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The Likelihood Ratio Test of Common Factors under 
Non-Ideal Conditions

Ana M. Angulo *, Jesús Mur **

Abstract: The Spatial Durbin model occupies an interesting position in Spatial 
Econometrics. It is the reduced form of a model with cross-sectional dependence 
in the errors and it may be used as the nesting equation in a more general approach 
of model selection. Specifically, in this equation we can obtain the Likelihood Ra-
tio test of Common Factors (LRCOM). This test has good properties if the model is 
correctly specified, as shown in Mur and Angulo (2006). However, as far as we 
know, there is no literature in relation to the behaviour of the test under non-ideal 
conditions, which is the purpose of the paper. Specifically, we study the perfor
mance of the test in the case of heteroscedasticity, non-normality, endogeneity, 
dense weighting matrices and non-linearity. Our results offer a positive view of the 
Likelihood Ratio test of Common Factors, which appears to be a useful technique 
in the toolbox of spatial econometrics.

JEL Classification: C21, C50, R15.

Keywords: Likelihood Ratio Test of Common Factor, Heteroscedasticity, Non-
normality, Endogeneity, Non-linearity.

El Ratio de Verosimilitudes de Factores Comunes bajo condiciones no ideales

Resumen: El modelo espacial de Durbin ocupa una posición interesante en eco-
nometría espacial. Es la forma reducida de un modelo de corte transversal con 
dependencia en los errores y puede ser utilizado como ecuación de anidación en un 
enfoque más general de selección de modelos. En concreto, a partir de esta ecua-
ción puede obtenerse el Ratio de Verosimilitudes conocido como test de Factores 
Comunes (LRCOM). Como se muestra en Mur y Angulo (2006), este test tiene bue-
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38  Angulo, A. and Mur, J.

nas propiedades si el modelo está correctamente especificado. Sin embargo, por lo 
que sabemos, no hay referencias en la literatura sobre el comportamiento de este 
test bajo condiciones no ideales. En concreto, estudiamos el comportamiento del 
test en los casos de heterocedasticidad, no normalidad, endogeneidad, matrices de 
contactos densas y no-linealidad. Nuestros resultados ofrecen una visión positiva 
del test de Factores Comunes que parece una técnica útil en el instrumental propio 
de la econometría espacial contemporánea.

Clasificación JEL: C21, C50, R15.

Palabras clave: Contraste de Ratio de Verosimilitudes de Factores Comunes, He-
terocedasticitidad, No Normalidad; Endogeneidad, No Linealidad.

1.  Introduction

In recent years, there has been an increasing concern about questions related 
to methodology in Spatial Econometrics. The works of Anselin and Florax (1995), 
Anselin et al (1996) and Anselin and Bera (1998) played a leading role in the revi-
talisation of the interest in the nineties. These papers underline the difficulties arising 
from the lack of specificity of the tests based on the Lagrange Multiplier principle 
and, consequently, the problems of finding the true model when there are various 
alternatives. In sum, there is a serious risk of obtaining a misspecified model if the 
user is not sufficiently careful.

In a model selection context, two main strategies can be identified. The first starts 
with a general model that we try to simplify in a so-called «General-to-Specific» ap-
proach (Hendry, 1980). This strategy has been supported by an important part of the 
literature on econometric model selection (Danilov and Magnus, 2004; Hendry and 
Krolzig, 2005). The second approach, denoted as «from Specific-to-General», ope
rates in the opposite direction: starts from a simple model that it is extended depen
ding on the results for certain tests. Comparison of both strategies have been numerous 
(Campos et al, 2005; Lütkepohl, 2007), also in the context of spatial econometrics. 
Florax et al (2003, 2006) compared the two approaches under ideal conditions while 
Mur and Angulo (2009) introduce different anomalies in the Data Generating Process 
(DGP). Elhorst (2010) reviews the situation once again.

As indicated in Florax et al (2006) or Mur and Angulo (2009) the starting point of 
the General-to-Specific strategy is the Spatial Durbin Model (SDM form now on) or, 
in other words, an «autoregressive distributed lag model of the first order» as defined 
by Bivand (1984). Lesage and Pace (2009, p. 46) are in favour of the SDM which 
«provides a general starting point for discussion of spatial regression model estima-
tion since this model subsumes the spatial error model and the spatial autoregressive 
model». Elhorst (2010) remarks some of the strengths of the SDM: i) «it produces 
unbiased coefficient estimates also if the true data-generation process is a spatial lag 
or a spatial error model»; ii) «it does not impose prior restrictions on the magnitude 
of potential spatial spillover effects», which can be global or local and/or different 

04-ANGULO.indd   38 22/2/12   11:18:54



The Likelihood Ratio Test of Common Factors under Non-Ideal Conditions  39

for different explanatory variables; and iii) «it produces correct standard errors or t-
values of the coefficient estimates also if the true data-generating process is a spatial 
error model». In addition, Elhorst (2010) proposes a test procedure to select the most 
adequate model which confers an important role to the SDM.

The Spatial Lag Model (SLM) is a particular case of the SDM, when the exo
genous interaction effects among the independent variables are not significant. The 
Spatial Error Model (SEM) is also a particular case of the SDM, once the common 
factor hypothesis in introduced in the SDM model. Hence, if the null is not rejected 
the test favours the SEM specification. When the null is not rejected, Florax et al 
(2006) propose to select the Spatial Lag Model (SLM) while Mur and Angulo (2009) 
and Elhorst (2010) propose to go on testing further hypotheses on the SDM. It is clear 
that the last equation plays a crucial role in the specification of a spatial model. For 
this reason it is important to be aware of the weaknesses and strengths of the speci-
fication tests applied, like the Likelihood Ratio test of Common Factors (LRCOM in 
what follows), on this equation.

However, the literature on Spatial Econometrics has paid little attention to the 
Common Factor test. This is a bit surprising. To cite only some of the most recent 
cases, this test is not included in the comprehensive simulation carried out by Anse-
lin and Florax (1995), nor is it mentioned in the meta-analysis of Florax and de 
Graaff (2004); the LRCOM test does not appears in the manuals of Tiefelsdorf (2000) 
and Griffith (2003). On the contrary, Lesage and Pace (2009) are very confident 
about the possibilities of the test. Recently, Mur and Angulo (2006) conducted a 
Monte Carlo exercise in order to evaluate the behaviour of the test under ideal con-
ditions. In this paper, we go further in the same direction by analysing the perfor
mance of the Likelihood Ratio test of Common Factors 1 under non-ideal conditions: 
heteroscedasticity, non-normality, non-linearity, endogeneity and dense weighting 
matrices.

The paper is organised as follows. The next section describes the Spatial Durbin 
model and the Likelihood Ratio test of Common Factors following Mur and Angulo 
(2009) for the definition of the alternative hypothesis. Section 3 describes a Monte 
Carlo experiment that provides evidence on the performance of the test for various 
departures from the case of ideal conditions. The main conclusions are summarised 
in Section 4.

2. � The Spatial Durbin Model and the Likelihood Ratio test  
of Common Factors

The Durbin model plays a major role in a General-to-specific strategy of model 
selection. Following a Hendry-like approach, it is a general equation that nests two of 

1  We focus on the Likelihood Ratio version of the test of Common Factors because, in general, it is 
better-known. Two other alternatives are the Wald and the Lagrange Multiplier versions, as developed by 
Burridge (1981).
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the most popular models in spatial econometrics, the Spatial Lag Model (SLM) and 
the Spatial Error Model (SEM). Let’s analyse this issue more in detail.

The Durbin Model appears in a specific situation in which, using time series, we 
need to estimate an econometric model with an autoregressive error term, AR(1):
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u u

t t t

t t t
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= +
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( )
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Durbin (1960) suggested directly estimating the reduced unrestricted form of (1) 
by least squares:

y y x xt t t t t= + + +− −ρ β η ε1 1 2' ' ( )

The adaptation of these results to the spatial case does not involve any special 
difficulty, as shown by Anselin (1980):
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where W is the weighting matrix; y, u and ε are vectors of order (Rx1); x is the (Rxk) 
matrix of observations of the k regressors; β and η are (kx1) vectors of parameters 
and ρ is the parameter of the spatial autoregressive process of the first order, SAR(1), 
that intervenes in the equation of the errors.

We complete the specification of the model of (3) with the additional assumption 
of normality in the random terms:
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This model can be estimated by maximum-likelihood (ML in what follows). The 
log-likelihood function is standard:
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with ϕA = [β, η, ρ, σ 2]’; B is the matrix [I-ρW] and |B| its determinant, the Jacobian 
term.

Starting form the Durbin model, we can test whether or not some simplified 
models such as the SLM, SEM or a purely static model without spatial effects are 
admissible. Figure 1 summarizes the relationship between the four models.
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Figure 1.  Relationships between different spatial models for cross-sectional data

Starting from the general SDM model, if we cannot reject the null hypothesis that 
the spatial lag of the x variable is not significant, H0: η = 0, the evidence points to an 
SLM model or to a static model, depending on what happens with the parameter ρ. 
Hence, the next step consists on the estimation of the SLM model:
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Finally, the null hypothesis that ρ = 0 needs to be tested. If this assumption can-
not be maintained, the evidence is in favour of the SLM model; otherwise, a simple 
static model should be the final specification:
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In relation to the SEM model, the Common Factor hypothesis should be tested 
directly in the SDM equation, which results in k non-linear restrictions: η = –ρβ  on 
the parameters of the equation. The most popular test in this context is the Likelihood 
Ratio of Common Factors, LRCOM, proposed by Burridge (1981).

Introducing the k non-linear restrictions on the model of (4), we obtain a SEM 
specification:
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whose log-likelihood function is also standard:
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with ϕ0 = [β,ρ,σ 2]’.
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The log Likelihood Ratio compares the maximized values of the log-likelihoods 
of the models (5) and (9):
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As in the previous case, if we cannot reject the null hypothesis, the evidence 
points to a SEM model or to a static model, depending on the significance test of ρ.

Let us finish this section highlighting the most important points, according to our 
own perspective:

(i)  The Spatial Durbin Model occupies a prominent role in the specification 
process of a spatial model, because it nests other simpler models.

(ii)  The connection between the SDM and the SLM model is a single sig-
nificance test of a maximum-likelihood estimate, whose properties are very well-
known.

(iii)  The connection between the SDM and the SEM is the Common Factor 
Test. The Likelihood Ratio version, LRCOM, is simple to obtain but its properties are 
known only under ideal conditions.

3. � The LRCOM test under non-ideal conditions.  
A Monte Carlo analysis.

In this section, we evaluate the performance of the LRCOM test in different non-
ideal situations and for different sample sizes. Section 3.1 describes the characteris-
tics of the experiments and Section 3.2 focuses on the results.

3.1.  Design of the Monte Carlo

We use a simple linear model as a starting point:

y x= +β ε ( )11

where x is an (Rx2) matrix whose first column, made of ones, is associated to the 
intercept whereas the second corresponds to the regressor, xr; β is a (2x1) vector of 
parameters, β’ = [β0; β1], and ε is the (Rx1) vector of error terms. From this expres-
sion, it is straightforward to obtain a Spatial Error Model, SEM, or a Spatial Lag 
Model, SLM. In matrix terms:
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The SEM and the SLM specification of (12a) and (12b) are the two alternative 
DGPs that we introduce in our simulation (other alternatives are also possible; El-
horst, 2010). The main characteristics of the exercise are the following:

a)  Only one regressor has been used in the model. The coefficient associated 
takes a value of 2, β1 = 2, whereas the intercept is equal to 10, β0 = 10. Both magni-
tudes guarantee that, in the absence of spatial effects, the expected R2 is 0.8.

b)  The observations of the x variable and of the random terms ε and u have been 
obtained from a univariate normal distribution with zero mean and unit variance. 
That is, σ 2 is equal to one in all the cases.

c)  We have used three different sample sizes, R, with 49, 100 and 225 ob-
servations distributed in regular grids of (7 × 7), (10 × 10) or (15 × 15), respectively. 
The weighting matrix is the row-normalized version of the original rook-type binary 
matrix.

d)  In each case, 11 values of the parameter ρ have been simulated, only on the 
non-negative range of values, {ρ = 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.95}.

e)  Each combination has been repeated 1000 times.

The two DGPs, SEM or SLM, have been simulated under different conditions, 
as follows:

i.  Ideal conditions. This is the control case that corresponds to expressions 
(12a) and (12b), in which all the hypotheses are met.

ii.  Heteroscedasticity. The error terms are obtained from a normal distribution 
with non-constant variance: er ~ N(0; a2hetr), where hetr reflects the corresponding 
mechanisms of heteroscedasticy. In this case, we have used two spatial heterosceda-
ticity patterns, denoted as h1 and h2, and a non-spatial pattern, h3. The skedastic 
function for the first two cases is: hetr = d(a,r) being d(–) a normalized measure of 
distance between the centroids of the cells a and r. In the h1 case, a is the cell situated 
in the upper-left corner of the lattice, whereas, in h2, this cell is located in the centre 
of the lattice. The skedastic function in the case h3 is hetr = |xr|, a non-spatial pattern 
that depends on the realization of the regressor, xr, at point r.

iii.  Non-normal distribution of the error terms. Two distributions are used: 
a log-normal distribution and a Student-t distribution with 5, 10 or 15 degrees of 
freedom (df, in the following). The first allows us to measure the consequences 
of the asymmetry of the distribution function and the second provides informa-
tion about the impact of outliers (a Student-t with few df is prone to produce 
outliers).

iv.  We will explore whether the existence of endogeneity in the data, omitted 
in the equations, affects the performance of the test. In order to do this, we simply 
introduce a linear relation between the error term and the regressor: iv.1) using a cor-
relation coefficient of 0.2, low; iv.2) 0.59, medium; or, iv.3) 0.99, high.
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v.  We explore the behaviour of the Likelihood Ratio under several patterns of 
non-linearity using either: v.1) the sine function, y = sin(y*); v.2) the quadratic func-

tion, y = (y*)2; v.3) the inverse function, y =  1––
y*

; v.4) the logarithm function of the 

absolute value, y = log(|y*|); v.5) a discretization of the data of a latent continuous 

variable, y*. In all cases, the y* is obtained directly from expressions (12a) or (12b) 
of case of i). The discrete transformation of v.5 follows a single rule:

y
y y
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33)

where y*
{k} stands for the k-th quantile of the latent variable {y*r ; r = 1, 2,...; R}. We 

have used two values for the quantile, k = 0.7 and 0.5.

vi.  As pointed out, among others, by Smith (2009) or Neuman and Mizruchi 
(2010), the use of dense weighing matrices has severe consequences on maximum 
likelihood estimation: the estimates are dramatically downward biased and most part 
of the ML tests loses power. We study this new case in a non-regular lattice support. 
Each experiment starts by obtaining a random set of spatial coordinates of each sam-
ple size (49, 100 or 225, respectively) in a two-dimensional space. Then we use the n 
nearest-neighbours criterion to build the corresponding weighting matrix. The values 
of n have been fixed as: n = [aT]; a = 0.05; 0.10; 0.25; 0.50 where [–] stands for the 
«integer part of».

3.2.  Results of the Monte Carlo experiments

The Monte Carlo experiment provided us with a lot of results. In order to sim-
plify, we focus on the frequency of rejection of the null hypothesis of the LRCOM test, 
at the 5% level of significance. Depending on the DGP used in the simulation, we 
estimate the size (a SEM model is in the DGP) or the power function of the test (we 
simulate a SLM model). It is well-known that the LRCOM is a good technique to dis-
criminate between SEM and SLM models under ideal conditions. The interest now is 
to assess the behaviour of the test under non ideal circumstances.

Results are summarized in Figures 2 to 6. Figure 2 shows the performance of 
the LRCOM test under the three patterns of heteroscedasticity (h1, h2 and h3). The 
two non-normal distributions (the log-normal and the three cases for the Student-
t) appear in Figure 3. Figure 4 shows the impact of the density of the weighting 
matrix on the LRCOM test whereas Figure 5 focuses on the case of endogeneity. 
Finally, in Figure 6 we evaluate the performance of the test for the five non-linear 
specifications. In all the Figures, «iid» corresponds to the control case (that is, ideal 
conditions).
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Figure 2.  Power and empirical size of LRCOM test under heteroscedasticity
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Figure 3.  Power and empirical size of LRCOM test for non-normal  
distributions functions
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Figure 4.  Power and empirical size of LRCOM test for dense weighting matrices
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Figure 5.  Power and empirical size of LRCOM test under different degrees  
of endogeneity
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Figure 6.  Power and empirical size of LRCOM test under different pattern  
of non-linearity
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Figure 2 shows that heteroscedasticity affects negatively the performance of the 
test, especially in what respects to the power function. However, this is true only for 
the heteroscedasticity spatial patterns: the impact of the non-spatial heteroscedastic 
pattern (h3) is almost negligible, both on the power function and on the empirical 
size. The other two spatial heteroscedastic patterns (h1 and h2) suffer severe conse-
quences slashing power and slightly raising the size.

The implications of the non-normality of the data are evident on Figure 4. The 
impact diminishes as the sample size increases. The asymmetry of the distribution 
function (log-normal case) seems to have a greater impact that the presence of out-
liers (Student-t case), especially for small sample sizes (T = 49 and 100). The test 
tends to be slightly oversized in both cases. The situation is more balanced in large 
sample case where the size is correctly estimated.

The density of the weighting matrix has a clear impact in the behaviour of the 
LRCOM test as it is clear in Figure 4 (the iid case corresponds to «5%», where each cell 
is connected with to the 5% of its neighbours). The use of dense matrices implies a 
tendency to slightly overestimate the size of the test, as it appears in the right panel, 
and severe losses in power especially for a range of intermediate values of the spatial 
dependence parameter. Denser matrices are a risk factor in spatial models that affects 
to almost every inference. The Common Factor test does not avoid these problems 
but the consequences are less severe than in other aspects.

Figure 5 shows that endogeneity has a very damaging effect on the LRCOM test, 
especially in what respect to size (the iid case corresponds to «Corr.Coef.0»). The fi
gures of the right panel clearly indicate a strong tendency to reject, wrongly, the null 
of the LRCOM test for intermediate to high values of the correlation coefficient between 
the regressor and the error term of the equation. Strong endogeneity means strong 
over-sizing. This tendency pushes upwards the power function estimated on the left 
panel (and obtained using the theoretical 5% significant value). Overall, these results 
indicate that endogeneity is a key issue in relation to the problem of model selection 
and that, at least for the LRCOM test, a bootstrapping approach may be advisable.

Finally, the results for the non-linear processes offer a very heterogeneous picture 
as it is clear in Figure 6. First of all, looking at the right panels, there is a general 
tendency to underestimate the size even for very small values of the spatial depen
dence coefficient. In other words, we are going to select the SEM model more than 
the necessary. In relation to the power, we can identify three groups of functions: the 
quasi-linear functions (which includes the quadratic and the logarithm of the abso-
lute value), the binary functions and the strongly non-linear functions (the sine and 
the inverse functions). The impact for the first group is small and the LRCOM tends 
to work properly. For the case of discretized data, there is a noticeable power loss 
although the losses tend to diminish as the sample size increases. The left bottom 
panel indicates that 225 observations are not enough to guarantee a good power for 
intermediate to small values of the spatial dependence coefficient. In sum, it is clear 
that the presence of strong nonlinearities in the DGP is a challenge for this test that in 
some cases (i.e., the sine function) hardly detects SLM processes.
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4.  Conclusions

The tests of Common Factors were introduced into a spatial context at the begin-
ning of the eighties when the current toolbox was still in its infancy. The Common 
Factor tests had never occupied a prominent role in this toolbox; only the Likelihood 
Ratio variant, the LRCOM, is popular. Habitually, these tests have been used in an auxi
liary form, to corroborate conclusions obtained with other techniques. Nevertheless, 
we believe that the Common Factors Tests should play a more relevant role as a guide 
in applied work.

These tests should be used in connection with other techniques in order to ex-
plore the adequate direction for the specification process. At least, it should be borne 
in mind the requirement of Davidson (2000, p.  168): «The point is that although 
AR(1) errors may well be the correct specification, they impose a common-factor 
parameter restriction on the equation that requires to be tested. It would nowadays 
be regarded as bad practice to impose the AR(1) model without testing the implicit 
restriction».

Our position is that, given the peculiarities of the discipline, we must be a little 
more ambitious. Externalities and dynamic spatial relationships play a strategic role 
in any spatial model. These elements often have an evasive nature that makes them 
difficult to detect. For this reason, it is important to have techniques to discriminate 
between different spatial interaction mechanisms. The Common Factor tests may 
help in this problem.

The literature has paid attention to its performance under ideal conditions. For 
this reason, we tried to fill this gap by conducting a Monte Carlo experiment to eva
luate its performance under some common non-ideal conditions: heteroscedasticity, 
non-normality, endogeneity, dense weighting matrices and non-linearity.

Our results have shown evidence on the following points. Regarding the empiri-
cal size of the test, results are quite acceptable except when there are endogenous 
regressors in the equation. As regards to the power, our results are very good in the 
case of endogeneity, and reasonably good also for the other cases. The worst situa-
tion corresponds to a spatial heteroscedastic pattern, to non-symmetric probability 
distribution functions and to strong departures of the assumption of linearity in the 
functional form (the sine function it is a pathological case).

In sum, we strongly suggest the use of the Likelihood Ratio test of Common 
Factors to spatial econometricians as a useful technique in the process of specifying 
a spatial model.
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