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Abstract

This paper has two parts. The first part will explore and document discrete time affine
term structure models in a similar setup as seen in the celebrated papers from Backus,
Foresi, Telmer (1998 and 1996) and Backus, Telmer and Wu (1999). However, the paper
will concentrate on the multifactor case under Vasicek (1977) and Cox-Ingersoll-Ross
(1985) and unify some of the notation taking into account some of the developments
seen on Duffie and Kan (1996), Piazzesi (2010) and Cochrane (2005) as well as Singleton
(2006). The second half concentrates in calibrating the models and presents discussion
of results, which are encouraging. When the economy is booming risk free assets’ yields
are expected to flatten and when the economy is under recession risk free assets’ yields
such as German sovereign bonds are expected to steepen. A different picture is observed
for Greek Government bonds, which we show are governed mainly by deficit-to-GDP
ratio, unemployment rate and debt-to-GDP ratio. Greece, in times of financial distress
exhibits a downward sloping yield curve and yields are highly correlated to increases in
unemployment and increases to its sovereign debt-to-GDP ratio. For the case of Greece
it is also observed that a deterioration of the budget deficit-to-GDP ratio results in a fall in
Greek government yields, however, a deterioration of the debt-to-GDP ratio together with
an increase in unemployment more than offset this effect, resulting in an overall rise in
the yields and hence, in a further deterioration of the financial position.
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modelo afín discreto de 
estructura de tipos de interés
aplicado a bonos alemanes 
y griegos

Jakas, Vicente

Resumen

Este artículo consta de dos partes. La primera explora y documenta los modelos afín
de estructura de tipos de interés en tiempo discreto siguiendo una metodología similar
a la publicada en Backus, Foresi y Telmer (1998 y 1996) y Backus, Telmer y Wu (1999).
Sin embargo, este trabajo tiene un enfoque multivariante mediante procesos de Vasicek
(1977) y de Cox-Ingersoll-Ross (1985), y unifica la notación teniendo en cuenta los
logros publicados en Duffie y Kan (1996), Piazzesi (2010) y Cochrane (2005), así como
Singleton (2006). La segunda parte de este artículo se concentra en calibrar estos
modelos y presentar una discusión sobre sus resultados, que son alentadores. En este
trabajo demostramos que cuando la economía se halla en un momento de expansión
la curva de los tipos de interés sin riesgo, como los observados en bonos del gobierno
alemán, se aplana; y cuando la economía se encuentra en un estado de recesión la
curva de los tipos sin riesgo se vuelve más pronunciada. Por el contrario, el caso de los
bonos griegos es diferente, demostrándose que están más bien gobernados por la ratio
déficit presupuestario/PIB, la tasa de desempleo y la ratio deuda pública/ PIB. En el
caso de Grecia, en tiempos de dificultades financieras, la curva de tipos de interés tiene
pendiente negativa y está altamente correlacionada con la tasa de desempleo y la ratio
de deuda soberana/PIB. También se observa que un deterioro en la ratio déficit
presupuestario/ PIB tiene como resultado una caída en los rendimientos de los bonos.
Sin embargo, el deterioro del ratio deuda pública/PIB junto con el aumento de la tasa
de desempleo provoca un aumento en el rendimiento de los bonos que sobrepasa
holgadamente la caída de los tipos como consecuencia del deterioro de la ratio déficit
presupuestario/PIB, por lo que al final el resultado es un deterioro general en la
posición financiera del estado griego.

Palabras clave: 

Datos macroeconómicos, estructura temporal de tipos de interés; factores dinámicos;
modelos afín de estructura temporal.
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n 1. Introduction

This essay will document some algebra and concepts seen in the continuous time

affine term structure literature and plug them into the discrete time approach. 

The paper’s starting point is the celebrated papers from Backus, Foresi, Telmer 

(1996-98) and incorporates the developments seen on the continuous time approach

as documented in Piazzesi (2010), Cochrane (2005), Singleton (2006). We will then

go and calibrate the models using Interbank as well as German and Greek govies.

This research concentrates on the multifactor cases of affine term structure models,

as the weaknesses seen on the one factor models under Vasicek (1977) and CIR

(1985) are already very well documented in Backus, Foresi and Telmer (1998). 

Most of the empirical evidence on affine term structure literature has been mainly

confined to US data. This research fits a discrete time affine term structure model

using European macroeconomic data for the German govies and uses Greek unem-

ployment as well as Greek debt and deficit to GDP ratios for the Greek yield curve.

We also focus discussion of results with special attention to the economic policy, as

well as portfolio management implications. 

This paper is organised as follows, section 2 introduces some of the notation with refer-

ence to latest developments seen in Piazzesi (2010) and Ang and Piazzesi (2003),

Cochrane (2001), Singleton (2006) and Duffie and Kan (1996). In section 3, the Vasicek

(1977) model is discussed under the multifactor setup. Section 4 presents the CIR (1985)

which is adapted to fit the affine model. Section 5 presents a generalised version of affine

term structure models a la Duffie and Kan (1996) but on a discrete version. Section 6

calibrates the models and main results are discussed and presented using interbank and

German government yields. In section 7 we calibrate the Greek bonds and discuss some

of the results. Finally, section 8 conclusion and final remarks are summarised.

n 2. Recalling Some Basic Concepts and Introducing New Ones

It is denoted yt
(N) for the yield of a zero coupon bond with maturity N in time t. For

the time being and without loss of generality it will be assumed that N =1 and hence,
for convenience, the 1 period yields can be specified as a function of the stochastic
discount factor as follows:

yt
(N) = –ln E[mt+1]. (1)

The right hand side of (1) refers to the stochastic discount factor. Specifications on

equation (1) are referred to as pricing kernel by the dynamic asset pricing literature.
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The problem is that this is not observed and it can only be inferred via observable

yields. Assumptions made on how (1) looks like are crucial and, depending on the

author, it could lead to results which exhibit somehow different setups.

The present value of a bond is specified as follows:

E[Pt
(N+1)]= E[mt+1P

(N)
t+1]

For which the natural log notation will be used, thus implying

ln[Pt
(N+1)]=ln[mt+1]+ln[P (N)

t+1]. (2)

For ln[Pt
(N+1)] being the natural log present value of a bond in time t with maturity N+1,

which will equate the addition between the log stochastic discount factor and the 

redemption value of the bond in t+1.

Seminal research such as Piazzesi (2010), Ang and Piazzesi (2003) and Ang, Dong

and Piazzesi (2004) show there is a link between the discount factor and macroeco-

nomic variables. In the process of specifying this link, they not only intend to link the

short rate to macroeconomic variables but also establish assumptions about how

macroeconomic variables — or so called state variables — are interlinked to the sto-

chastic discount factor. 

A notation common seen in Piazzesi (2010) as well as in Singleton (2006) and

Cochrane (2005) is that the short rate is a linear function of state variables, thus,

rt
f = g0 +g1

’xt 
. (3)

Equation (3) is not accounted for in any of the Backus, Foresi and Telmer (1998) and

(1996) and Backus, Telmer and Wu (1999). For those not familiar with the notation

rt
f denotes the short rate, g0  is a scalar constant term, g1

’ is a 1×k vector of coefficients
describing how the short rate responds to shocks on independent state variables xt.

Finally xt is a k × 1 vector. Notice that “ ’ ” is used to denote for the transpose of a
vector or a matrix. 

The results obtained from the multifactor version documented in Backus, Foresi and

Telmer (1998) work very well for an average yield curve but require some changes,

should the researcher wish to understand movements in the yield curve, i.e. steepen-

ing, flattening and/or twists as a result of changes in the state variables, simply be-

cause under their settings the state variables are on average zero so that at the end

the yield curve depends on parameter A(N) only. 



Another aspect which is accounted for in the literature is the behaviour of the state

variables. This has two components: 1) the specification of the mean reversing process

and 2) the specification of the random error term. The novelty of this work also lies

in plugging Piazzesi (2010) and Cochrane (2005) into the Backus-Foresi-Telmer

(1996) and (1998). Results differ mainly because authors have different specifications

and different assumptions about the mean reversing process as well as the specifica-

tion of the random error term and the stochastic discount factor.

Another common aspect seen in the affine term structure literature is that log prices

are linear functions of state variables. A possible specification could be:

–ln P (N)
t+1 = A(N)+B(N)’xt+1

. (4)

This is only a guess, as the functional form of (4) is not known. However, the literature

appears to agree on this, as seen on Piazzesi (2010), Singleton (2006), Cochrane

(2005), as well as in Backus-Foresi-Telmer (1996) and (1998) and seminal papers of

Duffie and Kan (1996).

From our guess in (4) we wish to find a closed solution and estimate the parameters

A(N) and B(N)’. Once we have these parameters all we need to do is to plug them
into the following yield curve and taking into account for several maturities (4) would

now boil down to

y (N)
t+1

= A(N)+ B(N)’xt+1
. (5)

In the next sections the multi-factor models are dicussed, for different stochastic

processes governing the behaviour of the state variables and the discount factor as

accounted under the Vasicek (1977), Cox-Ingersoll-Ross (1985) and generalized affine

term structure models a la Duffie-Kan (1996) asset classes. 

n 3. Multifactor Affine Term Structure under Vasicek

A good starting point is to use the pricing kernel a la Backus-Foresi-Telmer (1998)

which here is combined with the Vasicek (1977) process a la Piazzesi (2010). A 

possible specification would be like:

xt+1= xt+F(x––xt)+sxet+1 (6)

–ln[mt+1]= d+rt
f +l’et+1 (7)
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Equation (6) is the classical mean reversing process whereby xt+1 and its mean being

both a k×1 vector of independent state variables and xt being its 1 period lag. sx is a 

diagonal k×kmatrix of standard deviations of the state variables. et+1 is a k×1 vector of
random error terms with classical normal assumptions of mean zero and variance 1.

Equation (7) is the stochastic discount factor as seen in Backus-Foresi-Telmer (1998),

however here with somehow a different setting, as (7) was originally the univariate

Vasicek (1977) case. In this essay we transform this specification and adapt it for the

multifactor case of a k-dimensional vector of state variables. In addition the short rate
rt

f is replaced by (3) which will bring this closer to the Cochrane (2005) and Piazzesi

(2010) results. Same as in Backus-Foresi-Telmer (1998) d is specified as follows:

d =        l2
i (8)

Specification for (8) is fortuitous, the only aim is to normalise the stochastic discount

factor so that it becomes the inverse of the short rate. Notice that with (8), now (7)

has the following conditional means and variance:

E[– l
2
i –rt

f –l’et+1]= – l
2
i –rt

f

Var[– l
2
i –rt

f –l’et+1]= l
2
i 

And assuming E[ln x]= m(x)+ s
2(x), which yields

E[ln mt+1]=–rt
f

Backus-Foresi-Telmer (1998) multifactor under the Vasicek (1977) case set the xt to

zero and d is replaced by the mean of the short rate. Here it will not be required to do

this because the short rate follows as described in (3). This will make possible to gen-

erate any yield curve at any point in time, whereas Backus-Foresi-Telmer (1998) could

only produce an average yield curve, therefore it will be possible to generate any yield

curve and study the risk premium li in time series fashion, should we wish to do so.

Here it is shown how to get there. Starting first with equation (2) and substituting

the right hand term for (7) and (4) which boils down to:

–ln Pt
(N+1) = –d –rt

f –l’et+1 –A(N)–B(N)’xt+1 (9)

The intention is to compute the present value recursively using what it is known from

(2) for some guess of coefficients from (4). Since P (N)
t+1 = 1 and A(N=0) = B(N=0)’= 0,
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which means this can be solve recursively, as for 1 period would imply A(N=1)=g0

and B(N=1)’= g1
’ which means that equals the short rate as described in (3). Now for

any set of state variables the resulting yield curve can be computed. As this author is

trying to compute the coefficients for maturity N, all is needed is to use (2) to com-
pute the present value of an N+1 maturity bond.

As discussed earlier, modifications to the Backus-Foresi-Telmer (1998) version are

added by replacing d for (8), rt
f for (3) and replacing xt+1 for the Vasicek (1977)

process described in (6).

ln[Pt
(N+1)]=– l

2
i –g0–g1’xt –l’et+1 –A(N)–B(N)’[xt+F(x– –xt)+sxet+1] (10)

The constant terms and the terms multiplying xt and et+1 are grouped, so that at the

end it would look something like this

ln[Pt
(N+1)]= –( l

2
i +g0 +A(N)+B(N)’Fx– )–(g1’+B(N )’(I–F))xt –(l’+B(N)’sx)et+1’ (11)

The reader should remember what is known from (2), so that the conditional mo-

ments on (11) can satisfy,

E[lnmt+1+lnP (N)
t+1]= –( l

2
i +g0 +A(N)+B(N)’Fx– )–(g1’+B(N )’(I–F))xt (12)

and

Var[ln mt+1+lnP (N)
t+1]= (l’+B(N)’sx)

2 (13)

Recalling that the implied present value of a fixed income security yields

–E[lnPt
(N+1)]=–E[ln mt+1+lnP (N)

t+1]– Var[ln mt+1+lnP (N)
t+1] (14)

Substituting (12) and (13) into (14) yields

–E[lnPt
(N+1)]=        l2

i +g0 +A(N)+B(N)’Fx–+(g1’+B(N)’(I–F))xt – (l’+B(N)’sx)
2   (15)

Rearranging the constant terms and the terms multiplying xt and lining up with (4) yields,

A(N+1)=g0 +A(N)+B(N)’Fx–+   ( l
2
i –(l’+B(N)’sx)

2) (16)

B(N+1)’= (g1’+B(N)’(I–F)) (17)

All is needed is to replace (16) and (17) into (5) and solve numerically by fitting the

curve to the observed yields by adjusting l’s for a given choice of maturities. All other
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parameters are obtained from observations. Backus-Foresi-Telmer (1998) estimated

the l’s for two factor model and fit the mean yields for maturities 60 and 120 months.

For each of the l’s it is possible to adjust the parameters to a desired maturity, the

greater the number of l’s, the better the fit will be, as it would be possible to fit for

more maturities resulting in a better fit of the parameters A(N) and B(N) to the
observed curvature. This choice is rather arbitrary, as there is no more rule than the

size of the autocorrelation coefficients. Hence, l’s from state variables which show

greater persistence — thus with a greater degree of autocorrelation — are used to fit

longer maturities and l’s linked to variables with a low autocorrelation coefficient

are used for fitting shorter maturities, as they exhibit less persistence.

An important difference is that under the Backus-Foresi-Telmer (1998) setup (17) was

equated to zero, as the means of xt were equal to zero. Intuitively, parameters g0 and g1i

under Backus-Foresi-Telmer (1998) are 0 and 1 respectively. Here these parameters are
free and obtained empirically for which it will be shown that parameters�g0 ≠ 0 and 
g1i ≠ 1 and the signs for parameters B(N)i from (5) depend on g1i.

n 4. Multifactor Affine Term Structure under 

Cox-Ingersoll-Ross

As in previous chapter the starting point is the pricing kernel a la Backus-Foresi-Telmer

(1998) which combined with the CIR (1985) process a la Piazzesi (2010) yields:

xt+1= xt+F(x––xt)+sx √xtet+1 (18)

–ln[mt+1]=(1+       l2
i )rt

f +l’√xtet+1 (19)

Equation (18) is the CIR mean reversing process whereby xt+1 and its mean being

both a k×1 vector of independent state variables and xt being its 1 period lag. sx is

a diagonal k×k matrix of standard deviations of the state variables. et+1 is a  k×1
vector of random error terms with classical normal assumptions of mean zero and

variance 1.

Equation (19) is the stochastic discount factor as seen in Backus-Foresi-Telmer

(1998), however here with somehow a different setting, as (19) was originally a

univariate CIR (1985) case and here this specification is adapted for the multifactor

case, as similar to the Vasicek (1977) discussed in previous section. Again, the short

rate rt
f is replaced by (3) which will bring this closer to the Duffie and Kan (1996),

Piazzesi (2010), Cochrane (2005) and Singleton (2006) results. 
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The selection of the coefficient in (19) obeys the only purpose of normalising the

stochastic discount factor so that it equates the inverse of the short rate, so that

equation  (19) results with the following conditional means and variance:

E[–(1+ l
2
i )rt

f –l’√xtet+1]= –(1+ l
2
i)rt

f

Var[–(1+ l
2
i )rt

f –l’√xtet+1]=( l
2
i)rt

f

And assuming E[ln x]= m(x)+ s
2(x), which yields

E[ln mt+1]=–rt
f

Backus-Foresi-Telmer (1998) documented the discrete multifactor case for the CIR

under a different setup. Their example is mainly limited to a two factor under

Longstaff and Schwartz (1992) setup. Here, the aim is confined to a generalised

version of a multifactor model under the CIR with a k-dimensional vector of state
variables. As in previous Vasicek example, the generalised CIR multifactor case is

specified as follows.

Starting with equation (2) and substituting the right hand term for (19) as well as

(4) which boils down to

ln[Pt
(N+1)]= –(1+   l

2
i)rt

f –l’√xtet+1–A(N)–B(N)’xt+1 (20) 

Same as for the Vasicek model the intention is to compute the present value recursively

using what is known from (2) for some guess of coefficients from  (4) . Since P (N)
t+1 = 1

and A(N=0) = B(N=0)’= 0, which means it can be solve recursively, as for 1 period it
will imply A(N=1) = g0 and B(N=1)’= g1’ �and thus equating the short rate as described

in (3). Unfortunately this does not work because for it to work it would require 

g0 = 0 and g1’ to be a k×1 elements equal to 1, which is not true empirically. So it
necessary to modify the CIR case. To be more precise it will be necessary to sacrifice

normality in order to be able to let a parameter l’s account for the discrepancies and

thus enable the CIR model fit the observed values.

As discussed earlier modifications to the Backus-Foresi-Telmer (1998) version are

added by replacing, rt
f for (3) and replacing xt+1 for the CIR (1985) process already

discussed in (18).

ln[Pt
(N+1)]= –(1+   l

2
i)(g0+g1’xt)–l’√xtet+1–A(N)–B(N)’[xt+F(x––xt)+sx√xtet+1] (21) 
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Rearranging and collecting terms so that the constant terms and the terms multiplying

xt and et+1 are grouped, which would look something like this

ln[Pt
(N+1)]= –g0(1+   l

2
i)–A(N)–B(N)’Fx–

(22)

–((1+   l
2
i)g1’+B(N )’(I–F))xt –(l’+B(N)’sx)√xtet+1

Recalling (2), equation (22) has the following conditional moments,

E[lnmt+1+lnP (N)
t+1]= –g0(1+   l

2
i)–A(N)–B(N)’Fx––((1+   l

2
i)g1’+B(N)’(I–F))xt    (23)

and

Var[lnmt+1+lnP (N)
t+1]= (l’+B(N)’sx)

2xt (24)

Recalling (14), which is reproduced in (25) below,

–E[lnPt
(N+1)]= –E[ln mt+1+lnP (N)

t+1]– Var[ln mt+1+lnP (N)
t+1] (25) 

And now substituting (23) and (24) into (25) yields,

E[lnPt
(N+1)]= g0(1+   l

2
i)+A(N)+B(N)’Fx–+((1+   l

2
i)g1’+B(N )’(I–F))xt

(26) 

– (l’+B(N)’sx)
2xt 

Rearranging the constant terms and the terms multiplying xt and lining up with (4)

yields,

A(N+1)= g0(1+   l
2
i)+A(N)+B(N)’Fx– (27.a) 

B(N+1)’=((1+   l
2
i)g1’+B(N)’(I–F))– (l’+B(N)’sx)

2 (28.a) 

Same as in previous Vasicek model, all is needed to do now is to replace (27) and

(28) into (5) and solve numerically by fitting the curve to the observed values by

adjusting l’s for a given choice of maturities. 

Backus-Foresi-Telmer (1998) do not account for (27.a) and (28.a). However, from their

univariate case it is possible to intuit that g0= 0 and g1’ is a 1×k elements equal to 
1 which is not realistic. The CIR process described in equation (18) is slightly different
whereby in their version (I–F)would be first order auto-regression coefficient φ. Under

this paper’s settings the use of the (I–F) brings it closer to the continuous time version
described under the Duffie and Kan (1996), Cochrane (2005) and Piazzesi (2010) class

of affine models.
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However, notice that (27.a) and (28.a) only work if, and only if, �g0= 0 and g1’ equals

a 1×k elements equal to 1. The problem stems from how (19) has been specified
because g0 is not zero and elements in g1’ are not one. So it will be necessary to change

(19) and sacrifice the possibility of making (19) equal the short rate under normality.

Thus, (19) will now look more like:

–ln[mt+1]=rt
f +( l

2
i )xt+l’√xtet+1

Now if what was shown in (20) to (28) is re-performed under the above setup, (27.a)

and (28.a) would look more like

A(N+1)= g0+A(N)+B(N)’Fx– (27.b)

B(N+1)’= g1’+B(N)’(I–F)+  [ l
2
i –(l’+B(N)’sx)

2] (28.b)

Notice that now (27.b) and (28.b) does give the opportunity to solve by applying the

recursion as in (2). Since P (N)
t+1= 1 and A(N=0)= B(N=0)’= 0, and now A(N=1)= g0 and

B(N=1)’= g1’ which means that under (27.b) and (28.b) the model equals the short rate

as described in (3) for N=1. This paper will use (27.b) and (28.b) when calibrating 
the CIR model because the original (27.a) and (28.a) do not work for the reasons

explained above.

n 5. Generalised Multifactor Affine Term Structure 

Duffie and Kan

The Vasicek (1977) and the Cox-Ingersoll-Ross (1985) are special cases of the

generalised multifactor affine term structure models which were first developed by

Duffie and Kan (1996) and translated into discrete time by Backus, Foresi and Telmer

(1996). The intention will, as for the previous models, include some of the developments

documented by Piazzesi (2010), Cochrane (2005) and Singleton (2006).

Under the generalised affine term structure state variables and the stochastic discount

factor are specified as follows.

xt+1=xt +F(x––xt)+sxet+1 (29)

–ln[mt+1]=d +rt
f +l’sxet+1 (30)

d = ( l
2
i )s 2

x (31)
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rt
f =g0+g1’xt • (32)

sx = Ss(xt ) (33)

si (xt)= s0i +s1i’xt (34)

Equation (29) describes the stochastic process of the independent state variables.

This is the usual mean reversing process whereby Dxt+1 is likely to be negative if xt is

above its mean and, is likely to be positive if xt is below its mean. xt and its mean are

both k-dimensional vectors. F is a k×kmatrix of diagonal elements Fi which represent

the speed of adjustment at which each of xit elements reverse to their means. sx is a

diagonal k × k matrix comprising the volatility of the state variables. et+1 is a 

k-vector of shocks moving xt away from its mean and with ei,t+1 elements being

normally distributed with mean zero and variance 1. 

Equations (30) and (31) describe the stochastic discount factor as seen in Backus-

Foresi-Telmer (1998) which introduces some changes to the already discussed version

shown in the Vasicek case equations (7) and (8), thus here with somehow a different

setting, as (30) now includes a sx term. 

Equation (32) which was already discussed in the introduction in (3) will be replaced

by the short rate rt
f so that it would get closer to the Piazzesi (2010) results. 

The selection of (31) obeys the only purpose of normalising the stochastic discount

factor so that it equates the inverse of the short rate.

Equation (33) and (34) describe the volatilities of the state variables. s(x) is a diagonal
k × kmatrix with elements si(x). Notice that by doing so it is possible to generalise for
both Vasicek and the CIR cases. Because the Vasicek is a Gaussian process and CIR is
a square root process. With (34) enabling for both cases, thus s1i = 0 and s0i = 1 for the
Vasicek case, whereby the variance parameters in S are free. Alternatively, if it is wished

to account for the CIR case, then set s1i = 1 and s0i = 0. Piazzesi (2010) and the
celebrated paper from Duffie and Kan (1996) as well as Dai and Singleton (2000)

remember us of the conditions required to obtain a unique solution to the stochastic

differential equations, and these comprise the Feller and the Lipschitz conditions, for

which the reader is encouraged to refer to Piazzesi (2010) page 706 for some examples

on how this works. As for our discussion this is not of crucial relevance to this research.

Replacing (31) into (30) and adjusting the signs accordingly yields

ln[mt+1]=– ( l
2
i )s 2

x –rt
f –l’sx et+1 (35)
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Equation (35) has the following conditional means and variance:

E[– ( l
2
i )s 2

x –rt
f –l’sx et+1]=– ( l

2
i )s 2

x –rt
f (35)

Var[– ( l
2
i )s 2

x –rt
f –l’sx et+1]=( l

2
i )s 2

x 

And assuming E[ln x]= m(x)+ s
2(x), which yields

E[lnmt+1]=–rt
f (36)

Backus-Telmer-Wu (1999) documented an affine case for two variables under a

slightly different setup. Now, similar to the previous Vasicek and CIR examples, the

generalised version follows.

This starts again with equation (2) and substitute the right hand term for (35) and

(4) which boils down to

ln[Pt
(N+1)]= – ( l

2
i )s 2

x –rt
f –l’sx et+1–A(N)–B(N)’xt+1 (37)

Same as for the Vasicek and CIR models the intention is to compute the present value

recursively using what is known from (2) for some guess of coefficients from (4). Since

P (N)
t+1=1 and A(N=0) = B(N=0)’= 0, which means this can be solved recursively, as for 

1 period would imply A(N=1) = g0 and B(N=1)’= g1’and by doing so it the short rate

is obtained as described in (3). 

As discussed earlier, modifications to the Backus-Foresi-Telmer (1998) version will

be added by replacing, rt
f for (3) and replacing xt+1 for the general affine version

process described in (29).

ln[Pt
(N+1)]= – ( l

2
i )s 2

x –(g0+g1’xt)–l’sx et+1–A(N)–B(N)’[xt+F(x––xt)+sx et+1] (38)

Accounting now for (33) and (34), (38) would now look more like

ln[Pt
(N+1)]= – ( l

2
i )S’Ss0i– ( l

2
i )S’Ss1i xt –g0–g1’xt–l’Ss(x)et+1

(39)

–A(N)–B(N)’xt –B(N)’Fx–+B(N)’Fxt –B(N)’Ss(x)et+1

Rearranging and collecting terms so that the constant terms and the terms multiplying

xt and et+1 are grouped, resulting in (39) being
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ln[Pt
(N+1)]= – ( l

2
i )S’Ss0i–g0–A(N)–B(N)’Fx–

(40)

–( ( l
2
i )S’Ss1i+g1’+B(N)’(I–F))xt –[l’+B(N)’]Ss(x)et+1

And has conditional moments,

E[ln mt+1+P (N)
t+1]= – ( l

2
i )S’Ss0i–g0–A(N)–B(N)’Fx–

(41)

–( ( l
2
i )S’Ss1i+g1’+B(N)’(I–F))xt 

and

Var[lnmt+1+lnP (N)
t+1]= [l’+B(N)’]2S’Ss0i+[l’+B(N)’]2S’Ss1i xt (42)

The implied present value of a fixed income security being

–E[lnPt
(N+1)]= –E[lnmt+1+lnP (N)

t+1]– Var[lnmt+1+lnP (N)
t+1] (43)

So that substituting (41) and (42) into (43) yields

–E[lnPt
(N+1)]= ( l

2
i )S’Ss0i+g0+A(N)+B(N)’Fx–

(44)

+( ( l
2
i )S’Ss1i+g1’+B(N)’(I–F))xt – [l’+B(N)’]2S’Ss0i– [l’+B(N )’]2S’Ss1i x

Rearranging and collecting terms, with the constant terms and the terms multiplying

xt being grouped. Finally, lining up with (4) results in

A(N+1)= g0+A(N)+B(N)’Fx– +   ( l
2
i –[l’+B(N)’]2)S’Ss0i (45)

B(N+1)’= g1’+B(N)’(I–F)+   ( l
2
i –[l’+B(N)’]2)S’Ss1i (46)

Same as in previous Vasicek and CIR model, all is needed now is to replace (45) and

(46) into (5) and solve numerically by fitting the curve to the observed values by

adjusting l’s for a given choice of maturities. 

Backus-Telmer-Wu (1999) and Backus-Foresi-Telmer (1998) and (1996) document

(45) and (46) in a somehow different setup. The pricing kernel described in (30) is

normalised, so that under log normal conditions the stochastic discount factor

equates the short rate, this is not so obvious in their case. A matrix S of free
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parameters is also included in the model similar to Duffie and Kan (1996), Cochrane

(2005) and Piazzesi (2010), which is not included in Backus-Telmer-Wu (1999) and

Backus-Foresi-Telmer (1998) and (1996). 

As in the previous cases, Backus-Telmer-Wu (1999) and Backus-Foresi-Telmer

(1998) their versions show that g0 = 0 and g1’ is vector of 1×k elements equal to 1.
Finally, also the process described in equation (29) is slightly different whereby in

their version (I–F) would be first order auto-regression coefficient φ�. Under our

setting the use of the (I–F) brings us closer to the continuous time version described
under the Duffie and Kan (1996), Cochrane (2005) and Piazzesi (2010) class of

affine models. However, Piazzesi (2010) does not account neither for l’s nor the

volatility of the stochastic discount factor in a way that allows fitting the curve to

observed yields.

Ideally, (45) and (46) would allow to identify back (16) and (17) as well as (27)

and (28), but this does not quite match because of the S’Smultiplying both l’ and

B(N)’ terms in (45) and (46). This is because of how the stochastic discount factor
has been specified in (30) and (31). Under this setup we differ to the stochastic

discount factor under Vasicek (1977) and CIR (1985) documented earlier in (7)

and (19) mainly because in these specifications it did not account for the volatility

sx as part of the stochastic discount factor, as depicted in (30) and (31). This has

been mainly for convenience only. Thus, without loss of generality (45) and (46)

are adapted slightly, thus yielding

A(N+1)= g0+A(N)+B(N)’Fx– +   ( l
2
i –[l’+B(N)’sx]

2)s0i (47)

B(N+1)’= g1’+B(N)’(I–F)+   ( l
2
i –[l’+B(N)’sx]

2)s1i (48)

Notice that now when s0i is 1 and s1i is zero the model accounts for the Vasicek (1977)

case discussed in Section 3 and when s0i is zero and s1i is 1 the model accounts for
the CIR (1985) as discussed in section 4.

n 6. Calibrating Under the Discrete Approach

This paper calibrates the Vasicek (1977) and the CIR (1985) using macroeconomic

data. The models discussed in sections 3 and 4, shown in (16) and (17) for the

Vasicek process, and (27.b) and (28.b) under the CIR approach  are fitted using

monthly Euro-Zone Unemployment Rate, Euro-Zone M3, Euro-Zone Production Price

Index and European Commission Consumer Confidence Index. Results are compared
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for estimated values of a(N) = A(N)/N and b(N) = B(N)/N with those observed via

OLS published in Jakas (2011). This empirical work is based on monthly observations.

EONIA, Euribor and German government yields have been obtained from Bloomberg.

Most of the data series is only available since 1999. The period considered is from

December 1999 until January 2010. This results in 122 observations. The yields are

estimated under the restrictions (16) and (17) as well as (27.b) and (28.b) mentioned

above and compared with the observed data. 

Figure 1 below shows the coefficients b(N)i for OLS, Vasicek and CIR for different
maturities. Vasicek and CIR show more persistence than OLS. Under OLS,

coefficients fall faster and die away as maturity increases. Notice under OLS only

the unemployment and producer prices show some persistence. In addition, they

also exhibit a “humped” shape which this paper is not capable to reproduce under

Vasicek or CIR and confirm the results seen on Backus, Telmer and Wu (1999). Not

surprisingly, under the Vasicek as well as CIR approach, the coefficients are almost

identical both models estimate virtually the same values. This is possible thanks to

the use of more than one variable and the use of �l’s to fit for the same maturities.

The sign of the b(N)i coefficients are primarily governed by the estimated
parameters g1i , which are — in turn — estimated via OLS by regressing the EONIA

with the four factors (Unemployment, PPI, M3 and Consumer Confidence Index).

Discussions on these results are shown in Jakas (2011).

Figure 2 shows that this behaviour is also observed for the coefficients a(N). In
general, it could be said that affine models exhibit coefficients which have a smoother

behaviour across maturities than those seen under the OLS approach. a(N) increases
as maturities become longer. Under the OLS approach a(N) is much steeper than
those estimated under the Vasicek and CIR, and becomes negative for the Euribor 3

months, 6 months and the 2 year German government. 

Economically, results are interpreted as follows: An increase in unemployment

results in an increase in expected aggregate marginal utility with a the subsequent

decrease in risk free assets’ yields, as these are dear most in times of low

consumption growth. An increase in consumer confidence results in a decrease in

expected aggregate marginal utility growth and therefore, risk free yields are

expected to increase as these assets act as a hedge in times when consumer

confidence is low. An increase production prices has two implications, 1) an

increase in production prices means that aggregate consumption growth is high,

and in times when aggregate consumption growth is high risk free assets are dear

less as these are negatively correlated with consumption growth, and investors are

less risk averse and prefer riskier assets. 2) Taylor rules show that central bank policy

will be to increase interest rates if production prices are expected to drift expected
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inflation away from target levels. Subsequently, an increase in interest rates results

in an increase in yields, as financing becomes more expensive and margins between

interest income and funding expense are tighter. An increase in monetary aggregates

is expected to results in a fall in interest rates, as central banks conduct quantitative

easing, yields fall mainly because the cost of financing generate higher margins and

competition in the capital markets push bond prices up with the subsequent fall in

yields. This behaviour is explained mainly by an increase in margins which in turn

increases demand in the bond markets pushing prices up. 

n Figure 1. Analysis of the b(N )i coefficients under OLS, Vasicek and CIR models

n Figure 2. Analysis of the b(N )coefficient under OLS, Vasicek and CIR models 

In order to analyse the models’ ability to fit the curves with various shapes this

research shows in figure 3 how the fitted curves look like at their flattest, mean or

average, and steepest levels. In order to do this first the EONIA’s historical highs,
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average and lows are identified and, subsequently the corresponding values

observed for the four factors (unemployment, PPI, M3 and Consumer Confidence

index). The model is capable of reproducing the observed sample data. Results have

interesting policy implications which are outlined as follows: 1) the yield curve is at

its flattest level when the overnight rate is at its highest value, unemployment is at

its lowest level, production prices are at their highest levels, money supply (M3) is

tight and consumer confidence levels is at its highs. And 2), when the yield curve is

at its steepest the overnight rate is at its lowest, unemployment rate is at its highest

levels, production prices are low, money supply is lax and consumer confidence level

is the lowest. 

Notice that an economy exhibiting the above mention behaviour of the yield curve

would suggest that the government could take advantage by issuing new debt at

low financing costs in times of low consumption growth in order to undertake

countercyclical fiscal policies without increasing distortionary taxation. In times of

low consumption growth risk free assets exhibit low yields and hence low financing

costs. Alternatively, in times of high consumption growth, when risk free assets

exhibit high yields and thus prices are low, governments should reduce debt growth

outstanding via buy-back programmes and thus reduce current refinancing costs.

In fact, governments should under such scenario take advantage of buying back at

a low redemption price.

From a portfolio management perspective, in times when the curve is at its steepest,

a representative investor will have the incentive to undertake a flattening strategy

such as shorting the 2 year maturity bonds and long the 10 to 30 years, as the losses

generated in the 10 to 30 years will be more than offset by the profits on the front

end. In times when the curve is at its flattest, a representative investor will have the

incentive to long the 2 year maturities and short the long end (10 to 30 years). The

front end of the curve is relatively similar across models. The different models show

discrepancies mainly on the long end. Hence, from the 10 year maturities onwards,

OLS fails to describe the movement of the curve when yields are above their average.

The observed, as well as the estimated via Vasicek and CIR describe a rather parallel

shift whereas OLS shows more a flattening movement once yields have reached their

means and are moving towards their flattest level. 

In all cases it is shown that when the curve is at its flattest, yields are higher across

the yield curve and when the yield curve is at its steepest the yields are at their lowest

levels. All models agree with the observed yield curves that the front end is clearly

more volatile and has a greater range of values than the long end. When yields are

increasing, the yield curve is expected to become flatter if yields are currently below

their means and, alternatively, when yields are falling, the yield curve is expected to
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become steeper if yields are above their mean values. This is mainly because the

volatility in the yield curve is expected to fall as maturity increases. A possible way

of describing this would be if it is assumed that the volatility and any point of the

yield curve somehow obeys that �s�(N)=s�(1) ⁄ N, thus the volatility and macroeconomic
shock effects decrease as maturity increases. 

n Figure 3. Fitting the yield curve 

The predictive-ability of the models is of special interest to this research. The

intention is not only to explain economically the behaviour of the yield curve from

a macroeconomic perspective but also understand how macroeconomic variables

contribute to predict changes in the yield curve. Figures 4 and 5 show how the four

factor Vasicek as well as the CIR models are capable of anticipating yield curve

behaviour as a consequence of innovations in macroeconomic variables. The

models are calibrated for the period starting from December 1999 to January 2010

and compared the estimated yields to those observed in the sample data. Results

are encouraging, as fitted values are in line with the observable trends. Yields in the

longer end are less predictable, compared to those seen in the front end however

they still exhibit a high explanatory power and forecast quite well the underlying

trends. 

As maturities become longer, forecasts appear to be less convincing towards end

of 2009 and beginning of 2010. However, even though not presented in figures 

4-5, current data shows that yields have indeed fallen during 2011 to historic lows,
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Schatz (2 years German tresuries), Bobls (5 years German government) and Bunds

(10 years German government bonds) reached historic lows below 2% for Bunds

and even negative yields on less than 1 year German treasuries, thus showing that

these models predicted in advance lower yield levels.

n Figure 4. Vasicek fitted versus observed yields 
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n Figure 5. CIR fitted versus observed yields

n 7. Calibrating with Greek Government Bonds 

In this section, we calibrate an affine term structure model under CIR with Greek

government bonds. The study was mainly dependent on the availability of yield data for

the period during Greek’s financial collapse as well as previous periods where Greece

enjoyed some stability. The model should be capable of accounting for all states of the

economy. Full statistics were only available for 2, 5, 10, 15 year bonds available in

Bloomberg historical data. The period used varies depending on the maturity, but overall

we considered the period June 2001 to April 2012. The macroeconomic variables have

been picked after surveying 50 market participants from various market leading financial
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institutions. We picked the top three: Greek government budget deficit to GDP ratio, Greek

unemployment rate and Greek government debt to GDP ratio. Regression results show

that all these factors were highly significant and that OLS as well as affine models

perform very well, despite the volatility seen during the last two years.

Figures 6.1 and 6.2 below show the affine-CIR fitted versus the observed Greek Govern-

ment yields, which are quite encouraging despite market conditions. Figure 6.2 shows

that observed values exhibit more volatility than the fitted ones the closer we get to

Greece’s default. Figure 7 shows the OLS-fitted versus observed. The reason for doing

this comparison is mainly to show the results stemming from a purely statistical per-

spective and see how much differ compared to an approach with deeper theoretical un-

derpinnings, as seen in figure 6.1 under an affine-CIR approach.

Figures 6.2 and 7 show that the affine-CIR as well as the OLS models can reproduce

the dramatic rise in yields shortly before Greece’s collapse. Not so lucky appear to be

the results seen for the 2 year yields which exhibits a slower growth rate compared to

the observed data. However, this is not so disappointing, as the model has been able to

account for a yield movement from 4% up to almost 50% levels. Remarkably, the 5, 10

and 15 years exhibit surprisingly good results, mainly because these have had a far lower

impact compared to the 2 year yields. This research show that the macroeconomic vari-

ables used for calibrating the model explain very well yield dynamics.

In times of financial distress and when government bonds become risky assets, markets

focus their attention more to the ability of governments to repay in the future and ratios

such as debt-to-GDP as well as government deficit-to-GDP exhibit high explanatory

power, in contrast to the German bonds, where markets look here more into unemploy-

ment as well as expected future consumption growth and less to debt-to-GDP or deficit-

to-GDP ratios, because here German bonds act as a hedge for times when aggregate

marginal utility growth is high and expected future consumption growth is low. 

n Figure 6.1. Greek government bond yields CIR-fitted versus observed yields
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n Figure 6.2. Greek government bond yields CIR-fitted versus observed yields

n Figure 7. Greek Government Bonds OLS fitted versus observed

This paper also focus also some attention to the ability of the model to generate an

average yield curve in times when the short yields are at their lowest and at their highest

levels. Reason for doing this is simply to show the limitations of the model. Figure 8

below shows different coefficients for the parameters A(N)/N and B(N)i/Nwhich have
been estimated calibrating a space state vector observed when the 2 year Greek

Government yield was at its lowest level, at its mean and at its highest level. We see that

the model struggles a bit when yields are at their highest levels. This should not surprise

the reader, as these levels of yields are observed shortly before the Greek sovereign

collapse and its subsequent default. Moreover, actually what is really struggling here is

the Broydn function in Matlab rather than the model. In this paper we use this Matlab
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function to solve numerically equation (5) to adjust to observed yields (and to

restrictions documented in (27.b) and (28.b)) by adjusting the vector l’ explained in

previous sections. Parameters A(N)/N and B(N)i/N exhibit virtually identical patterns

and differ significantly only when yields are at their highest levels. Coefficients for Greek

government budget deficit to GDP are negative which means that an increase in this

ratio, hence a deterioration of its finances with respect to GDP, results in a fall in yields.

A priori this might be seen as odd, but it makes sense if this is analysed together with

the other two coefficients, thus looking into the size and the sign of the coefficients for

unemployment and debt-to-GDP ratio. Unemployment and debt-to-GDP ratio show

that these coefficients would more than offset any positive effect from the fall in yields

as a result of an increase in the government deficit-to-GDP ratio. 

n Figure 8. Greek Government Bonds Affine-CIR estimated coefficients A(N )/N
and B(N )i /N fitting equation (5) to observed yields, restricted to (27.b) and
(28.b) and when state vectors are xi;min; xi;mean; and xi;max .
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Table I shows some regression results. All variables used are very significant. OLS

confirms our observation under the affine-CIR, thus if governments similar to the

Greek case, engage in counter-cyclical fiscal policies that result in a deterioration of

their government deficit with respect to GDP might still observe a fall in yields

however, this is expected to be more than offset by an increase in yields as a

consequence from a deterioration in their debt-to-GDP ratio. This implies that

governments can run deficits to reduce unemployment only if the deterioration of its

deficit does not result in a significant deterioration of their Debt to GDP ratio, as the

deterioration of this ratio will more than offset any positive effect stemming from

their countercyclical fiscal policies.

l Table 1. OLS Regression Results and Selected Diagnostics

State Variables Greek Government Sovereign Yields

State Variables 2 Years 5 Years 10 Years 15 Years

Log Greek Gov. Deficit to GDP Ratio -23.53547 -7.338331 -3.093097 -3.776979
(t-stat: -3.68) (t-stat: -5.30) (t-stat: -6.25) (t-stat: -4.30)
(P : 0.000) (P : 0.000) (P : 0.000) (P : 0.000)

Log Greek Unemployment Rate 18.56715 6.672775 3.40174 4.858906
(t-stat: 3.04) (t-stat: 4.50) (t-stat: 5.99) (t-stat: 4.98)
(P : 0.003) (P : 0.000) (P : 0.000) (P : 0.000)

Log Greek Government Debt to GDP Ratio 100.2863 39.68417 17.13523 24.58802
(t-stat: 4.15) (t-stat: 7.90) (t-stat: 12.02) (t-stat: 7.59)
(P : 0.000) (P : 0.000) (P : 0.000) (P : 0.000)

Intercept -461.3932 -182.0015 -77.10492 -113.5292
(t-stat: -4.18) (t-stat: -8.11) (t-stat: -13.32) (t-stat: -7.81)
(P : 0.000) (P : 0.000) (P : 0.000) (P : 0.000)

Number of observations 121 121 121 121

R-squared 0.5460 0.8158 0.8712 0.8183

n 8. Conclusions and Final Remarks

This paper documented some of the algebra and concepts seen in the continuous

time affine term structure literature and plugged them into the discrete time

approach. Starting point for this paper has been the celebrated papers from Backus,

Foresi, Telmer (1996-98). In addition, some of the developments seen on the

continuous approach as documented in Piazzesi (2010), Singleton (2006) and Duffie

and Kan (1996) have been explored and adapted to the discrete time approach. 

This research focused mainly on the multifactor cases of affine term structure

models, as the weaknesses seen on the one factor models under Vasicek (1977) and

CIR (1985) have been very well documented already in Backus, Foresi and Telmer
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(1998). Novelty of this research is that the multifactor affine term structure models

under the Vasicek (1977) and the CIR (1985) process were calibrated using observed

Interbank and German sovereign yields and European macroeconomic data as well

as Greek sovereign yields. For the European and German yield curve, we calibrate

macroeconomic data such as Euro-Zone Unemployment rate, Euro-Zone Production

Price Index, Euro-Zone monetary aggregates M3 and Euro-Zone Consumer

Confidence Index. For the Greek yields curve we use Greece’s sovereign budget

deficit-to-GDP ratio, Greek unemployment rate and Greek sovereign debt-to-GDP

ratio. The results are encouraging and the models fit the observed yields as well as

give evidence of a reasonable predictive-ability.

Main findings can be summarised as follows: In the case of the interbank rates and

German sovereigns, an increase in unemployment results in a fall in yields on risk

free assets and the curve is expected to steepen with front end yields falling faster

than the long end. An increase in production prices are expected to result in yield

curve flattening, with yields in the front end increasing at a faster pace than the long

end. An increase in monetary aggregate M3 is expected to result in yield curve

steepening, with yields in the front end falling faster than the long end. Finally, an

increase in the consumer confidence index is expected to result in yields flattening,

with front end yields increasing faster than the long end. This means that when the

economy is booming risk free assets’ yields are expected to flatten and when the

economy is under recession risk free assets’ yields are expected to steepen. From a

portfolio management perspective, a representative investor would have incentives

to short risk free assets in times when yields are at their steepest levels and set a curve

flattening strategy shorting the front end allocating greater weight than to the long

end. A more conservative strategy would be to short 2 years versus long the 10 and

20 years onwards, as the profits from the front end are expected to outweigh the

losses on the long end. 

For the case of Greek government bonds the model shows that if governments engage

in counter cyclical fiscal policies when unemployment is high, this will only be possible

if these policies do not result in a significant deterioration of the debt-to-GDP ratio.

Governments that exhibit a positive correlation of their yields to aggregate

consumption growth need to ensure low deficits and debt burdens during booming

periods so that they can still have capacity to issue new debt for the rainy days. 

From the Greek case this paper shows that a deterioration of government’s deficit-to-

GDP ratio results in a fall in yields. This is mainly because the increase in spending helps

to boom the economy. However, this is more than offset by the deterioration of its

debt-to-GDP ratio, thus a deterioration of the latter ratio will more than offset any

positive effects stemming from any budget-deficit-induced counter-cyclical policies.
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We have learned that debt and deficit ratios can play a role in times of financial

distress. However, more research is needed in order to understand what can be done

once it’s already too late, thus once governments have not done their homework and

run unprecedented and unsustainable deficits, thus the question we should try to

answer is: what can be done in order to avoid distortionary taxation and aggressive

fiscal discipline that lead to more social unrest and further financial markets

nervousness?. If economists do no find a solution to this, then we can just rather

hand over the job to an accountant.
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