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Abstract 
Drip irrigation is considered as one of the most efficient irrigation systems. Knowledge of the soil wetted perimeter 

arising from infiltration of water from drippers is important in the design and management of efficient irrigation sys-
tems. To this aim, numerical models can represent a powerful tool to analyze the evolution of the wetting pattern dur-
ing irrigation, in order to explore drip irrigation management strategies, to set up the duration of irrigation, and fi-
nally to optimize water use efficiency. This paper examines the potential of genetic programming (GP) in simulating 
wetting patterns of drip irrigation. First by considering 12 different soil textures of USDA-SCS soil texture triangle, 
different emitter discharge and duration of irrigation, soil wetting patterns have been simulated by using HYDRUS 2D 
software. Then using the calculated values of depth and radius of wetting pattern as target outputs, two different GP 
models have been considered. Finally, the capability of GP for simulating wetting patterns was analyzed using some 
values of data set that were not used in training. Results showed that the GP method had good agreement with results 
of HYDRUS 2D software in the case of considering full set of operators with R2 of 0.99 and 0.99 and root mean squared 
error of 2.88 and 4.94 in estimation of radius and depth of wetting patterns, respectively. Also, field experimental results 
in a sandy loam soil with emitter discharge of 4 L h–1 showed reasonable agreement with GP results. As a conclusion, 
the results of the study demonstrate the usefulness of the GP method for estimating wetting patterns of drip irrigation.

Additional key words: genetic programming; HYDRUS 2D; infiltration; numerical models; soil texture triangle.

Resumen
Estimación mediante programación genética de los patrones del suelo humectantes para el riego por goteo 

El riego por goteo está considerado como uno de los sistemas de riego más eficientes. El conocimiento del períme-
tro del bulbo mojado durante la fase de infiltración del agua es importante para el proyecto y manejo de sistemas de 
riego por goteo eficientes. Los modelos numéricos son una herramienta útil para analizar la evolución del bulbo mo-
jado durante el riego a fin de explorar estrategias de manejo del riego por goteo que determinen el tiempo de riego y 
optimicen la eficiencia del uso del agua. En este trabajo se examinó el potencial de la programación de algoritmos 
genéticos (GP) para la simulación de la forma de bulbos mojados en riego por goteo. En primer lugar se ha simulado, 
con el programa de métodos numéricos HYDRUS 2D, el bulbo mojado en 12 texturas de suelo y diferentes caudales 
de goteros y tiempos de riego. A partir de las estimaciones de la profundidad y radio mojado como variables objetivo, 
se han considerado dos modelos GP diferentes. Por último, se ha analizado la capacidad de GP para simular la forma 
del bulbo mojado a partir de valores que no se utilizaron durante el proceso de entrenamiento. Los resultados obtenidos 
con GP, considerando el conjunto completo de operadores, se ajustaron, razonablemente, a los estimados con HYDRUS 
2D, obteniéndose en la estimación del radio y la profundidad del bulbo mojado, coeficientes R2 = 0,99 en ambos casos 
y valores de error cuadrático medio de 2,88 y 4,94 respectivamente. Los resultados experimentales de campo en un 
suelo franco arenoso con caudal del emisor de 4 L h–1 concordaron razonablemente con los de GP. Los resultados del 
estudio demuestran la utilidad de este método para estimar la forma del bulbo mojado en riego por goteo.

Palabras clave adicionales: HYDRUS 2D; infiltración; modelos numéricos; programación genética; triángulo de 
texturas del suelo.
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the measurement of soil infiltration parameters, as well 
as many of the complexities and challenges in applying 
current understanding to irrigation situations. 

Analytical techniques have been proposed for the 
study of infiltration from a surface point-source (Wood-
ing, 1968; Warrick, 1974; Bresler, 1978; Ben Asher 
et al., 1986), but these are all limited by one or more 
simplifying assumptions. Numerical methods also have 
been developed to simulate this phenomenon (Brandt 
et al., 1971; Taghavi et al., 1984; Healy, 1987). For 
instance, HYDRUS 2D is a model based on finite-ele-
ment numerical solutions of the flow equations 
(Simunek et al., 2006) allowing simulations of three-
dimensional axially symmetric water flow, solute 
transport and root water and nutrient uptake. Modeling 
studies by Assouline (2002) and Abbasi et al. (2003a,b) 
showed that HYDRUS 2D simulations of soil water 
content and solute distributions were reasonably 
close to measured values. Cote et al. (2003) used the 
HYDRUS 2D model to simulate soil water and solute 
transport under subsurface drip irrigation. Skaggs et al. 
(2004) concluded that HYDRUS 2D had predicted soil 
water distribution for drip tape irrigation that agreed 
well with experimental observations. Bufon et al. 
(2011) experimentally validated HYDRUS 2D simula-
tions in an Amarillo soil for cotton subsurface drip 
irrigation in Texas high plains. Kandelous & Simunek 
(2010) evaluated the accuracy of several approaches 
used to estimate wetting zone dimensions by compar-
ing their predictions with field and laboratory data, 
including the numerical HYDRUS 2D model, the ana-
lytical WetUp software and selected empirical models. 
They concluded that HYDRUS 2D provides good pre-
dictions and should be selected when it is important to 
obtain accurate results. 

Although numerical models offer higher flexibility 
to more realistically represent natural flow systems, 
they require expertise to implement and can be com-

Introduction

Drip irrigation has been regarded as a potentially 
efficient method of irrigation. The potential benefits of 
using drip irrigation include higher yields (Camp, 
1998), improved trafficability (Steele et al.., 1996) and 
lower water use (Camp, 1998). Despite these potential 
advantages, poor design and/or poor management can 
result in water losses from drip irrigation comparable 
with those from more traditional irrigation systems. 
Given the high installation costs often required for drip 
irrigation (Darusman et al., 1997), it is crucial that 
systems are designed and managed correctly if the 
benefits of using drip irrigation are to be fully ex-
ploited. Many of the design and management decisions 
require understanding the wetted zone pattern around 
the emitter (Bresler, 1978; Lubana & Narda, 2001) and 
its relation to the root system. Mathematical models have 
proven very useful in predicting water and nutrient 
movement in the soil (Mmolawa & Or, 2000a) enabling 
improved drip irrigation system design and management. 
Or (1995) investigated the effects of mild spatial varia-
tion in soil hydraulic properties on wetting patterns and 
the consequences on soil water sensor placement and 
interpretation. Mmolawa & Or (2000b) discussed aspects 
of soil water and solute dynamics as affected by the ir-
rigation and fertigation methods, in the presence of ac-
tive plant uptake of water and solutes. Vrugt et al. (2001) 
tested the suitability of a three dimensional root water 
uptake model for simultaneous simulation of transient 
soil water flow around an almond tree and compared 
performance and results of mentioned model with one- 
and two- dimensional root water uptake models.

Smith & Warrick (2007) presented basic relations of 
soil water and soil water flow which are important in 
irrigation design and outlined methods to measure soil 
water content, pressure head and conductivity. They 
also discussed the calculation of infiltration rates and 

Abbreviations used: GA (genetic algorithm); GEP (gene expression programming); GP (genetic programming); GP 4basic (genetic 
programming with four basic operators); GP fullset (genetic programming with full set of operators); MLR (multiple linear regression), 
RMSE (root mean squared error). Symbols: dm (distance from emitter computed by HYDRUS 2D, cm); ds (distance from emitter 
computed by different methods, cm); E(ij) (error of an individual program); F (set of functions); fi (fitness); h (pressure head in 
soil-hydraulic function, m); h (length of the head in genetic programming; K (unsaturated hydraulic conductivity function, 
cm day–1); Kij

A (components of a dimensionless anisotropy tensor KA, cm day–1); Kr (relative hydraulic conductivity, cm day–1); 
Ks (saturated hydraulic conductivity, cm day–1); l (pore connectivity parameter); n (shape parameter in soil-hydraulic function); n 
(number of values in evaluation parameters); p (precision); P(ij) (predicted value by the individual program); Q (emitter discharge, 
L h–1); r (radius of wetting patterns, cm); R (selection range); RMSE (root mean squared error); S (sink term, s–1); Se (degree of 
saturation); SSA (between-group some of squares); SSE (within-group or error sum of squares); SST (total sum of squares); T (set 
of terminals); t (time, h); Tj (target value for fitness case); xi (i(1,2) (spatial coordinates, m); Y j.  (mean of each group); Y..  (grand 
mean); Yij (single score); z (depth of wetting patterns, cm); α (shape parameter); θ (volumetric water content); θi (initial water 
content); θr (residual water content); θs (saturated water content).
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putationally intensive reducing the application of nu-
merical models for irrigation system design and man-
agement decision-making (Hinnell et al., 2010). 
Moradi-Jalal et al. (2004) presented a new management 
model, WAPIRRA Scheduler, for the optimal design 
and operation of water distribution systems. Their 
model used genetic algorithm (GA) optimization to 
automatically determine annually the least cost of 
pumping stations while satisfying target hydraulic 
performance requirements. Application of their model 
to a study case showed considerable savings in cost 
and energy. Kumar et al. (2006) developed a model 
based on genetic algorithm (GA) for obtaining an op-
timal operating policy and optimal crop water alloca-
tions from an irrigation reservoir. They reported that 
the model can be used for optimal utilization of the 
available water resources of any reservoir system to 
obtain maximum benefits. Reca & Martinez (2006) 
developed a computer model called Genetic Algorithm 
Pipe Network Optimization Model (GENOME) with 
the aim of optimizing the design of new looped irriga-
tion water distribution networks and they optimized a 
real complex irrigation network to evaluate the poten-
tial of the genetic algorithm for the optimal design of 
large-scale networks. They reported that although the 
mentioned model produced satisfactory results, some 
adjustments would be desirable to improve the perform-
ance of genetic algorithms when the complexity of the 
network requires it. Genetic programming has been 
implemented in different fields of water engineering 
such as rainfall-runoff modeling (Aytac & Alp, 2008), 
filling up gaps in wave data (Ustoorikar & Deo, 2008) 
and evapotranspiration modeling (Kisi & Guven, 2010) 
but, to the best of our knowledge, the input-output map-
ping capability of GP technique in estimating soil wet-
ting patterns for drip irrigation has not been studied. 
The goal of this study is to propose an alternative way 
which produces precise results in comparison with 
numerical models for computation of the spatial and 
temporal wetting patterns during infiltration from sur-
face drip emitters using genetic programming.

Material and methods

Governing flow equation

Consider two-and/or three-dimensional isothermal 
uniform Darcian flow of water in a variably saturated 
rigid porous medium and assume that the air phase 

plays an insignificant role in the liquid flow process. 
The governing flow equation for these conditions is 
given by the following modified form of the Richards’ 
equation (Simunek et al., 2006):
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where θ = volumetric water content [L3L–3], h = pres-
sure head [L], S = sink term [T–1], xi (i = 1,2) = spatial 
coordinates [L], t = time [T], Kij

A = components of a 
dimensionless anisotropy tensor KA, and K = unsatu-
rated hydraulic conductivity function [LT–1] given by

	
K h x y z K x y z K h x y zs r, , , , , , , ,( ) = ( ) ( ) 	

[2]

where Kr = relative hydraulic conductivity and Ks = satu-
rated hydraulic conductivity [LT–1]. The anisotropy tensor 
Kij

A in Eq. [1] is used to account for an anisotropic me-
dium. The diagonal entries of Kij

A equal one and the off-
diagonal entries equals zero for an isotropic medium.

Also soil-hydraulic functions of van Genuchten 
(1980) who used the statistical pore-size distribution 
model of Mualem (1976) to obtain a predictive equation 
for the unsaturated hydraulic conductivity function in 
terms of soil water retention parameters are given by
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where

	
m

n
n= − >1 1 1,

	
[5]

The above equations contain six independent param-
eters: θr, θs, α, n, Ks, and l. The pore connectivity pa-
rameter l in the hydraulic conductivity function was 
estimated (Mualem, 1976) to be about 0.5 as an average 
for many soils.

General overview of genetic programming

In this section, a brief overview of the genetic pro-
gramming (GP) and gene expression programming 
(GEP) is given. GP is a generalization of genetic algo-
rithms (GAs) (Goldberg, 1989). Detailed explanations 
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of GP and GEP are provided by Koza (1992) and Fer-
reira (2006), respectively. The fundamental difference 
between GA, GP and GEP is due to the nature of the 
individuals. In the GA, the individuals are linear strings 
of fixed length (chromosomes). In the GP, the individu-
als are nonlinear entities of different sizes and shapes 
(parse trees), and in GEP the individuals are encoded as 
linear strings of fixed length (the genome or chromo-
somes), which are afterwards expressed as nonlinear 
entities of different sizes and shapes (Ferreira, 2001a,b). 
GP is a search technique that allows the solution of 
problems by automatically generating algorithms and 
expressions. These expressions are coded or represented 
as a tree structure with its terminals (leaves) and nodes 
(functions). GP applies GAs to a “population” of pro-
grams, i.e., typically encoded as tree-structures. Trial 
programs are evaluated against a “fitness function” and 
the best solutions selected for modification and re-
evaluation. This modification-evaluation cycle is re-
peated until a “correct” program is produced.

There are five preliminary steps for solving a prob-
lem by using GP. These are the determination of (i) the 
set of terminals, (ii) the set of functions, (iii) the fitness 
measure, (iv) the values of the numerical parameters 
and qualitative variables for controlling the run, and 
(v) the criterion for designating a result and terminating 
a run (Koza, 1992).

A GEP flowchart improved by Ferreira (2001b) is 
presented in Suppl. Fig. 1 (pdf).

The automatic program generation is carried out by 
means of a process derived from Darwin’s evolution 
theory, in which, after subsequent generations, new 
trees (individuals) are produced from old ones via 
crossover, copy, and mutation (Fuchs, 1998; Luke & 
Spector, 1998). Based on natural selection, the best 
trees will have more chances of being chosen to be-
come part of the next generation. Thus, a stochastic 
process is established where, after successive genera-
tions, a well-adapted tree is obtained.

There are five steps in preparing to use GEP of 
which the first is to choose the fitness function. The 
fitness of an individual program i for fitness case j is 
evaluated by Ferreira (2006) using:

	 If E ij p then f else fij ij( ) ≤ = =( ) ( ), ;1 0 	 [6]

where p is the precision and E(ij) is the error of an 
individual program i for fitness case j. For the absolute 
error, this is expressed by:

	 E ij P Tij j( ) = −( ) 	 [7]

Again for the absolute error, the fitness fi of an indi-
vidual program i is expressed by:
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j
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where R is the selection range, P(ij) is the value pre-
dicted by the individual program i for fitness case j 
(out of n fitness cases) and Tj is the target value for 
fitness case j. The second step consists of choosing 
the set of terminals T and the set of functions F to 
create the chromosomes. In this problem, the termi-
nal set obviously consists of the independent vari-
ables. The choice of the appropriate function set is 
not so obvious. However, a good guess can always 
be helpful in order to include all of the necessary 
functions. In this study, four basic arithmetic op-
erators, i.e. ( +, –, ×, /) and some basic mathemati-
cal functions, i.e. ( +, –, ×, /, Log, Ln, Power, Sin, 
Cosine, Arctangent) were utilized. The third step is 
to choose the chromosomal architecture, i.e., the 
length of the head and the number of genes. Values 
of the length of the head, h = 8, and three genes per 
chromosome were employed. The fourth step is to 
choose the linking function. In this study, the sub-
programs were linked by addition. Finally, the last 
step is to choose the set of genetic operators that 
cause variation and their rates. A combination of all 

Figure 1. Scheme of the finite element grid used in the nu-
merical simulations.
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genetic operators, i.e., mutation, transposition and 
recombination, was used for this purpose. The 
parameters of the training of the GP are given in 
Table 1.

Numerical simulation of wetting pattern  
for drip irrigation

HYDRUS-2D which uses the Galerkin finite-
element method to solve Eqs. [1] to [5] was applied 
to simulate the three dimensional axis-symmetric 
water flow. Simulations were carried out considering 
150 cm deep and 120 cm wide soil profile, where an 
emitter was placed on the soil surface. The computa-
tional flow domain was made large enough to ensure 
that the right and bottom boundaries did not affect the 
simulations. Absence of flux was considered along 
the surface and the lateral boundaries and free drain-
age along the bottom boundary of the soil profile. A 
constant flux density corresponding to the emitter 
discharge was assumed along the emitter boundary 
surface and free drainage was considered in the bot-
tom of the domain. Also initial water content in whole 
domain was assumed as initial condition. An unstruc-
tured mesh was automatically generated to discretize 
the flow domain into triangles. A total of 7,320 nodes 
were used to represent the entire simulation domain. 
Fig. 1 shows the scheme of the grid used for the nu-
merical simulations.

Field experiment

For evaluating the accuracy of the proposed ge-
netic programming method, an experiment of water 
infiltration under drip irrigation was conducted on a 
sandy loam soil at the Khalatpooshan Agricultural 
Sciences Center (37°03’ N, 46°37’ E and 1567.3 m 
asl), located in Tabriz, northwest of Iran. A polyeth-
ylene drip pipeline with a length of 15 m was installed 
on the soil surface which has a 16 mm outside diam-
eter, a wall thickness of 2 mm, an emitter spacing of 
2 m and emitter discharge of 4 L h–1. During irrigation, 
soil was excavated around each emitter and wetted 
pattern dimensions were measured. A coordinate sys-
tem was established on the profile with the origin at 
the soil surface directly above the drip line. The ob-
served soil wetting had a high degree of horizontal 
symmetry.

The bulk and particle density of the soil was 1.62 
and 2.61 g cm–3, respectively. Saturated hydraulic 
conductivity, measured by double rings apparatus, 
was 33 cm day–1. Soil water retention curve was de-
termined during a drying process by using pressure 
membrane extractor (model 1000) which was manu-
factured by Soil Moisture Equipment Corporation. 
This model of pressure membrane extractor incorpo-
rates disposable cellulose membranes in the extrac-
tion of water from soil samples over a pressure range 
of 0 to 15 bars. 

Evaluation parameters

Several parameters can be considered for the evalu-
ation of radius and depth of wetting patterns estimates. 
In this study the following statistic criteria were used: 
root mean squared error (RMSE) and correlation coef-
ficient (R2).
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where dm = distance from emitter computed by HYD-
RUS 2D (cm), ds = distance from emitter computed by 
different methods (cm) and n = number of values.

Table 1. Parameters used for the genetic programming (GP) 
analysis of the soil wetted patterns

Parameter Value

Function set (GP fullset) ( +, –, ×, /, Log, Ln, Power, 
Sin, Cosine, Arctangent)

Function set (GP 4basic) ( +, –, ×, /)
Chromosomes 30
Head size 8
Number of genes 3
Linking function Addition ( + )
Mutation rate 0.044
Inversion rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1
Gene transposition rate 0.1
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Results and discussion

Simulation of wetting patterns using genetic 
programming

In this research the HYDRUS 2D software was used 
to compute depth and radius of 1,500 simulations using 
12 different soil textures of USDA-SCS soil texture 
triangle. Emitter discharge ranged from 2 to 8 L h–1and 
irrigation duration varied from 0.5 to 8 h. Then 1,125 
sets of these data were used for training of GP. Finally 
capability of GP for simulating wetting patterns of drip 
irrigation was analyzed using some dataset values that 
were not used for training.

One of the advantages of GP in comparison with 
other tools is producing analytical formula for determi-
nation of output parameters. After processing, Eqs. [11] 
and [12] for determination of radius and depth of wet-
ting patterns with full set of operators ( +, –, ×, /, Log, 
Ln, Power, Sin, Cosine, Arctangent), respectively, and 
Eqs. [13] and [14] in a case of considering four basic 
operators ( +, –, ×, /) results as:
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where r = radius of wetting patterns [cm], z = depth of 
wetting patterns [cm], θr = residual water content [–], 
θs = saturated water content [–], θi = initial water 
content [–], Ks = saturated hydraulic conductivity 

[cm day–1], α and n = shape parameters [–], Q = emit-
ter discharge [L h–1] and t = time [h].

Due to the fact that calculation of radius and 
depth of wetting patterns of drip irrigation with 
these equations is somehow time consuming, a code 
with programming language of Wolfram Mathematica 
7.0 was written. This code, which a picture of that is 
shown in Fig. 2, can dynamically calculate radius and 
depth of wetting patterns. In addition, the developed 
code has ability to animate wetting patterns during 
irrigation.

Simulation of wetting patterns using multiple 
linear regression

Furthermore, the multiple linear regression method 
(MLR) has been used to simulate wetting patterns of 
drip irrigation. For this purpose, Minitab 15 software 
has been used for calculation of MLR parameters. 
Resulted formulas for computation of radius and depth 
of wetting patterns are presented in Eqs. [15] and [16], 
respectively.

r r s i= + ×( ) − ×( ) − ×( ) − ×(20 6 29 4 15 7 32 6 206. . . .θ θ θ α )) −

− ×( ) + ×( ) + ×( ) + ×( )0 28 0 00605 5 4 3 36. . . .n K Q ts 	
[15]

z r s i= + ×( ) − ×( ) + ×( ) − ×( )19 2 8 8 61 3 74 3 105. . . .θ θ θ α −−

− ×( ) + ×( ) + ×( ) + ×( )6 15 0 0744 8 52 5 96. . . .n K Q ts 	
[16]

where r = radius of wetting patterns [cm], z = depth of 
wetting patterns [cm], θr = residual water content [–], 
θs = saturated water content [–], θi = initial water con-
tent [–], Ks = saturated hydraulic conductivity [cm 
day–1], α,n = shape parameters [–], Q = emitter dis-
charge [L h–1] and =t  time [h].

Comparison of the results of different 
methods

The results of two different GP models including GP 
fullset model with the functions +, –, ×, /, Log, Ln, 
Power, Sin, Cosine, Arctangent and GP 4basic model 
with the functions +, –, ×, / and MLR in estimation of 
radial and vertical depth of wetting patterns of drip 
irrigation are shown in Table 2. It can be concluded 
from Table 2 that the GP fullset has more precision in 
validation stage in comparison with GP 4basic and 
MLR models. In addition, the analysis showed that 
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there are not constant trends in the estimation of ra-
dial and vertical depth wetting patterns. For instance, 
when estimating radial depth wetting pattern from 375 
points in validation stage, 131 estimated values by GP 
fullset have absolute differences less than 1 cm from 
corresponded HYDRUS data. On the other hand, re-
garding the estimation of vertical depth, 139 estimated 
values have absolute differences less than 1 cm. How-
ever, it should be noted that radial depths were slight-
ly better estimated than vertical depths. This is because 
the variances between radial depths was less than the 
corresponded value related to vertical depths. In fact, 
the RMSE values in a case of radial depths is less than 
the corresponded RMSE value in a case of vertical 
depths. 

Scatter plots of GP fullset, GP 4basic and MLR in 
validation stage for estimation of radial depth of wet-
ting patterns are shown in Fig. 3. The estimates of the 
both GP models are closer to the corresponding ob-
served values than those of the MLR model (Fig. 3). 
In other words, the MLR model has much more scat-
tered estimates than those of the GP models. In Fig. 3, 
the fit line equations (assuming that the equation is 
y = ax + b) given in scatterplots indicates that a and b 
coefficients of the GP fullest and GP 4basic models are 
closer to the 1 and 0 than those of the MLR model. A 
comparison of two GP models reveals that the estimates 
of the GP fullset model seems to be closer to the exact 
(1:1) line than the GP 4basic model especially for ra-
dial distances from emitter values higher than 60 cm. 

Figure 2. View of the developed program for computation of wetting patterns of drip irrigation by using Wolfram Mathematica 7.0.
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Table 2. Calibration and validation results of the GP fullest, GP 4basic and multiple linear regression (MLR) models in estimation 
of radial and vertical distance from emitter

Evaluation  
parameter

GP fullset GP 4basic MLR

Calibration Validation Calibration Validation Calibration Validation

Estimation of radial distance
RMSE 3.76 2.88 4.31 3.64 6.36 6.23
R2 0.95 0.97 0.93 0.96 0.85 0.88

Estimation of vertical distance
RMSE 4.43 4.94 5.15 5.21 11.89 8.41
R2 0.98 0.97 0.97 0.95 0.85 0.89

RMSE: root mean square error, R2: correlation coefficient.



S. Samadianfard et al. / Span J Agric Res (2012) 10(4), 1155-11661162

The GP fullset model underestimates the observed high 
radial distance values while the GP 4basic model over-
estimates them. 

On the other hand, in Fig. 4 it is illustrated the scat-
ter plots of vertical distances from emitter (z) esti-

mated by the GP fullest, GP 4basic and MLR models 
versus HYDRUS 2D in validation stage. Similarly to 
what reported for the radial distance from the emitter, 
the GP model estimates of the vertical distance are 
closer to the observed values than those of the MLR 

0 0

0

0

20

20

20

40

40

40

60

60

60

80

80

80

100

100

100

0

0

50

50

50

100

100

100

150

150

150

200

200

200

Number of experiment r computed by HYDRUS 2D (cm)

r computed by HYDRUS 2D (cm)

r computed by HYDRUS 2D (cm)

y = 0.9481x + 1.8334
R2 = 0.9743

y = 0.952x + 1.9154
R2 = 0.9577

y = 0.8041x + 7.7426
R2 = 0.8837

Ideal line

Ideal line

Ideal line

Fit line

Fit line

Fit line

Number of experiment

Number of experiment

  HYDRUS 2D      GP fullset

  HYDRUS 2D      GP 4basic

  HYDRUS 2D      MLR

250

250

250

300

300

300

350

350

350

400

400

400

r (
cm

)

r c
om

pu
te

d 
by

 G
P 

fu
lls

et
 (c

m
)

r c
om

pu
te

d 
by

 G
P 

4b
as

ic
 (c

m
)

r c
om

pu
te

d 
by

 M
LR

 (c
m

)

r (
cm

)
r (

cm
)

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

Figure 3. Radial distance from emitter (r) estimated by GP fullset, GP 4basic and MLR methods versus HYDRUS 2D in validation stage.
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model. However, both GP models overestimate the high 
vertical distance values.

Finally in order to better demonstrate the capability 
of the GP in comparison with other methods, the ex-
perimental and simulated wetted patterns for a sandy 

loam soil with an emitter discharge of 4 L h–1 are shown 
in Fig. 5. The patterns are for the time duration of 0.5, 
1.0, 1.5, 2.0, 2.5 and 3 h from the beginning of irriga-
tion. The GP fullset model data are closer to the ob-
served wetting patterns than those of the GP 4basic and 
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Figure 4. Vertical distance from emitter (z) estimated by GP fullset, GP 4basic and MLR methods versus HYDRUS 2D in validation stage.
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Figure 5. Experimental and simulated wetted patterns by GP fullset, GP 4basic, HYDRUS and MLR models for a sandy loam soil 
with an emitter discharge of 4 L h–1.
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MLR models for irrigation durations of 0.5 and 1.0 h 
(Fig. 5). The estimated wetting patterns with GP fullset 
from beginning of irrigation to 1 h after it have not very 
good agreement with the observed curves. GP fullset 
and MLR models give similar estimates for the time 
duration of 1.5 h. In the case of 2 h after beginning of 
irrigation, the MLR model was closer to the observed 
wetting pattern than the other models for the x-y range 
of 20-30 cm. It can be concluded that the MLR model 
is the tool that better predicts the observed trends for 
irrigation durations longer than 2 h. These results sug-
gest that in those situations, genetic programming 
might not give any significant advantage over the MLR 
procedure which can be used more easily.

Genetic programming combining either full set or 
four basic operators, or multiple linear regression 
method were used to simulate wetting patterns of drip 
irrigation systems in comparison with the more com-
monly employed HYDRUS software. The results are 
satisfactory and allow the users estimating wetting pat-
terns dimensions for any given time, emitter discharge 
and soil hydraulic properties without having to perform 
a detailed numerical simulation using the HYDRUS 
software. GP fullset model performed better than the 
GP 4basic and MLR models for irrigation durations of 
0.5, 1.0, 1.5 and 2.0 h. The MLR model was found to 
be better than the GP models for irrigation durations 
longer than 2 h. The comparison results in field ex-
periments revealed that the GP method could be em-
ployed successfully in modeling wetting patterns of 
drip irrigation.
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