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Abstract
A new approach based on Artificial Neural Networks (ANNs) is presented to simulate the effects of wind on the distribu-

tion pattern of a single sprinkler under a center pivot or block irrigation system. Field experiments were performed under 
various wind conditions (speed and direction). An experimental data from different distribution patterns using a Nelson 
R3000 Rotator® sprinkler have been split into three and used for model training, validation and testing. Parameters affecting 
the distribution pattern were defined. To find an optimal structure, various networks with different architectures have been 
trained using an Early Stopping method. The selected structure produced R2 = 0.929 and RMSE = 6.69 mL for the test subset, 
consisting of a Multi-Layer Perceptron (MLP) neural network with a backpropagation training algorithm; two hidden layers 
(twenty neurons in the first hidden layer and six neurons in the second hidden layer) and a tangent-sigmoid transfer function. 
This optimal network was implemented in MATLAB® to develop a model termed ISSP (Intelligent Simulator of Sprinkler 
Pattern). ISSP uses wind speed and direction as input variables and is able to simulate the distorted distribution pattern from 
a R3000 Rotator® sprinkler with reasonable accuracy (R2 > 0.935). Results of model evaluation confirm the accuracy and 
robustness of ANNs for simulation of a single sprinkler distribution pattern under real field conditions.

Additional key words: backpropagation; distortion by wind; ISSP; MLP neural networks; simulation; sprinkler; 
water application.

Resumen
Redes neuronales artificiales para simular el efecto del viento sobre el patrón de distribución del agua de un aspersor

Se presenta un nuevo modelo basado en la técnica de Redes Neuronales Artificiales (RNA) para simular el efecto 
del viento sobre la distribución de agua de un aspersor, en un sistema estacionario o en equipos pivote. Se han reali-
zado una serie de ensayos experimentales con diferentes velocidades y direcciones de viento, para el emisor Rotator 
R3000 de Nelson. El conjunto de datos obtenidos para los diferentes patrones de distribución del agua han sido divi-
didos en tres grupos, y utilizados en las correspondientes fases de entrenamiento, análisis y validación. Se han defini-
do los parámetros que influyen sobre el patrón de distribución de agua. Con el fin de encontrar una estructura de red 
óptima, varias redes con diferente arquitectura han sido entrenadas usando un método supervisado. Con la estructura 
óptima se consiguió un R2 = 0,929 y RMSE = 6,69 mL para el grupo de ensayos correspondientes a la red Multi-Layer 
Perceptron (MLP) mediante el algoritmo de aprendizaje supervisado con retroalimentación, dos niveles de capas ocul-
tas (veinte neuronas en el primer nivel y seis neuronas en el segundo) y una función de transferencia tangente hiper-
bólica. Esta red optimizada fue implementada en MATLAB para desarrollar un modelo llamado ISSP (Simulador 
Inteligente del Modelo de Distribución). ISSP utiliza la velocidad y dirección de viento como variables de entrada y 
tiene la capacidad de simular el modelo distorsionado de la distribución de agua de un emisor Rotator R3000 con una 
buena precisión (R2 > 0,935). Los resultados confirman la precisión y robustez de las técnicas de RNA para simular el 
patrón de distribución del agua de un aspersor en condiciones de campo.

Palabras clave adicionales: aplicación de agua; aspersión; distorsión por el viento; ISSP; redes neuronales MLP; 
retroalimentación; simulación.
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shape of distribution pattern in no-wind condition de-
pends only on sprinkler configuration and operating 
pressure and could be derived from radial distributions 
of water measured with laboratory tests. Wind distorts 
this shape and the objective of semi-empirical models 
is to find a relationship between observed distortion 
and wind conditions. Calibration of such models is 
typically carried out using spatial distribution patterns 
measured in field conditions (Granier et al., 2003). 
Seginer et al. (1991b) used water distribution patterns 
measured in different wind speeds to produce interpo-
lated maps that take into consideration evaporation and 
drift losses. Han et al. (1994) assumed an ellipse as the 
base shape of a pattern and developed a simulation 
model that uses shape functions to estimate modified 
water distributions across four principal sections of the 
pattern. Richards & Weatherhead (1993), for simulating 
wind-distorted distribution pattern using a measured 
no-wind pattern, developed an empirical model that 
uses a complex series of algorithms and six empirical 
parameters. Based on semi-empirical considerations 
and using a combination of beta functions, Le Gat & 
Molle (2000) and Molle & Le Gat (2000) developed a 
model to simulate the application pattern of a single 
rotating sprinkler, and to describe its performance in 
both windy and no-wind conditions.

The statistical approach could be applied to a set of 
sprinklers: line or complete solid set cover (Karmeli, 
1978), center pivot (Heerman et al., 1992), or to a 
single sprinkler (Solomon & Bezdek, 1980). By defin-
ing a limited number of parameters, observed water 
distribution curves or maps under an isolated sprinkler 
in various operating conditions have been adjusted to 
laws of probabilistic distribution (Solomon & Bezdek, 
1980). The adjustment could be performed using sev-
eral simultaneous measurement series according to 
statistical criterion (Le Gat & Molle, 2000). The ra-
dial distribution curve from the sprinkler is identified 
and then the spatial distribution pattern in the wetted 
area can be estimated by generalizing it.

Artificial Neural Networks (ANNs) are an emerging, 
computational or mathematical tool that has been im-
plemented for modeling a wide range of complex and 
multivariate real-world systems. These networks that 
mimic characteristics of the biological neural systems 
have some remarkable advantages such as nonlinear-
ity, high parallelism, robustness, fault and failure toler-
ance, learning ability, handling imprecise and fuzzy 
information, and generalization capability. Without any 
assumption and knowledge about the underlying prin-

Introduction

The water distribution pattern and spacing of sprin-
klers are two important factors that can affect the ap-
plication uniformity of sprinkler irrigation systems. For 
a particular sprinkler with a given nozzle size that 
works under an optimal operating pressure in field 
conditions, the resulting water distribution depends on 
wind speed. Wind causes the distortion of the distribu-
tion pattern, and this increases with increasing wind 
speed (Keller & Bliesner, 1990).

To avoid laborious field tests and to improve the 
design of irrigation systems, several studies have been 
conducted over the last 30 years to develop irrigation 
simulation models which can be used for the estimation 
of water distribution patterns of irrigation systems 
under real or controlled conditions. These models have 
been categorized to ballistic, semi-empirical and sta-
tistical (Granier et al., 2003).

The most common approach of sprinkler irrigation 
modeling is the ballistic method that is based on simu-
lating trajectory of individual drops. A sprinkler is 
considered as a device emitting water drops in different 
diameters from a nozzle, which travel separately until 
landing on the soil surface (or crop canopy, or experi-
mental catch-can). For a given sprinkler configuration 
in a no-wind condition, droplet diameter is a major 
factor that affects the travel distances of droplets (i.e. 
the horizontal distance between droplet landing point 
and the sprinkler nozzle). The flight path of each drop-
let is subjected to an initial velocity vector and a wind 
vector (parallel to the ground surface) which can be 
determined using ballistic theory. Gravity and drag are 
two other forces that act on each water droplet in ver-
tical and opposite of drop trajectory directions, respec-
tively. Regarding the ground, the droplet velocity is 
equal to the velocity of the drop in the air plus the wind 
vector (Playan et al., 2006). The major advance of bal-
listic models has occurred in the last few decades and 
several irrigation simulation models have been devel-
oped (Fukui et al., 1980; Vories et al., 1987; Seginer 
et al., 1991a; Carrion et al., 2001; Montero et al., 2001; 
Dechmi et al., 2004; Lorenzini, 2004; De Wrachien & 
Lorenzini, 2006; Playan et al., 2006; Yan et al., 2010).

Simulating the modified shape of distribution pat-
terns in accordance with initial shape of wetted area 
and wind conditions (speed and direction) is the basis 
for semi-empirical methods. It is assumed that the 
distribution pattern of water applied from a single 
sprinkler has a flexible shape on the soil surface. The 
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ciples, ANNs are able to precisely extract the general-
ized relationship between input and output data and 
their accuracy increases with increasing of available 
data (Basheer & Hajmeer, 2000; Jain et al., 2004).

An important aspect of ANNs is multi-layer feed-
forward networks. In general, this class of network 
consists of multiple interconnected layers which are: 
an input layer that contains a set of sensory units 
(source nodes), one or more hidden layers of computa-
tion nodes, and an output layer. The input signal 
propagates layer-by-layer through the network only in 
a forward direction. These neural networks are com-
monly referred to as a Multi-Layer Perceptron (MLP). 

In recent decades, the application of ANNs in field 
water engineering has increased. This approach has 
been used for understanding the relationships between 
rainfall-runoff processes (Hsu et al., 1995; Fernando 
& Jayawardana, 1998; Shresta et al., 2005), evapotran-
spiration modeling (Khoob, 2007; Ozkan et al., 2011), 
estimation of suspended sediments (Ciĝizoĝlu, 2002), 
modeling of water quality parameters (Schleiter et al., 
1999; Karul et al., 2000; Maier & Dandy, 2000), stud-
ies of flow-pollutions in soil (Yang et al., 1997; 
Schmitz et al., 2002; Jain et al., 2004), and predicting 
water distributions under trickle irrigation (Lazarovitch 
et al., 2009; Hinnel et al., 2010) . 

The aim of this paper is to develop and evaluate a new 
approach based on MLP neural networks to simulate the 
wind distorted water distribution patterns under field 
conditions. Such a model has various advantages, includ-
ing 1) the simplicity of model development for any 
sprinkler via completing 5-6 experimental tests at dif-
fering wind speeds; 2) ANN based models unlike bal-
listic models do not require numerical or analytical 
procedures for solving dynamic equations of droplet 
ballistics and determining droplet sizes; and 3) in the 
proposed model, the distribution pattern is generated 
through a point-by-point calculation of water amount 
and the model has ability to estimate water amount at 
each point in the ground with a relatively good accuracy.

Material and methods

Field experiments

Experimental tests have been conducted for various 
wind speeds and directions at the Research Centre of 
Agricultural Faculty, University of Tabriz, Iran, to 
obtain water distribution patterns for the sprinkler. All 

conditions for the experiments, including catch-can 
spacing, catch-can shape and size, test duration and 
recording of climatic data were implemented in accord-
ance with ISO 8026 (ISO, 1995) and ASAE S398.1 
(ASAE, 1985) standards. 

The Nelson R3000 Rotator® sprinkler operates with 
a proven, patented drive principle and simplicity of 
design with only one moving part. This sprinkler, with 
throw distance of 15.2-22.6 m and operating pressure 
range of 100-340 kPa (15-50 psi) is classified as a low 
pressure sprinkler. The expected Christiansen uniform-
ity coefficient (CU) for the R3000 Rotator® is above 
95% at various operational conditions (Kincaid, 2005). 
A CU of below 70% is not acceptable in sprinkler ir-
rigation (Keller & Bliesner, 1990).

The R3000 Rotator® can be equipped with various 
plates for different applications (Anonymous, 2008). 
The red plate utilizing 6 streams was used in this study; 
the sprinkler was equipped with a 4.76 mm nozzle. The 
operating pressure of sprinkler was fixed at 140 kPa 
(20 psi) using a pressure regulator. Nozzle flow rate 
under these conditions was approximately 0.28 L s–1. 
Each individual experiment lasted 1 with about 1 m3 
of water being applied during each test.

A network of 21 × 21 catch-cans was placed at the 
testing stand at a spacing of 1.25 m ×1.25 m. The sprin-
kler was placed in the center of the network at a height 
of 1.80 m using a metal frame, and the point under the 
sprinkler position was without a catch-can, therefore 
in total 440 catch-cans were used in the network. Water 
volumes collected in the catch-cans were measured 
after each experiment. Fig. 1 shows schematic of the 
single sprinkler testing network.

Climate data and weather conditions (e.g. tempera-
ture, air humidity, and speed and direction of wind at 
the height of 2-m from ground level) were recorded on 
a 1-min frequency and averaged during the test using 
an automatic digital weather station, located 20-m away 
from the test site. The minimum and maximum aver-
aged wind speeds during experimental tests were 
0.63 m s–1 and 6.98 m s–1, respectively.

Problem definition and formulation

Appropriate definition and formulation of the prob-
lem is an important step in the development of suc-
cessful ANN-based projects. In this study, it is as-
sumed that there are some spatial distribution patterns 
which are measured under real field conditions for 
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Design and training of networks

Fig. 2 represents a schematic of the MLP neural net-
works. The number of neurons in the input and output 
layers was set with respect to the formulation of the 
problem, so there were 3 and 1 neuron(s) in the input 
and output layers, respectively. However, determining 
the most appropriate number of neurons in the hidden 
layers is more flexible. In the present study to attain an 
optimal network structure, the number of neurons in the 
hidden layer(s) was determined by several trials.

A variety of learning algorithms could be implemented 
for training MLP neural networks and the most common 
algorithm is error backpropagation. Basically, an error 
backpropagation algorithm consists of a forward pass and 
a backward pass through the different layers of the network. 
In the forward pass, a set of data, as input vector are applied 
to the sensory nodes of the network, and therefore a set of 
outputs is produced as the actual response of the network. 
All the weights of the network are fixed during the forward 
pass. Then, the error signal is produced by subtracting the 
network responses from target values and propagated back-
ward through the network to adjust all weights in accord-
ance with an error-correction rule (Haykin, 1999). The 
backpropagation algorithm is shown in Eq. [1]:

 xk + 1 = xk – αkgk [1]

where xk is the vector of weights and biases at the it-
eration of k; αk is the learning rate at the iteration of k; 
gk is the gradient at the iteration of k.

Various backpropagation learning methods are avail-
able, among them Levenberg-Marquardt algorithm was 
selected here because of its fastest convergence in the 
training of medium sized neural networks (Mathworks, 
2007). This algorithm was developed to achieve a 
faster training speed without having to compute Hessian 
matrix and uses the update algorithm given by Eq. [2]:

 x xk k
T T

+
−

= − + 1

1
J J I J eµ  [2]

where xk is the vector of weights and biases at the iteration 
of k; J is the Jacobian matrix, which contains first deriva-
tives of the network errors with respect to weights and 
biases; JT is transpose matrix of J; e is the vector of network 
errors; I is the identity matrix; and μ is a scalar; μ decreas-
es after each successful step and increases when an indi-
vidual step increases the performance function and conse-
quently, the performance function will always be reduced 
at each iteration of the algorithm (Mathworks, 2007).

The early stopping method was used in this study to 
prevent over-fitting (i.e. memorizing the available data by 

various wind speeds, and simulating distribution pat-
terns in none measured wind speeds is the objective 
of ANNs-based model. In fact, ANNs would be used 
here as an interpolation tool for developing a model 
to simulate the wind distorted distribution pattern of 
a sample single sprinkler. A dataset of water volumes 
collected in catch-cans (i.e. precipitation rate; PR) for 
each experiment were used as the targets of the neural 
network.

The radial distance (R) of catch-cans to the sprinkler 
indicates the horizontal travel distance of emitted drop-
lets and the two alternative parameters of wind vector 
(i.e. speed, V, and its direction) were considered as the 
two most important parameters. A trigonometric circle 
has been employed to present the direction of wind and 
therefore an angle of zero is related to wind direction 
from West to East. As illustrated in Fig. 1, the incidence 
angle of the jet trajectory vector and wind vector is 
named γ that is a representative for drag forces acting 
on a jet element.

Each catch-can at the test network is related to a 
function of C(R,γ), in which R is a constant for any 
given catch-can but γ varies in relation to wind direc-
tion for each individual test. Thus, volume of collected 
water in each catch-can for any wind speed (PRC(R,γ),V) 
composed the output neuron of the ANN with the neu-
rons of the input layer consisting of R, γ and V.
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Figure 1. Schematic of testing stand and defined parameters of 
problem (S: sprinkler position; R: radial distance to catch-can 
[C(R,γ)]; α: angle of jet trajectory vector; β: angle of affecting 
wind vector; γ: difference between β and α).

Wind direction
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the network) and to achieve a good generalizing capabil-
ity of the model. To perform this, the data were randomly 
divided into three subsets; one-half was used for training, 
one-quarter for validation and one-quarter for testing. The 
error, i.e. the difference between the measured target val-
ues and network results were calculated for each of the 
three subsets separately. During the early training itera-
tions, the error on the validation subset normally decreas-
es. However, when the network begins to over-fit the data, 
the validation subset error will start to rise. When this 
increase persists for a pre-defined number of iterations, 
the training is stopped and the weight values are kept.

The accuracy of dividing dataset was examined 
using the test subset. The errors on the test and valida-
tion subsets were compared to see if they showed a 
similar behavior. A significant difference between 
validation errors and test errors indicates an inappropri-
ate division of the data.

The efficiency of network training increased by 
means of pre-processing and normalizing the network 
input and target values. Eq. [3] was used to normalize 
the data so that they fall in the range [–1, 1]:

 x
x x

x xnorm
o= × −

−






−2 1min

max min

 [3]

where xnorm is normalized value; xo is original value; 
xmax is maximum value; and xmin is minimum value.

Performance functions

The performance of the neural network models was 
evaluated by the root mean squared error (RMSE) as 
presented in Eq. [4]:

 RMSE
p

PR PRo i s i

i

p

= − 
=

∑1 2

1

( ) ( )  [4]

where the subscripts o and s represent the observed and 
simulated values of precipitation rates (PR) at each 
catch-can, respectively and p is the total number of 
events considered. The overall performance of trained 
networks can be judged with respect to coefficient of 
determination (R2).

The Normalized Root Mean Square Error (NRMSE) 
was also calculated by dividing the RMSE value by the 
difference in value between the observed maximum 
and minimum precipitation rates as shown in Eq. [5]:

 NRMSE
RMSE

PR PRo o

=
−(max) (min)

 [5]

Results

Selection of optimal ANN structure 

A multi-layer perceptron with backpropagation train-
ing algorithm was used for simulation of single sprin-
kler distribution pattern. A tangent-sigmoid transfer 
function was selected between the input and hidden 
layers, and a linear transfer function selected between 
the hidden and output layer; because with sufficient 
neurons in the hidden layer this structure for a neural 
network is reported to have the ability to approximate 
any function (Mathworks, 2007).

Using the Neural Network Toolbox in MATLAB®, 
various networks with different configurations were 
defined in order to identify the optimal network for 
estimating the amount of water in each catch-can. All 
the designed neural networks contained three neurons 
in the input layer and one neuron in the output layer. 
For each distinct network, after post-processing, the 
RMSE and R2 values for the training, validation and 
testing subsets were calculated. 

Table 1 summarizes the results of the procedure for 
optimal network selection. The results showed that the 
neural networks containing one hidden layer were not 
able to estimate target values with sufficient accuracy 
(R2 < 0.861 and RMSE > 8.97 mL for testing subset); 
hence, a network with two hidden layers was imple-
mented. According to the evaluation results of various 
network structures, a network with two hidden layers, 
consisting of twenty neurons in the first hidden layer 
and six neurons in the second hidden layer, was deter-
mined as the optimal network, because any additional 
neurons in the hidden layer could not increase model 
accuracy.

Input Layer

1

2

3

3

2

1

1

4

Input 
Parameters

Output 
Parameter

Hidden Layer Output Layer

Figure 2. Scheme of multi-layer perceptron (MLP) neural network.
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As shown in Table 1, this structure for a neural  
network provides an RMSE = 6.46, 6.81, 6.69 mL and 
R2 = 0.931, 0.925, 0.929 for training, validation and testing 
subsets, respectively. According to the t-test results, 
there was no significant difference at the probability 
level of 95% between the RMSE and R2 values for di-
vided subsets. Also, the RMSE and R2 values for the 
testing subset (that were not used in the training of 
neural networks) indicated a good generalization abil-
ity of the selected structure. 

Developing of ISSP

The selected structure of ANNs was implemented to 
develop a model named ISSP (Intelligent Simulator of 
Irrigation Pattern) as a MATLAB® m-file for the simu-
lation of distorted distribution pattern from a R3000 
sprinkler under experimental test conditions. This 
MATLAB m-file follows seven steps to simulate the 

distribution pattern of a R3000 sprinkler and display 
the results as: 1) input data; containing wind speed (up 
to 8m s–1) and wind direction (0-359 degree); 2) gen-
eration of input matrix, involves calculation of R and 
γ for each catch-can; 3) normalizing the input matrix, 
the input matrix must be entered in the experimental 
database and normalized; 4) simulation of output val-
ues, normalized input matrix passes through the MLP 
neural network and produces normal values of col-
lected volume of water at each point; 5) post-process-
ing the output values, the network produces outputs in 
the range [–1,1]; then these outputs must be converted 
back into the same unit that was used for the original 
targets, 6) removing abnormal values; in this step, 
negative and very small values (values < 0.5 mL) are 
converted to zero; 7) displaying the simulated distribu-
tion pattern as a contoured precipitation lines, colors 
or 3D maps; and 8) creating an Excel file that contains 
volume of collected water (mL) at each point (catch-
can), i.e. PRC(R,γ),V values.

Table 1. Summarized results for procedure of optimal network determining

Network structure Training epochs
RMSE (mL) R2

Training Validation Testing Training Validation Testing
3-5-1 116 10.68 10.65 10.77 0.816 0.810 0.809
3-6-1  83 10.45 10.43 10.78 0.820 0.829 0.810
3-7-1  12 13.12 13.35 13.13 0.724 0.704 0.718
3-8-1  33 12.12 13.59 12.24 0.758 0.711 0.751
3-9-1 254  9.49  9.80  9.52 0.854 0.854 0.837
3-10-1 161  9.30  9.50  8.97 0.860 0.858 0.861
3-5-5-1  64 11.93 11.40 11.58 0.772 0.783 0.775
3-6-5-1  42  7.24  7.44  7.19 0.914 0.913 0.913
3-7-5-1  53  8.22  8.40  8.04 0.891 0.885 0.891
3-8-5-1  60  7.18  7.09  6.94 0.915 0.922 0.919
3-9-5-1  88  8.27  8.92  8.03 0.888 0.869 0.896
3-10-5-1  58  8.32  8.35  8.09 0.889 0.881 0.892
3-11-5-1 161  6.57  7.19  7.63 0.929 0.914 0.909
3-12-5-1  84  6.68  7.48  6.69 0.927 0.913 0.923
3-13-5-1  64  6.90  7.05  7.64 0.921 0.920 0.909
3-14-5-1  22 13.05 13.12 12.81 0.726 0.710 0.725
3-15-5-1  94  7.00  7.86  7.01 0.919 0.904 0.918
3-20-5-1  36  7.07  7.55  6.46 0.919 0.906 0.930
3-5-6-1  62  7.14  6.99  7.57 0.918 0.919 0.906
3-10-6-1  39  7.05  6.74  7.64 0.918 0.925 0.910
3-11-6-1 120  6.66  6.76  7.36 0.928 0.924 0.911
3-12-6-1 235  6.96  6.91  7.35 0.922 0.920 0.912
3-15-6-1  36  8.06  7.67  9.03 0.895 0.902 0.866
3-20-6-1 144  6.46  6.81  6.69 0.931 0.925 0.929
3-10-10-1  72  6.89  7.76  6.93 0.921 0.902 0.925
3-15-15-1  56  7.09  7.52  7.26 0.916 0.910 0.917
3-20-20-1  84  7.07  7.34  7.45 0.920 0.908 0.907
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Simulation of distribution patterns using ISSP

In order to represent the ability of the ISSP model 
and to simulate the distortion pattern from of a single 
sprinkler caused by increasing wind speed, six different 
wind speeds from 1 to 6 m s–1 with step of 1 m s–1 and 
one direction (North-West) were selected. Fig. 3 il-
lustrates distribution patterns resulted from ISSP model 
for these six conditions.

According to defined parameters in Fig. 4, the down-
wind (rdw), up-wind (ruw) and cross-wind (rcw) throw 
radii of the sprinkler at various wind speeds were pre-
sented in Fig. 5. Table 2 shows the range of wetted area 
at x and y directions, the coordinates for the centre of 
the wetted area and the resultant shifts in wetted area 
due to wind (i.e. distance of sprinkler position to the 
center of the wetted area). Fig. 6 shows amount of wet-
ted area drifting vs. wind speed.

Figure 3. Simulation of distribution pattern distortion process by ISSP (“S” indicates sprinkler position). Wind direction = 135 degrees.
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Table 2. Characteristics of wetted area ranges and its drifting due to various wind speeds

Wind speed
(m s–1)

X range
[x1,  x2]

Y range
[y1,  y2]

Center 
(xc,  yc)

Drift (m)1

1 [–7.75, 8.75] [–8.70, 8.13] (0.50, –0.29) 0.52
2 [–7.50, 8.80] [–8.75, 7.92] (0.65, –0.42) 0.77
3 [–7.08, 9.38] [–9.17, 7.50] (1.15, –0.83) 1.42
4 [–6.25, 9.75] [–9.40, 7.00] (1.75, –1.20) 2.12
5 [–6.20, 10.00] [–10.00, 7.00] (1.90, –1.50) 2.42
6 [–5.00, 10.00] [–10.80, 6.80] (2.50, –2.00) 3.20

1 Distance of sprinkler position to the center of the wetted area.
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Moreover, for the sake of comparison between 
simulated and observed distribution patterns three dif-
ferent conditions were considered a) a wind speed of 
0.63 m s–1 and direction of 11 degrees, b) a wind speed 
of 2.65 m s–1 and direction of 176 degrees and c) wind 
speed of 4.60 m s–1 and direction of 158 degrees. These 
conditions selected from an experimental dataset to 
represent low, medium and high wind speeds. Fig. 7 
illustrates the simulated and observed distribution pat-
terns for each of these three conditions.

Fig. 8 represents the scatter plots for simulated 
versus observed PRC(R,γ),V values for these three condi-
tions, from which it can be observed that there were 
good correlations between simulated and observed 
values for precipitation rate.Table 3 summarizes the 

evaluation results for simulated distribution patterns 
(i.e. maximum precipitation depths, cumulative vol-
umes of water collected in catch-cans and absolute 
difference, RMSE, NRMSE and R2 between simulated 
and observed values).

Discussion

Comparison of simulated and observed 
distribution patterns

According to the observed and simulated distribution 
patterns (Fig. 7) it is recognized that the simulated 
distribution patterns have smoother shapes since these 
patterns do not have obvious peak and dip points and 
the amount of water collected in each catch-can differs 
gradually from one location to another.

Fig. 8 and Table 3 show that in all three conditions, 
the R2 values are higher than 0.935 and the differences 
between them are very small; hence there is good cor-
respondence between the model results and observed 
values. While there are some underestimations in the 
values for maximum precipitation depth, these differ-
ences decrease as the wind speed increases. According 
to Table 3, the cumulative volumes of collected water 
for both simulated and observed values decrease as the 
wind speed increases. This could be due to the fact that 
a proportion of emitted drops drifts out of the catch-can 
network due to wind and the ANN based model has an 
ability to learn this phenomenon through the process 
of training with an experimental dataset. In addition, 
according to the values of NRMSE, R2 and absolute 
difference between calculated and observed data, the 

Figure 4. Schematic view of throw radii from sprinkler and the 
shift of the wetted area according to the wind direction
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Table 3. Results of sample simulated and observed distribution patterns evaluations

Maximum PR (mL) Cumulative PR (mL) RMSE
(mL)

NRMSE
(%) R2

Obs1 Sim2 Dif3 Obs1 Sim2 Dif3

a 90 82.4 7.6 6,373 6,316  57 6.16 6.84 0.945
b 85 80.7 4.3 5,406 5,726 320 5.85 6.88 0.941
c 82 78.5 3.5 5,054 5,524 470 5.72 6.97 0.935

1 Observed value. 2 Simulated value. 3 Absolute difference between observed and simulated values.

Figure 7. Comparison of simulated and observed distribution patterns for three conditions of wind speed 
and direction.
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model error slightly increases as wind speed increases, 
but the model results still remain robust.

Assessing the shapes of simulated wetted 
areas

The shapes of the simulated wetted areas (Fig. 3) 
have been evaluated for range shortening and shifting 
of the wetted area due to wind. According to Fig. 3, Fig. 
5 and Table 2 the following important points can be 
highlighted: 1) the up-wind and cross-wind throw radii 
decreases as wind speed increases; 2) the down-wind 
throw radii increased as wind speed increased;  
3) the ISSP model successfully simulated the shift in 
wetted area due to wind; as shown in Fig. 3 and Table 2, 
where the wetted area of a single sprinkler shifts to 

East-South due to the North-West direction of the wind; 
the amount of shifting increases as wind speed increas-
es; and 4) In Fig. 6 there is a linear relationship between 
the shift in wetted area and wind speed.

Although in developing the ISSP no pre-assumptions 
were considered for the modification of distribution 
pattern due to wind (in contrast to semi-empirical mod-
els) all the results presented here are in accordance with 
the hypothesis used for the development of semi-em-
pirical models (Richards &Weatherhead, 1993; Le Gat 
& Molle, 2000; Granier et al., 2003).

The ISSP, as a first step in developing an intelligent 
model for simulating a single sprinkler distribution 
pattern, is not a general and comprehensive model, but 
the results obtained from model evaluation confirm its 
accuracy and robustness of ANNs for the simulation 
of a single sprinkler distribution pattern under real field 
conditions. The model presented can reliably simulate 
the water distribution patterns for different windy con-
ditions and does not produce any abnormal and/or ir-
regular shaped distribution patterns. 

It seems that the next step in the field for using 
ANNs for simulation of a single sprinkler distribution 
pattern would be to develop a general and compre-
hensive model. Such a general model would be able 
to simulate any single sprinkler distribution pattern 
on the basis of a preliminary distribution pattern 
measured in laboratory condition and also wind 
specifications.
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