entropy estimator, which has been applied recently to spatial 
regression models by Marsh and Mittelhammer (2004) or Fernandez-Vazquez et al., 
(2009), who estimated a first order spatial lag model using this technique. The present 
paper will use the GCE technique to define spatial lag operators that can be seen to lie 
in an intermediate position between the «exogenous» and «empirical» approaches. 
The basic idea is that we initially fix an exogenous a priori W matrix but, once this is 
specified, we could modify our initial specification.

The structure of the paper is the following: Section 2 provides an overview of 
the GCE methodology and shows how it can be applied to the context of spatial lag 
models. Section 3 evaluates the relative performance of the GCE techniqueusing a 
sampling experiment under different scenarios of sample size and degrees of diver-
gencebetween the actual spatial network and the weighting matrix W specified in 

1  See Anselin (2002), p. 259.
2  Some examples of these other approaches can be found in Molho (1995), Fingleton (2001) or 

López-Bazo, Vayá and Artís (2004). 
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the estimation. Section 4 shows an empirical application that illustrates how the pro-
posed CE estimation procedure works with a real-world example. Finally, section 5 
presents the concluding remarks.

2. � Generalized Cross entropy econometrics:  
an overview

Entropy Econometrics (EE) techniques have interesting properties when dealing 
with ill-conditioned estimation problems (small samples or data sets affected by large 
collinearity). In Golan et al. (1996) or Kapur and Kesavan (1992) extensive descrip-
tions of the entropy estimation approach can be found. Generally speaking, EE tech-
niques are used to recover unknown probability distributions of random variables that 
can take M different known values. The estimate ~p   of the unknown probability distri-
bution p must be as similar as possible to an appropriate a priori distribution q, cons
trained by the observed data. Specifically, the Cross-Entropy (CE) procedure esti-
mates ~p   by minimizing the Kullback-Leibler divergence D(p || q) (Kullback, 1959):

Min
p m

m

mm

M

D p q p
p

q
( ) ln ( ) =






=
∑

1

3

The divergence D(p || q) measures the dissimilarity of the distributions p and q. 
This measure reaches its minimum (zero) when p and q are identical and this mini-
mum is reached when no constrains are imposed. If some information (for example, 
observations on the variable) is available, each piece of information will lead to a 
Bayesian update of the a priori distribution q.

The underlying idea of the CE methodology can be applied for estimating the 
parameters of general linear models, which leads us to the so-called Generalized 
Cross Entropy (GCE). Let us suppose a variable y that depends on H explanatory 
variables xh:

y X= +β e ( )4

Where y is a (NT × 1) vector of observations for y, X is a (NT × H) matrix of 
observations for the xh variables, b is the (H  ×  1) vector of unknown parameters 
b = (b1, ..., bH) to be estimated, and e is a (NT × 1) vector with the random term of 
the linear model. Each bh is assumed to be a discrete random variable. We assume 
that there is some information about its M ≥ 2 possible realizations. This information 
is included for the estimation by means of a support vector b’ = (b1, ..., bM) with cor-
responding probabilities p’h = (ph1, ..., phM). The vector bis based on the researcher’s a 
priori belief about the likely values of the parameter. For the sake of convenient expo-
sition, it will be assumed that the M values are the same for every parameter, although 
this assumption can easily be relaxed. Now, vector b can be written as: 
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Where B and P have dimensions (H × HM) and (HM × 1) respectively. Now, the 
value of each parameter bh is given by the following expression:

βh m hm
m

M

b p h H= = ∀ =
=

∑b ph' ; ,... , ( )1 6
1

For the random term, a similar approach is followed. Oppositely to other estima-
tion techniques, GCE does not require rigid assumptions about a specific probability 
distribution function of the stochastic component, but it still is necessary to make 
some assumptions. e isassumed to have mean E[e] = 0 and a finite covariance matrix. 
Basically, we represent our uncertainty about the realizations of vector e treating each 
element et as a discrete random variable with J ≥ 2 possible outcomes contained in a 
convex set v’ = (v1, ..., vJ), which for the sake of simplicity is assumed as common for 
all the et. We also assume that these possible realizations are symmetric around zero 
(–v1, = vJ). The traditional way of fixing the upper and lower limits of this set is to 
apply the three-sigma rule (see Pukelsheim, 1994). Under these conditions, vector e 
can be defined as:
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and the value of the random term for an observation equals:

ent j ntj
j

J

v u= =
=

∑v unt' ( )
1

8

And, consequently, model (4) can be transformed into:

y XBp Vu= + ( )9

So we need also to estimate the elements of matrix U (denoted by u~   tj) and the 
estimation problem for the general linear model (4) is transformed into the estimation 
of H + NT probability distributions. For this estimation, once specified the a priori 
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probability distributions Q and U0 respectively for P and U, the GCE problem is writ-
ten in the following terms:
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The restrictions in (10b) ensure that the posterior probability distributions of the 
estimates and the errors are compatible with the observations. The equations in (10c) 
and (10d) are just normalization constraints 3. In other words, the CE solutions are 
obtained by minimizing the Kullback-Leibler divergence D(P || Q) between the un-
known phm and the a priori qhm. Similarly, for the estimation of untj the divergence  
D(U || U0) is minimized as well. In this case, the a priori probabilities are usually 

fixed as uniform (u0
n    tj =  1––

J
 ∀n, t), which is the natural point of departure to reflect the 

uncertainty about e.

This GCE procedure can be extended for estimating spatial lagmodels such 
as (1). Following the same procedure explained above for the bk parameters, it will 
be assumed that there are L  ≥  2 possible realizations for the spatial parameter r 
in a support vector z’ =  (z1, ..., zL), with corresponding probabilities s’ =  (s1, ..., sL). 
The parameter r, consequently, can be estimated by GCE by means of this repara-
metrization. A similar idea was applied by Marsh and Mittelhamer (2004) for the 
case of spatial autoregressive models once a matrix of spatial weights W is specified. 
Fernandez-Vazquez et al. (2009) extended this idea and proposed estimating all the 
rij elements of a matrix of spatial parameters instead of using a predetermined W 
matrix. This note suggests a solution where only one single spatial parameter r is 
defined, but the elements of a spatial weights matrix W will be updated from the a 
priori values specified.

3  This GCE estimation procedure can be seen as an extension of the particular Generalized Maxi-
mum Entropy (GME) principle, given that the solutions of both approaches are the same when the a priori 
probability distribution contained in Q are all uniform.
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The GCE can be naturally applied in this context, given that the elements of 
matrix W are typically row-standardized and are non-negative. Consequently, each 
rowof W can be taken as a probability distribution with unknown elements wni to be 
recovered: 
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This means that equation (1) can be rewritten as:

y XBp s z Wy VU= + +( ' ) ( )12

Now the empirical GCE program estimates H+2NT+1 probability distributions, 
in the following terms:
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The GCE program above includes the Kullback divergence associated to the spa-
tial parameter and to the weighting matrix in the objective function (13a). Equa-
tions (13c)-(13d) are again normalization constraints. Restriction (13b) forces the 
recovered probabilities to fit the observations of the dependent variable. This GCE 
program estimates, together with the parameters of the model, the elements of the 
matrix of spatial weights. These estimates (namely ŵ  ni) are the closest to the a priori 
assumptions made about the elements of the W matrix (w0

n i) and that, simultaneously, 
are compatible with the available information. In other words, we choose as elements 
of the matrix those  ̂w  ni that, being consistent with the observed data, diverge least with 
our prior assumption W 0.

Finally, the estimated value of the spatial spillovers will be:

ˆ ˆ (ρ =
=
∑ s zl l
l

L

1

14)

3.  A numerical experiment

In this section, the performance of the GCE technique will be compared with 
other competing techniques in a scenario where the spatial structure that generates 
the data is given by a distance decay matrix. Under this specification, the elements of 
the Wexp matrix are defined as the following function:

w dni ni
exp exp( )= −

Where dni is the distance between the locations n and i, being wr
i i = 0. We have 

simulated the spatial lag model y = Xb + rWexp y + ∈ with 1,000 replications for two 
lattices of N = 15 and N = 47 locations. Specifically, for the case where N = 15, we 
have taken the 15 inland Spanish regions (Autonomous Communities) and when 
N = 47, the set of locations is formed by the 47 inland Spanish provinces. dni is the 
distance (km. by road) between the capital cities of regions (provinces) n and i. In 
our experiment, the error term is generated in each simulation as a N(0.1) distribu-
tion. Matrix X is composed by one constant term and one regressor x. The values 
for the independent variable and for the parameters (kept constant throughout the 
simulations) are:
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In the experiment, the connectivity between the two sets of locations is given by 
the spatial pattern contained in the matrix Wexp, which is not necessarily equal to the 
weighting matrix used to estimate the model (W). For example, using the same idea 
of basing our spatial weights in a distance decay function, we could have specified 
the elements of our matrix as wsqrwni  = (dni)–2; which is a specification commonly used 
in practice as well. We have introduced the possibility of divergence between the 
real matrix (Wexp) and the one specified in the model (W) assuming that W = (1 – h) 
Wexp  + hWsqr; h (bounded between 0 and 1) is a scalar that reflects the degree of 
divergence between the real and the used spatial weighting matrices. If h = 0 this 
would indicate that the real and the specified matrix are exactly the same and the 
higher the value of h, the larger the misspecification of the spatial weighting matrix. 
In the limit, if h = 1 we’ll be using a matrix of spatial weights completely different 
of the real one Wexp.

In this scenario for the sampling experiment, we compare the GCE approach with 
other rival procedures. In order to apply the GCE procedure to estimate models like 
(12), it is necessary to specify some support for the set of parameters and for the er-
rors. For b0 and b1 the same support b = (–1.1.1) has been set. Note that the support 
is not centered on the true value of any of the parameters, which means that we are 
including not very good prior information for the estimation of the b parameters. The 
support vector for the spatial parameter r was set as z = (–1.1.1). Finally, the support 
v for the error has been generated as a three-point vector centered about 0 following 
the common procedure of the 3-sigma rule of variable y in each trial of the experi-
ment (Pulkesheim, 1994; Golan, Judge and Miller, 1996).

The benchmarkfor the comparison will be the estimation by maximum likeli-
hood (ML). One basic difference is that in ML we specify a matrix W and we ap-
ply it directly in the estimation. In contrast, using GCE we take W as an a priori 
approximation to Wexp, but then we let the data speak for themselves and we could 
use spatial weights ŵ  ni (estimates of the elements on Wexp) different from our initial 
assumptions.

Table 1 and 2 summarize the results of the experiment for the two sets of loca-
tions assuming that we have observations for T = 10 time periods. For each one of the 
competing estimators we have computed the mean of the estimates of b0, b1 and r 
throughout the 1,000 simulations (columns 1, 3 and 5 respectively) and their empiri-
cal variance, the mean absolute error of the estimates of b0 and b1 (columns 2 and 4) 
and the mean absolute error (column 6, which quantifies the average absolute diffe
rences between the actual r and its respective estimate).

Each row of Tables 1 to 4 contains a different value for the scalar h. As expected, 
the deviations between the actual and the estimated parameters for both methods are 
relatively low for values of h close to zero. However, the performance of the two 
competing estimation techniques is remarkably different as h grows. When the dif-
ferences between the real Wexp and the W used in the estimation become larger, the 
GCE begins to yield comparatively better estimates than ML.
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Table 1.  Results of the numerical experiment

(N = 47; T = 10; 1,000 replications)

(1) (2) (3) (4) (5) (6)

Average b̂ 0 
True b0 = 0.75  

MAEb0
Average b̂ 1 

True b1 = 0.5 
MAEb1

Average r̂   
True r = 0.25 

MAEr

h = 0.00

ML 0.377
[0.047] 0.393 0.498

[0.001] 0.011 0.341
[0.002] 0.091

GCE 0.240
[0.014] 0.520 0.502

[0.003] 0.016 0.350
[0.003] 0.105

h = 0.20

ML 0.132
[0.053] 0.630 0.498

[0.001] 0.011 0.397
[0.002] 0.147

GCE 0.073
[0.014] 0.687 0.490

[0.003] 0.016 0.350
[0.003] 0.163

h = 0.40

ML –0.190
[0.063] 0.954 0.498

[0.001] 0.012 0.469
[0.003] 0.219

GCE –0.121
[0.013] 0.887 0.476

[0.003] 0.016 0.474
[0.003] 0.229

h = 0.60

ML –0.610
[0.079] 1.371 0.500

[0.001] 0.017 0.564
[0.004] 0.314

GCE –0.316
[0.011] 1.090 0.462

[0.003] 0.018 0.541
[0.005] 0.296

h = 0.80

ML –1.111
[0.106] 1.857 0.503

[0.001] 0.027 0.675
[0.006] 0.425

GCE –0.474
[0.009] 1.256 0.450

[0.003] 0.021 0.596
[0.005] 0.351

h = 1.00

ML –1.470
[0.144] 2.214 0.509

[0.001] 0.031 0.748
[0.008] 0.498

GCE –0.558
[0.008] 1.337 0.445

[0.003] 0.028 0.624
[0.006] 0.379
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Table 2.  Results of the numerical experiment

(N = 15; T = 10; 1,000 replications)

(1) (2) (3) (4) (5) (6)

Average b̂ 0 
True b0 = 0.75  

MAEb0
Average b̂ 1 

True b1 = 0.5 
MAEb1

Average r̂   
True r = 0.25 

MAEr

h = 0.00

ML 0.521
[0.176] 0.364 0.487

[0.001] 0.055 0.327
[0.006] 0.091

GCE 0.216
[0.036] 0.521 0.487

[0.003] 0.016 0.356
[0.004] 0.109

h = 0.20

ML 0.316
[0.166] 0.371 0.487

[0.004] 0.057 0.376
[0.007] 0.134

GCE 0.144
[0.036] 0.560 0.488

[0.003] 0.016 0.403
[0.004] 0.154

h = 0.40

ML 0.060
[0.111] 0.485 0.487

[0.004] 0.074 0.437
[0.010] 0.191

GCE 0.059
[0.036] 0.601 0.472

[0.003] 0.016 0.449
[0.005] 0.199

h = 0.60

ML –0.241
[0.241] 0.576 0.489

[0.004] 0.088 0.507
[0.014] 0.259

GCE –0.016
[0.009] 0.644 0.460

[0.004] 0.018 0.488
[0.005] 0.238

h = 0.80

ML –0.537
[0.307] 0.684 0.493

[0.005] 0.104 0.573
[0.019] 0.324

GCE –0.073
[0.007] 0.668 0.452

[0.004] 0.021 0.514
[0.006] 0.264

h = 1.00

ML –0.646
[0.384] 0.801 0.487

[0.004] 0.122 0.589
[0.023] 0.339

GCE –0.098
[0.007] 0.725 0.505

[0.003] 0.028 0.520
[0.006] 0.270

Besides, the experiment has been repeated now assuming a cross-section data set 
(i.e., T = 1) being the results summarized in Tables 3 and 4, which present the same 
structure as Tables 1 and 2.
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Table 3.  Results of the numerical experiment

(N = 47; T = 1; 1,000 replications)

(1) (2) (3) (4) (5) (6)

Average b̂ 0 
True b0 = 0.75  

MAEb0
Average b̂ 1 

True b1 = 0.5 
MAEb1

Average r̂   
True r = 0.25 

MAEr

h = 0.00

ML 1.034
[2.536] 1.238 0.485

[0.012] 0.087 0.200
[0.172] 0.327

GCE 0.102
[0.002] 0.638 0.476

[0.007] 0.071 0.431
[0.014] 0.187

h = 0.20

ML 0.660
[2.307] 1.233 0.481

[0.011] 0.089 0.299
[0.161] 0.327

GCE 0.091
[0.002] 0.659 0.469

[0.007] 0.069 0.445
[0.013] 0.199

h = 0.40

ML 0.293
[2.097] 1.258 0.483

[0.011] 0.088 0.396
[0.150] 0.344

GCE 0.081
[0.002] 0.663 0.463

[0.006] 0.071 0.458
[0.012] 0.211

h = 0.60

ML –0.066
[1.908] 1.355 0.485

[0.012] 0.087 0.492
[0.139] 0.375

GCE 0.081
[0.002] 0.663 0.460

[0.006] 0.071 0.468
[0.012] 0.221

h = 0.80

ML –0.418
[1.741] 1.506 0.488

[0.012] 0.088 0.585
[0.129] 0.422

GCE 0.070
[0.002] 0.691 0.456

[0.006] 0.073 0.471
[0.012] 0.224

h = 1.00

ML –0.763
[1.599] 1.710 0.490

[0.012] 0.088 0.677
[0.120] 0.478

GCE 0.048
[0.002] 0.702 0.444

[0.006] 0.077 0.496
[0.010] 0.247

In brackets, empirical variance along the simulations.
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This is because, in the GCE, the specification of W can be seen as an a priori as-
sumption that can be modified by the information contained in the sample. In other 
words, the data in the sample help to alleviate a wrong assumption about Wexp. All 
in all, the results suggest that with perfect certainty about the actual spatial network 
Wexp, using the GCE technique proposed does not imply gains compared with ML. 
On the other hand, if we do not have clear evidences for imposing the right structure 
in the spatial network, using a GCE estimator seems to limit the estimation errors.

Table 4.  Results of the numerical experiment

(N = 15, T = 1; 1,000 replications)

(1) (2) (3) (4) (5) (6)

Average b̂ 0 
True b0 = 0.75  

MAEb0
Average b̂ 1 

True b1 = 0.5 
MAEb1

Average r̂   
True r = 0.25 

MAEr

h = 0.00

ML 0.721
[1.540] 0.971 0.500

[0.045] 0.169 0.255
[0.074] 0.223

GCE 0.128
[0.003] 0.622 0.475

[0.011] 0.081 0.324
[0.018] 0.131

h = 0.20

ML 0.875
[1.602] 0.989 0.499

[0.045] 0.169 0.213
[0.078] 0.230

GCE 0.134
[0.003] 0.616 0.483

[0.011] 0.081 0.332
[0.019] 0.135

h = 0.40

ML 1.030
[1.658] 1.026 0.498

[0.045] 0.170 0.171
[0.081] 0.238

GCE 0.140
[0.003] 0.615 0.491

[0.011] 0.082 0.332
[0.019] 0.137

h = 0.60

ML 1.185
[1.709] 1.073 0.498

[0.045] 0.170 0.130
[0.084] 0.249

GCE 0.145
[0.003] 0.616 0.498

[0.011] 0.083 0.333
[0.020] 0.138

h = 0.80

ML 1.340
[1.754] 1.131 0.497

[0.045] 0.170 0.088
[0.084] 0.266

GCE 0.151
[0.004] 0.599 0.506

[0.011] 0.085 0.333
[0.020] 0.138

h = 1.00

ML 1.495
[1.794] 1.194 0.496

[0.045] 0.170 0.047
[0.084] 0.287

GCE 0.157
[0.005] 0.593 0.513

[0.011] 0.087 0.334
[0.020] 0.138

In brackets, empirical variance along the simulations.
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4. � An empirical application: modeling labor productivity  

for the Spanish provinces

This section illustrates the performance of the entropy-based adjustment of the W 
matrix with a simple real world example. The objective will be to estimate a model 
for the N = 47 Spanish inland provinces (we exclude the Canary and Balearic Island 
off our analysis) where the labor productivity depends on an intercept and the stock 
of capital per worker and a spatial autoregressive component.

Annual data from 1995 to 2006 for the 47 provinces on gross domestic product 
and labor have been obtained from the Regional Accounts of Spain compiled by the 
Spanish Statistical Institute (INE). Data of the stock of private capital have been ob-
tained from the BDMores database elaborated by the Spanish Ministry of Economy 
for the same time period. All the variables are in logs and, following Holtz-Eakin 
and Schwartz (1995), they are measured in differences to the initial year in order to 
capture the long-term relationships between the variables, provided that period t is 
sufficiently far from the initial period.

Specifically, the model to be estimated is:

y X Wy= + +β ρ e (16)

Where for each time period t, y is a vector containing labor productivity (gross 
value added divided by the amount of labor) for each province and X is a matrix with 
the two exogenous variables of the model, consisting in the stock of labor (L) and 
the stock of privatephysical capital (K) in each province. Vector b contains two of the 
unknown parameters of the model; namely the labor (bL) and capital (bK) elasticities 
of a Cobb-Douglas aggregate production function. The model also includes a spatial 
autoregressive component measured by the parameter r which (as well as matrix W) 
is assumed constant along time.

We have applied the entropy-based adjustment proposed to estimate the model, 
which implies that an initial specification of matrix W is required. Initially, the ele-
ments of this matrix will be based on a distance decay function as wsqrwni  = (dni)–2, being 
dni the distance (km. by road) between the capital cities of two provinces n and i. For 
applying the CE estimation to equation (16), it is necessary to specify some supports 
for parameters and for the errors. For all the parameters (bL, bK and r), we have con-
sidered different ranges of plausible values with 3 points. Specifically, the supports 
specified for have been (–1, 0, 1) that have been later expanded to (–5, 0, 5) and (–10, 
0, 10) in order to check the sensitivity of the estimates to changes in the supports 4. 
The traditional three-sigma rule is applied for specifying the supporting vectors for 
the error terms.

4  Note that supporting vectors centered on zero for the spatial autoregressive parameter implies as-
suming that sometimes a raise in a neighbor province can generate either an increase in labor productivity 
ora decrease in other provinces’ productivity.
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Besides the point estimates, the GCE procedure allows for testing some hypothe
ses about the model confronting our estimates with the null hypothesis that the pa-
rameters are zero. This hypotheses testing can be done with the so-called entropy 
ratio, which follows a limiting χ2 distribution. Let KLR be the Kullback’sdivergence 
measure of a constrained problem, where the parameter is constrained to be 0 (at the 
centre of its support). Now let KLU be the Kullback’s divergence measure (objective 
function of the GCE program) without the restriction that the parameter is equal to 
zero. The entropy ratio statistic ER for testing the null hypothesis that the parameter 
is zero is = 2[KLR – KLU], which under the null hypothesis follows a limiting χ2 dis-
tribution with K degrees of freedom, being K the number of restriction imposed. The 
results are summarized in Table 5

Table 5.  CE estimation of equation (16)

(1) (2) (3) (4)

b̂ L b̂ K  r̂   
% of abs.

adjustment in W

CE estimates 

b = (–1,0,1) 0.449** 0.141* 0.652** 8.978

b = (–5,0,5) 0.468** 0.118* 0.664** 9.055

b = (–10,0,10) 0.468** 0.119* 0.664** 9.057

ML estimation 0.472**   0.128** 0.653**

* stands for estimates significantly different from 0 at a 10% level and ** stands for estimates significantly different 
from 0 at a 5% level based on a χ2 distribution 

The first two columns of Table 5 show the estimates for the bL and bK parameters 
and the third one reports the estimates for r under the different supporting vectors 
considered. In order to illustrate the adjustment applied to the initial W matrix based 
on a squared distance-decay function, the mean percentage of change (in absolute 
value) between the initial and the posterior matrices are reported in column (4). On 
average the CE estimation procedure modifies the cells around 9%, which could be 
considered as a relatively modest adjustment.

Regarding the parameter estimates, the maximum likelihood results are included 
for comparative purposes. Note that, generally speaking, there is not much variability 
in the results across the different specifications assumed, all of which get signifi-
cantly positive estimates of the parameters of the model. The CE estimates are close 
to those obtained by maximum likelihood, although the later gets a capital elasticity 
significant at 5% whereas the CE estimation only gets evidence of a positive estimate 
at 10%. Note also that supporting vectors assumed for the spatial autoregressive pa-
rameter were centered on zero, which implies assuming that sometimes a raise in a 
neighbor province can generate either an increase in labor productivity or a decrease 
in other provinces’ productivity. In this case, under any of the scenarios considered, 
it seems to be empirical evidences of a positive and significant contagion process 
among the Spanish regions concerning variations in output.
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5.  Concluding remarks

The specification of the spatial weighting matrix has been a important issue in 
the field of spatial econometric analysis that has received considerable attention. The 
main problem is that there is not a unique approach to define the spatial weights and 
two alternative streams can be distinguished in the literature. One of the proposals 
supports using weighting matrices determined exogenously to the model, while other 
authors prefer to use some empirical evidence to specify them. This paper suggest a 
sort of intermediate way between these two proposals where the W matrix is a priori 
specified exogenously, but in a second stage the weights are updated by means of the 
GCE estimator. Focusing in the so-called spatial lagmodels, a numerical experiment 
compares the performance of the proposed GCE with a traditional ML estimator, and 
the results suggest that the possibility of updating the prior assumptions made in the 
W matrix facilitates more accurate estimates. Not surprisingly, the comparative per-
formance of GCE gets better when the divergence between the actual and the a priori 
elements of W grows. The results of the numerical experiment are complemented 
with an application to real data of the method proposed, obtaining empirical evidence 
of a positive spatial autoregressive process among the aggregate production functions 
on the Spanish provinces between 1995 and 2006.
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