
ISSN0717-9W3

BATCH SIZE DETERMINATION FOR WAFER FABRICATION USING
GENETIC ALGORITHMS

NIPA PHOJANAMONGKOLKIJ '
OMAR GHRAYEB ^

Northern Illinois University - USA

ABSTRACT

Processes of a real world manufacturer involve a number of batch-processing operations.
Generally, these operations require the decision on batch sizes of products and there is no specific rule
to set batch sizes of all products simultaneously so that the sum of the weighted expected cycle times
of all products is minimized. The weights represent different levels of importance for products. In this
study, we proposed an efficient genetic algorithm to determine the batch size combination that minimizes
this sum. The proposed GA was tested on three different data sets, having number of products ranging
from 7 to 12. The results show that, for some cases, the proposed GA is effective in locating the global
optimum solutions.

Keywords: Batch-processing, Queueing, Genetic Algorithm, Semiconductor manufacturing

'Industrial Engineering Department, Northern Illinois University, DeKalb, IL 60115, USA.
e-mail: nipa@ceet.niu.edu
^Industrial Engineering Department, Northern Illinois University, DeKalb, IL 60115, USA.
e-mail: ghrayeb@ceet.niu.edu



Pevista Ingenieria Industrial - Ano 4, N"1 - Segundo Semestre 2005

1. INTRODUCTION

A real world ASIC (Application Specific Integrated Circuit) manufacturer has a diverse market
focusing on networking, storage components, telecommunications/wireless, consumer, computer, and storage
systems. Processes of the company involve a number of batch-processing operations. Generally, these
operations are performed by batch-processing machines, which are capable of processing multiple products
at the same time. However, different products are generally not allowed to be in the same batch due to different
chemical and operation settings. Service times do not depend upon batch service sizes, but may differ from
one product to another. Intuitively, for products with lower arrival rates, it is preferable to use smaller batch
sizes; otherwise their waiting times to form batch increases. However, if batch sizes are too small, then the
batch-processing machines may run out of capacity. On the other hand, for products with higher arrival rates,
it is preferable to use larger batch sizes. If batch sizes are too large, then the waiting times to form batches
may increase. Generally, there is no specific rule to set batch sizes of all products simultaneously so that the
performance of batch-processing service operations (i.e. cycle time) is improved.

Typically, different products may have different levels of importance (e.g.. holding cost,
priority, etc.) These importance levels may contribute to even more complex rules of setting simultaneous
batch sizes. The company has to make a decision on batch sizes of products. In this study, the goal is
to propose an efficient genetic algorithm to determine the batch size combination that minimizes the
sum of the weighted expected cycle times of all products. The weights reflect the importance levels of
products; the higher the weights, the more important the corresponding products.

2. LITERATURE REVIEW

Previous works on analytical models to determine batch sizes of products include Neuts
(1967), Deb and Serfozo (1973), Gurnani et al. (1992), Neuts and Nadarajan (1982), Sim and Templeton
(1985), Chandra and Gupta (1997), and Avramidis et al. (1998). In these previous related works, the
analytical models are limited to either a single machine or a single product. When multiple products
are allowed, they are only permitted to have equal batch sizes. In many real-world problems, however,
especially in semiconductor manufacturing, these limitations make the existing models less than
satisfactory. The batch-processing workstations may have multiple batch-processing machines and may
process multiple products. Each product may require different operating settings (e.g., temperatures,
chemical settings, etc.) and thus have to be processed in batches with the same product. Different
products may have different level of demands and priohties, and therefore using the same batch size
for all products may not be the most effective practice. For these reasons, an analytical model that
addresses these issues is needed.

Phojanamongkolkij (2000) and Fowler ef a/. (2002) proposes a batch-process ing queueing
G/Ci'''"/c model to evaluate the performance of multiple machines, multiple products, incompatible
products, and unequal batch sizes (that is, different products may have different batch sizes.) She
compares her model with a corresponding simulation model and reports that the maximum absolute %
difference between these two models is no more than 12% in all the 73 test cases. In addition, the mean
and standard deviation are small (4.50% and 3.61%, respectively.) This model is then used along with
an intelligent search algorithm (i.e.. Genetic Algorithm or GA) to seek for the simultaneous "optimum"
batch sizes for all products so that the total expected cycle time (queue time plus service time of any
product) at machines is minimized.

However, there is a critical issue that this work fails to consider That is, there is no consideration
of product priorities. Therefore, we propose a more efficient genetic algorithm to determine the simultaneous
optimum batch sizes for all products so that the sum of the weighted expected cycle times of all products is
minimized. We also include priorities into the objective function of GA. Section 3 provides detailed problem
description of the case study. We explain the two GA operators in Section 4. The first operator is from
Phojanamongkolkij (2000), and the second operator is from Ghrayeb (2000). Section 5 compares and discusses
the results. Finally, we summarize our study and recommend some future work in Section 6.

3. PROBLEM DESCRIPTION OF WAFER FABRICATION

We consider 3 different batch-processing tool sets in the company's process for this study.
Data for the studied tool sets are given in Table I. The names of the tool sets are presented in the Tool Set
column. Brief descriptions of processes, number of machines, and the service capacities (in lots) of tool sets
are given in the second column. The Product column shows products that can be processed by tool sets.



Batch Size determination...: Phojanamongkolkij., et al

Table I also shows the service time (in hours/batch) by corresponding tool set and arrival
rates (in items/month) for each product in the Service time and the Arrival Rate columns, respectively.
These batch-processing tool sets process items that come from various upstream steps in the flows.
Thus, regardless of the overall inter-release distribution, Poisson arrivals to each batch-processing tool
set seem to be reasonable according to Renewal Process (Walrand, 1988 and Lipsky, 1992). The service
times in this study are exponentially distributed to represent the worst (standard deviation of service
time equal to its mean) scenario. The service times are essentially constant, but they are also assumed
to be exponentially distributed in this study to account for unpredictable events, such as operator and
tool availability, which may cause the service time to vary greatly. Therefore, findings from this study will
provide more generic conclusions on batch-process ing policies.

Priority ievels (weights) of all products are also given in the Normalized Priority column of
Table 1. Priorities in the real system are established based on business conditions. However, in this paper,
we randomly generate the priorities from a uniform distribution, and then normalize them so that they all
sum to one for a given tool set. The higher the values, the higher the priority levels. Since the company
is an ASIC manufacturer, it is unlikely that priority levels of any products are the same.
The goal is to determine processing policies that minimize the sum of the weighted expected cycle
times of all products. Mathematically, the objective function can be written as:

,v CT (1)
/I

where
P = number of products
w = normalized priority value of product p, for p - 1, 2, ..., P
CT = the expected cycle time (the expected waiting time to form a full batch plus the expected

waiting time in queue plus the service time) of product p at the tool set, forp = 1, 2, ..., P

Tool
Set

SET 2

SET 6

SET 7

Description,
#Machme,
(Min, Max)
Batch Size
(in items)

Diffusion
Process 2,
4 machines.
(1.6)

Oxidation
Process 1,4
machines.
(1,6)

Oxidation
Process 2,
2 machines,
(1,6)

Product

C
D
E
F
G
H
1
J
K
L
M
N
X
Y
Z
AA
BB
CC
DD
FF
GG
HH
II
JJ
KK
MM
NN

Service time
(in hours/batch)
(including
load/unload)

5.67
5.57

10.70
5.18
6.82
4.18
3.23
4.68
6.82
3.23
3.23
8.78

11.5
3.9
6.4
6.4
3.8
6.4
3.8

14.20
6.60
4.10
4.10
4.10
4.10
4.10
3.90

Arrival Rate
(in items/month)

16
16
16
16
16

483
495

91
495

12
12
32
16
16

160
162
322

8
8

16
16

162
322

8
8

160
16

Normalized
Priority

0.1193
0.1446
0.0587
0.0676
0.0355
0.0667
0.1313
0.0407
0.0443
0.0602
0.1162
0.1150
0.2501
0.0600
0.0516
0.1934
0.1347
0.1329
0.1772
0.1731
0.1307
0.0054
0.0782
0.1571
0.1831
0.1834
0.0891

Global
Optimum
Objective
Value from
Full Search

8.39

10.56

Table 1. Service time
products, and

in hours/batch), arrival rates (in items/month), and normalized priority values of
the best known solutions



Revista Ingenieria industrial - Ano 4, N"! - Segundo Semestre 2005

4. GENETIC ALGORITHM OPERATORS

Each chromosome in the GA approach consists of genes that describe a batch size
combination. The number of genes in a chromosome is the number of products. For example, a
chromosome of (1, 2, 3, 1, 1, 1, 1) for batch size combination of SET6 represents batch size of 1 for X,
2 for Y, 3 for Z, and 1 for AA, ..., and DD. The first GA operator considered is from Phojanamongkolkij
(2000) and will be later referred to as GA_I operator. The second operator is from Ghrayeb (2000) and will
be later referred to as GA II operator. The detailed algorithm for each operator is given below.

4.1. One-Point Crossover operator (GAJ)
Step 1. Use a random number generator to create the first generation with number of chromosomes

equal to specified population size.
Step 2. Evaluate the objective function (described below) of each chromosome.
Step 3. Reorder the chromosomes according to the best objective vaiue.
Step 4. If number of generations is less than the specified value, then go to Step 5. Otherwise, go to

Step 6.
Step 5. Create the next generation from

5.1. Cloning (30%): Use the best 30% of chromosomes in the current generation as
chromosomes in the next generation.

5.2. Breeding (60%): From the best 30% of chromosomes, perform pairwise- crossover to
reproduce 60% of chromosomes for the next generation. The crossover point is randomly
selected.

5.3. Mutation (10%): From the best 10% of chromosomes, swap two (random) genes in each
chromosome to create 10% new chromosomes for the next generation.

5.4. Start the next generation. Go to Step 2.
Step 6. The GA solution is the best chromosome in the last generation.

This algorithm is coded in Matlab (2001). The best chromosome in this study implies the
chromosome that gives the lowest value of the objective function. Cloning allovws the best chromosomes
to survive to the next generation. Breeding and mutation allow (optimistically) the creation of even
better chromosomes from the current best chromosomes. We include the infeasibility of a solution in
the objective function. The infeasibility takes place when machine theoretical utilization exceeds 100%.
Machine theoretical utilization refers to the arrival rate divided by the service rate. The service rate is
determined by the number of machines and assumes only batches of the specific size are formed. The
objective function is, therefore, the summation of the weighted expected cycle times of all products (Eq.
(1)) and the sum of squares of infeasibility. Thus, the model formulation for the GA is

("/" +(infeasibility)^
I' r

J 0 , if % theoretical utilization < 100%

L

where

infeasibility= L % theoretical utilization - 100% , otherwise

If machine theoretical utilization exceeds 100%, then the term ^ "V*̂ /̂

Phojanamongkolkij (2000) for detailed calculation) is automatically set to be a very large value in the Matlab
code and the term (infeasibility)2 is also a very large value. Thus, a chromosome giving an infeasible
solution is unlikely to survive to the next generation.



Batch Size determination...: Phojanamongkolkij., et ai.

4.2. Partial-Chromosome-Exchange Crossover operator (GAJI)

This algorithm is also coded in Matlab (2001). The following are steps for this algorithm.
Step 1. Use a random number generator to create the first generation with number of chromosomes

equal to specified population size.
Step 2. If number of generations is less than the specified value, then go to Step 3. Otherwise, go to

Step 6.
Step 3. Perform the following procedures on all chromosomes of the current generation.

3.1 Randomly select two parents, excluding the ones (or their associated positions in the
generation) already selected, from the current population with equal probability.

3.2 Apply crossover operator (explained below) to the two selected parents, which results in
two new children.

3.3 Put the two parents and the two children together, and pick up the better two according
to their objective values. Objective values are evaluated the same way as those of ONE-
POINT CROSSOVER operator.

3.4 Replace the two parents with the two newly selected individuals.
At the end of Step 3, the current population is the population after crossover operator is performed.
Step 4. Perform the following procedures on 20% of chromosomes of the current population. (This

20% number is randomly selected.)
4.1 Randomly select one parent, excluding the ones (or their associated positions in the

generation) already selected, from the current population with equal probability.
4.2 Apply mutation operator (same as in GA_I operator) to the selected parent, which results

in one new child.
4.3 Put the parent and the child together, and pick up the better one according to their

objective values.
4.4 Replace the parent with the one newly selected individual

Step 5. Start the next generation with the current population. Go to Step 2.
Step 6. The GA solution is the best chromosome in the last generation.

Crossover
To exploit the potential of the current generation, we use crossover to generate new

generation that, hopefully, retains good features from the current generation. The crossover operator
can be summarized as follows:

1. Decide on the value of Block, which is the length of the partial chromosomes to be exchanged
between the two parents to create offspring.

2. Randomly pick a position in parent PI. The second position will be equal to the first position
plus Block. Then, Partial Chromosome 1 is formed with the genes between and including the
first and second positions.

3. To form Pariial Chromosome 2, repeat step 2 for parent P2. Figure 9 shows children C1 and
C2 generated by this method.

4. Exchange the partial chromosomes, as shown in Figure 1, to generate children Cl and C2.

PI
P2

A. Partial Chromosome 1
[3 4531443461513536514326514662165222 2]
[4 3323351414152162131326226465664545 5]

\
Partial Chromosome 2

Cl [3 4531443461543323514326514662165222 2]
C2 [13536351414152162131326226465664545 5]

Partial Chromosome 1

Figure 1. Exchange partial chromosomes.



Pevisia ingenien'a Industriai - Arjo 4. N°1 - Segundo Semestre 2005

5. COMPUTATIONAL RESULTS

In this study we set population size to be 50 and 100. For GA_II operator. Block parameter
is set to be one-sixth of total number of genes in chromosomes. If the value is not integer, we always
round the length up to the nearest integer. Therefore, for SET2, SET6, and SET7 Block parameters are 2
(12/6), 2 (7/6), and 2 (8/6), respectively. This one-sixth value is selected randomly.

To have a rigouros comparison between the two GA operators, we use Full Search (FS)
to obtain the global optimum objective values for two data sets (SET6 and SET7). For FS method, we
evaluate the objective value of all batch size combinations. For example in case of SET6, all batch size
combinations of X, Y, ..., and DD include (1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 2), ..., (6, 6, 6, 6, 6, 6, 5),
and (6, 6, 6, 6, 6, 6, 6). Then we find the batch size combination that provides the minimum sum of the
weighted expected cycle times of all products, and this combination will be the global optimum solution.
The reason for obtaining the global optimum solution only for SET6 and SET 7 is that it would take
extremely long computational time in case of SET2 (Phojanamongkolkij, 2000 and Fowler ef al., 2002).
The global optimum solution for these data sets is reported in the last column of Table I.

Figures 2, 3, and 4 show the best convergence curves for SET2, SET6, and SET7,
respectively. The curves labeled with GA_ll_50 and GA_II_100 represent the curves obtained from GA_II
operator with population size of 50 and 100, respectively. Similar interpretation applies for the curves
labeled with GA_l_50 and GA_I_1OO, but both curves are obtained from GA_I operator. Each curve in all
figures is obtained from running the GA three times with the same parameter settings, and then selecting
the best curve among the three to represent each curve in all figures.

As we can see from Figure 3, the GA_II operator converged to the global optimal solution
for SET6 for both population size cases. Actually, it converged to the global optimal in the three runs.
On the other hand the GAJ operator converged to the expected cycle time of 8.42 hours when the
population size was 100 and to 8.669 hours when the population size was 50. For the other runs, it
converged to higher values. From the same figure, we also notice that the GA_I operator converged at a
very early stage, actually, it converged at the 5'" generation when the population size was 100 and at the
6th generation when the population size was 50. This indicates that the GA I operator was trapped in a
local optimum very early. If we look at Figure 4, we draw the same conclutions as in the case of SET 6.
Therefore, we can conlcude that the GA_I1 operator was successful for both data sets and outperformed
the GA_I operator.

For SET2, as shown in Figure 2, the GA_1I operator converged to a solution with objective
value of 9.204 hours while the GAJ operator converged to 10.732 and 10.058 when the population size
was 50 and 100, respectively. Again, the GA_I operator showed a premature convergence compared with
the GA_I1 operator Therefore, we believe that it is fair to conclude that, in general, the GA_1I operator
outperformed the GA_I operator and is recommended to be used to find the batch size combination.

SET2 (12 genes)

GAJI_50

GA_l_50

GAJI_100
GA I 100

10 15 20 25 30 35 40 45

^Generations

50

Figure 2. Convergence graph for SET2 data set.

10



Batch Size determination...: Phojanamongkolkij., et af

25-

•i 20-

O 10-

5-

0 •

) 2 4 6

SET6 (7 genes)

8 10 12

HfGenerations

14

GAJI_50

- GA_l_50

16 16 20

Figure 3. Convergence graph for SET6 data set.

SET7 (8 genes)

40 -

35 -

I '°"
^ 25 H

.1 20 -

§ 15

10 -

5 -

0

QA 11 50

GA_t_50

GAJLIOO
GAJ_100

GlobalOptimum

0 10 15

#Generations

20 25 30

Figure 4. Convergence graph for SET7 data set.

6. CONCLUSIONS

Processes of a real world ASIC (Application Specific Integrated Circuit) manufacturer
involve a number of batch-processing operations. Generally, these operations require the decision on
batch sizes of products and there is no specific rule to set batch sizes of all products simultaneously
so that the cycle time of batch-processing sen/ice operations is improved. Typically, different products
may have different levels of importance. These importance levels may contribute to even more complex
rules of setting simultaneous batch sizes. In this study, we proposed an efficient genetic algorithm to
determine the batch size combination that minimizes the sum of the weighted expected cycle times of
all products. The proposed GA was tested on three different data sets collected from the company and
its performance was compared with the Full Search on two data sets (one with 7 products, and the other
with 8 products) and with one-point crossover GA. As the results showed, the proposed GA located
the global optimal solution for the two data sets and outperformed the one-point crossover GA for the
third data set having 12 products. We recommend using the suggested simultaneous batch sizes as the
minimum batch sizes to start the operation at the batch-processing machines.

11



Revista Ingenierfa Industrial • Ario 4. JV°7 - Segundo Semestre 2005

7. REFERENCES

• Avramidis, A.N., Healy, K.J., and Uzsoy, R. (1998) Confrol of a bafch-processing machine; a
computational approach. internationalJoumai of Production Research, 36 (11), 3167-3181.

• Chandra, P. and Gupfa, S. (1997) Managing Batch Processors fo Reduce Lead Time in a Semiconductor
Packaging Line, internationai Journal of Production Research, 35 (3), 611 -633.

• Deb, R.K. and Serfozo, R.F (1973) Optimal Control of Bafch Service Queues. Advanced Applied
Probability, 5, 340'36^.

• Fowler, J.W., Phojanamongkolkij, N., Cochran, J.K., and Monfgomery, D.C. (2002) Optimal Batching
in a Wafer Fabricafion Facility Using a Mulfiproduct G/G/c Model with Batch Processing. International
Journal of Production Research, 40 (2), 275-292.

• Ghrayeb, O. (2000) Solving Job-Shop Scheduling Problem with Fuzzy Durations Using Genetic
Algorithms, Doctoral Dissertation, New Mexico Stafe University.

• Gurnani, H., Anupindi, R., and Akella, R. (1992) Confrol of Batch Processing Sysfems in Semiconductor
Wafer Fabrication Facilities. IEEE Transactions on Semiconductor Manufacturing, 5 (4), 319-328.

• Lipsky, L. (1992) Queueing Theory. A Linear Algebraic Approach, Macmillan Publishing Company.

• Matlab, Version 5.3.0 (1999), The MathWorks Inc.

• Neuts. M.F (1967) A General Class of Bulk Queues with Poisson Input. Annals of Mathematical
Statistics, 38, 759-770.

• Neuts, M.F and Nadarajan, R. (1982) A Multiserver Queue wifh Threshold for the Acceptance of
Customers info Service. Operations Research, 30 (5), 948-960.

• Phojanamongkolkij, N. (2000) Analytical Models of Batch Processing for Optimal Design of
Semiconductor Manufacturing, PhD Dissertafion, Arizona Sfate University.

• Sim S.H. and Templeton, J.G.C. (1985) Sfeady State Results for the M/M(a,b)/c Bafch-Service System.
European Journal of Operations Research, 21, 260-267.

• Wairand, J. (1988) An Introduction to Queueing Networks, Prentice Hall, Inc.

12






