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Abstract — The automatic analysis of speech to detect affective 

states may improve the way users interact with electronic 

devices. However, the analysis only at the acoustic level could be 

not enough to determine the emotion of a user in a realistic 

scenario. In this paper we analyzed the spontaneous speech 

recordings of the FAU Aibo Corpus at the acoustic and linguistic 

levels to extract two sets of features. The acoustic set was reduced 

by a greedy procedure selecting the most relevant features to 

optimize the learning stage. We compared two versions of this 

greedy selection algorithm by performing the search of the 

relevant features forwards and backwards. We experimented 

with three classification approaches: Naïve-Bayes, a support 

vector machine and a logistic model tree, and two fusion schemes: 

decision-level fusion, merging the hard-decisions of the acoustic 

and linguistic classifiers by means of a decision tree; and feature-

level fusion, concatenating both sets of features before the 

learning stage. Despite the low performance achieved by the 

linguistic data, a dramatic improvement was achieved after its 

combination with the acoustic information, improving the results 

achieved by this second modality on its own. The results achieved 

by the classifiers using the parameters merged at feature level 

outperformed the classification results of the decision-level fusion 

scheme, despite the simplicity of the scheme. Moreover, the 

extremely reduced set of acoustic features obtained by the greedy 

forward search selection algorithm improved the results provided 

by the full set. 

 
Keywords — Acoustic and linguistic features, decision-level 

and future-level fusion, emotion recognition, spontaneous speech 

 

I. INTRODUCTION 

NE of the goals of human-computer interaction (HCI) is 

the improvement of the user experience, trying to make 

this interaction closer to human-human communication. 

Inclusion of speech recognition was one of the key points to 

include “perception” to multimedia devices. This improved 

their user interfaces [1]. However, the analysis of affective 

states by the study of the implicit channel of communication 

(i.e. the recognition of not only what is said but also how it is 

said) may improve HCI making these applications more 

usable and friendly. This is because, in general, inclusion of 

skills of emotional intelligence to machine intelligence makes 

HCI more similar to human-human interaction [2]. There is a 

wide range of contexts where the analysis of speech and 

emotion in the input of the systems –and also the synthesis of 

emotional speech at the output– can be applied to, including 

automatic generation of audio-visual content, virtual meetings, 

automatic dialogue systems, tutoring, entertainment or serious 

games. 

There are many studies related to emotion recognition 

based on different approaches. However, a big amount of 

these works are based on corpora consisting of utterances 

recorded by actors under supervised conditions. Nowadays 

this is not the current trend because of the lack of realism of 

these data [3]. 

The first study where authors attempted to work with a 

corpus of spontaneous speech seems to be [4], collecting 

utterances from infant directed speech. Many other works 

tried to deal with realistic data, such as [5] and [6]. 

Nevertheless, it is difficult to compare the results of these 

approaches when they are using different data and different 

evaluation methods. A framework to generalise the research 

on this topic was proposed by [7]. This framework was based 

on a corpus of spontaneous speech where two different subsets 

were defined in order to allow speaker-independence during 

the analysis. Speech was non-acted and, for this reason, 

utterances were characterised by being non-prototypical and 

having low emotional intensity. Results obtained within this 

framework [8] give an idea of the complexity of the task. The 

combination of 7 classification approaches considering 

different sets of features achieved 44.00% of unweighted 

average recall (UAR). We worked under the same naturalistic 

conditions in this article. 

The task of emotion recognition from speech can be tackled 

from different perspectives [3]. We considered the analysis of 

two modalities: the acoustic (referred to the implicit message) 

and the linguistic (referred to the explicit message), extracting 

acoustic parameters from the speech signal and linguistic 

features from the transcriptions of the utterances of the corpus. 

Because in a realistic scenario the analysis of acoustic 

information could be not enough to carry out the task of 

emotion recognition from speech [9] the linguistic modality 

could improve an only-acoustic study. In this article, both 

modalities were combined at the decision level and at the 

feature level to compare the performance of different 

classification approaches using both procedures. To improve 
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the performance of the classifiers and optimize the experiment 

we reduced the acoustic set of features (the largest one) by 

selecting the most relevant parameters by a greedy algorithm 

before starting the learning stage. Also, for this feature 

selection stage, we compared two search methods (forwards 

and backwards) through the space of feature subsets. 

This paper is structured as follows: Section II describes the 

corpus and details its acoustic and linguistic parameterization. 

Section III defines the methodology of the experiment, 

describes the feature selection algorithms used to optimize the 

acoustic set of data and details the two fusion schemes 

proposed. Section IV summarises the results. Conclusions are 

detailed in Section V. 

II. CORPUS 

This work was based on the FAU Aibo Corpus [10] as it 

was defined in [7]. In this Section we describe this corpus and 

its acoustic and linguistic parameterization. 

A. Corpus Description 

The FAU Aibo Corpus consisted of 8.9 hours of audio 

recordings of German speech from the interaction of children 

from two schools playing with the Sony’s Aibo robot in a 

Wizard of Oz (WOZ) scenario. These audio recordings were 

divided into 18,216 chunks. A chunk is each one of the 

segmentations of the audio recordings of the corpus into 

syntactically and semantically meaningful small parts. These 

parts were defined manually following syntactic and prosodic 

criteria [10]. The chunks of the two schools were divided into 

two independent folds (fold 1 and fold 2) to guarantee 

speaker-independence. Thus, each fold contained speech 

recordings from different children. Each chunk, after 

parameterization, was considered an instance of the datasets 

used to train and test the classification schemes. The number 

of resulting instances was 9,959 for the fold 1 and 8,257 

instances for the fold 2. The emotions considered to label the 

corpus were defined by these five category labels: Anger (A), 

including angry (annoyed), touchy (irritated as a previous step 

of anger) and reprimanding (reproachful); Emphatic (E) 

(accentuated and often hyper-articulated speech but without 

sentiment); Neutral (N); Positive (P), which included 

motherese (similar to infant-directed speech but from the child 

to the robot) and joyful states; and Rest (R), a garbage class 

collecting three affective states: surprise (in a positive sense), 

boredom (with a lack of interest in the interaction with the 

robot) and helpless (doubtful, speaking using disfluencies and 

pauses). 

Because of the use of a WOZ scenario to record the 

affective states of the children, the corpus collected 

spontaneous utterances of naturalistic emotional speech in a 

real application environment. For this reason, it included non-

prototypical emotions of low intensity. Moreover, the 

distribution of the emotion labels was very unbalanced. For 

example, the majority class (N) consists of 10,967 utterances 

(60.21% of the whole corpus) while the minority class (P) 

consists of only 889 utterances (4.88% of the whole corpus). 

For a full description of this corpus cf. [7]. 

B. Acoustic Parameterization 

The acoustic analysis of the corpus consisted on calculating 

16 low-level descriptors (LLDs). These LLDs were: the zero-

crossing rate (ZCR) analysed in the time signal, the root mean 

square (RMS) frame energy, the fundamental frequency (F0) 

normalised to 500 Hz, the harmonics-to-noise ratio (HNR) 

and 12 mel-frequency cepstral coefficients (MFCC). We also 

computed the derivative of these LLDs. 

We calculated 12 functionals from these LLDs and, also, 

from their derivatives. These functionals were: the mean, the 

standard deviation, the kurtosis and the skewness, the value 

and range and position of the extremes, and the range and two 

linear regression coefficients with their mean square errors 

(MSE). 

To perform this parameterization we used the openSMILE 

software included in the openEAR toolkit release [11], 

obtaining 16 × 2 × 12 = 384 features per instance. 

C. Linguistic Parameterization 

The linguistic parameterization was based on the 

transcriptions of the corpus. These transcriptions defined the 

words that children used to communicate with the robot Aibo. 

We used the concept of emotional salience proposed by [12] 

to translate the words of a chunk into 5 emotion-related 

features. Assuming independence between the words of a 

chunk, the salience of a word is defined as the mutual 

information between a specific word and an emotion class. 

Therefore, an emotionally salient word is a word that appears 

more often in that emotion than in the other categories. 

Considering this definition, let W = {v1, v2, ..., vn} be the n 

words of a chunk and let E = {e1, e2, ..., ek} be the emotional 

space defined by a set of k emotion classes. Mutual 

information between the word vm and the emotion class ej is 

defined by (1).  
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where P(ej|vm) is the posterior probability that a chunk 

containing the word vm implies the emotion class ej and P(ej) 

is the a priori probability of the emotion ej. 

The emotional salience of the word vm related to the 

emotional space E is defined by (2). 
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We calculated the emotional salience of all the words of the 

training dataset retaining only those with a value greater than a 

threshold empirically chosen at 0.3. This resulted in a list of 

emotionally salient words. Next, we calculated 5 linguistic 

features for each chunk. These features, called activations and 
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denoted by aj, were calculated following (3) [12]. 
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where Im is 1 if the word matches the list of salient words or 

0 otherwise. 

To guarantee the independence of the two folds during the 

parameterization stage, the list of emotionally salient words 

was created considering only the fold used for training. Next, 

we calculated the activation features for both folds but using 

only the emotional salience values and the a priori 

probabilities from the training fold. By following this 

procedure the test data remained unseen during the analysis of 

the training data to extract the information about the emotional 

salience of the words of the corpus. 

III. EXPERIMENTATION 

In this Section we explain the methodology of the 

experiment, the feature selection algorithms used to reduce the 

acoustic set of features and the two procedures to fusion the 

acoustic and linguistic modalities. 

A. Methodology 

The acoustic feature vector contained a big amount of 

information (384 features), being much larger than the vector 

of linguistic parameters (5 features). The inclusion of 

irrelevant features in the space of parameters could deteriorate 

the performance of the classifiers used in the learning stage 

[13]. Moreover, if these data were merged with the linguistic 

features without any previous processing then the resulting 

vectors would be very unbalanced because they would contain 

many more features related to the acoustic information than 

features related to the linguistic information. 

Feature selection techniques are designed to create subsets 

of features without redundant data by discarding irrelevant 

input variables with little predictive information. These 

reduced subsets could improve the performance of the 

classifiers and obtain a more generalizable classification 

model [14]. We used a wrapper method [15] to evaluate the 

candidate subsets created by a search algorithm and two ways 

of searching the feature space to create these subsets, as it is 

explained in detail in Section III.B. 

In the classification stage, we considered two procedures to 

fusion the acoustic and the linguistic data. On the one hand, 

we performed a decision-level fusion of these modalities 

classifying the acoustic and the linguistic data independently 

and merging the classification results by a third classifier. On 

the other hand, we used a feature-level fusion procedure 

merging the acoustic and the linguistic parameters before the 

classification stage. These procedures are detailed in Section 

III.D and Section III.E, respectively.  

We evaluated the classifier schemes in a 2-fold cross-

validation manner. We used one fold for training and the other 

fold for testing and vice versa. This allowed us to guarantee 

speaker-independence in the experiment. The mean value of 

the performances of both folds was also calculated. 

We considered three learning algorithms in this experiment 

using the implementations provided by the WEKA data 

mining toolkit [13]. The first learning algorithm was a Naïve-

Bayes (NB) classifier. This algorithm was found to be the 

most relevant in [16] despite its simplicity. For this reason it 

was used as the baseline in this experiment. To improve the 

performance of this classifier we applied, prior to the training 

stage, a supervised discretisation process based on the Fayyad 

and Irani’s Minimum Description Length (MDL) method [17]. 

The second classification approach was a support vector 

machine (SVM) classifier. For this work, we chose a SVM 

with a linear kernel using sequential minimal optimisation 

learning [18]. To allow the algorithm to deal with a problem 

of five classes we used pairwise multi-class discrimination 

[19]. Finally, the third classifier was a logistic model tree as 

described in [20]. This is a model tree using logistic 

regression at the leaves instead of linear regression. This is 

named Simple Logistic (SL) in WEKA. 

We used the UAR measure to compare the performances of 

the classification approaches because the distribution of the 

classes in the FAU Aibo Corpus was very unbalanced. 

Comparing the UAR of the classifiers, instead of the 

weighted-average recall (WAR) measure, the most even class-

wise performance was intended. Thus, the same importance 

was given to the majority and the minority classes of the 

corpus because we considered the detection of the interactions 

with emotional content as important as the detection of the 

neutral interactions. However, in most of other studies of 

emotion recognition the WAR measure was used because the 

distribution of the classes of their corpora was usually quite 

balanced.  Equation (4) shows that the recall for one class c is 

calculated as the proportion of correctly classified cases (True 

Positives) with respect to the corresponding number of 

instances (True Positives and False Negatives) of this class. 

Equation (5) shows the computation of UAR performance of a 

classifier considering the recalls of each class c. 
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where TP stands for True Positives, FN stands for False 

Negatives and |C| represents the number of classes. 

B. Feature Selection Process 

To reduce the set of acoustic features we chose a wrapper 

method. A wrapper method uses a learning algorithm to 

evaluate the subsets created by a search algorithm. These 

subsets are the candidates to be the optimal ones. We 

considered the Naïve-Bayes classifier to assess the goodness-
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of-fit of the candidate subsets. We searched the space of 

features by means of two greedy procedures to automatically 

create these subsets: 

 Greedy forward (FW) search. This algorithm carried 
out an iterative exhaustive search through the feature 
space creating subsets starting with no features and 
adding one parameter at each iteration. 

 Greedy backward (BW) search. In this case, the 
iterative exhaustive search consisted on creating 
subsets starting with all the features and discarding 
one at each iteration. 

Before starting the feature selection stage we resampled the 

fold 1 reducing it by half to speed up the process and biased it 

to a uniform distribution. To guarantee independence between 

both datasets, we used only the fold 1 to select the candidate 

subsets of features and evaluated them on all the instances of 

this fold.  

In the case of the FW search, the acoustic dataset was 

reduced from 384 features to 28 features: 21 related to the 

MFCC parameters, 3 related to the RMS frame energy, 2 

related to the F0, 1 related to the HNR and 1 related to the 

ZCR. The BW search was a more conservative approach and 

created a set of 305 features.  

A comparison of the performances of the classifiers using 

the full set of acoustic features and the reduced sets is shown 

in Fig. 1. For each algorithm we show three results: the Fold 1 

column indicates the results obtained when training the 

classifiers with the fold 1 and testing with the fold 2, the Fold 

2 column is the opposite and the Mean column is the mean of 

the previous results. As it can be observed, focusing on the 

mean values of the Fold 1 and Fold 2 experiments and except 

the case of the Naïve-Bayes classifier, UAR values were 

slightly better for the reduced sets than for the full set of 

features. In the case of the Naïve-Bayes classifier, the dataset 

created by the FW search degraded dramatically the 

performance of this classifier. Nevertheless, the performance 

was slightly improved using the dataset created by the BW 

search. Thus, we chose the reduced sets for this experiment 

decreasing the computational cost of the classification 

algorithms. 

C. Dataset Pre-processing 

To optimize the performance of the classifiers we pre-

processed the datasets used to train them. Datasets were 

biased to a uniform class distribution by means of a 

resampling with replacement technique and duplicating the 

total number of instances. We did not bias the distribution of 

classes in the case of the Naïve-Bayes algorithm because this 

process degraded its performance. In the case of the SVM, 

data was also normalised by the Euclidean norm.  

D. Decision-Level Fusion 

Decision-level fusion is based on the processing of the 

classification results of prior classification stages. The main 

goal of this procedure is to take advantage of the redundancy 

of a set of independent classifiers to achieve higher robustness 

by combining their results [21]. 

In this experiment, decision-level fusion was performed by 

combining hard decisions from the classifiers that were trained 

and tested by the acoustic and linguistic features 

independently. Although soft decisions could also be used, 

hard decision classifiers provide the least amount of 

information to make their combinations [22]. We followed the 

stacked generalization strategy introduced by [23] and used a 

decision tree to merge the classifications obtained by the two 

classifiers. This stacking approach proved to be useful in the 

field of emotion recognition in previous works like those by 

[24] and [25]. The decision tree used to merge the hard 

decisions of the classifiers was a J4.8 classifier. This is the 

WEKA implementation of the C4.5 Revision 8 algorithm [13], 

a slightly improved version of the C4.5, based on entropy 

Fold 1 Fold 2 Mean Fold 1 Fold 2 Mean Fold 1 Fold 2 Mean

All acoustic features (384) FW Selected acoustic features (28) BW Selected acoustic features (305)

NB 40.46 37.96 39.21 27.94 29.52 28.73 40.56 38.08 39.32

SVM 39.56 37.18 38.37 39.44 38.48 38.96 39.90 37.16 38.53

SL 39.42 37.86 38.64 39.30 38.36 38.83 39.84 38.66 39.25
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Fig. 1.  Unweighted average recall of the classifiers using the full dataset of 384 acoustic features and using the reduced sets of the 28 and 305 acoustic features 

selected by the greedy forward search and greedy backward search selection algorithms, respectively. NB stands for Naïve-Bayes, SVM stands for Suport Vector 

Machine and SL stands for Simple Logistic. FW and BW stands for the greedy forward search and greedy backward search selection algorithms, respectively. 
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information [26]. 

To train the J4.8 algorithm we trained and tested each one 

of the three classifiers with the full training sets, both the 

acoustic and the linguistic. Next, we created a dataset merging 

the hard decisions of each classifier for both sets of features. 

This dataset was used to train the J4.8 learning scheme after 

biasing it to a uniform distribution and duplicating the number 

of instances. Once more, and as in other stages of this 

experiment, test data remained unseen during the training 

process. When the J4.8 classifier was trained, we evaluated 

the hard decisions of the classifiers tested with the test data, 

measuring the performance of the full scheme at the end. 

E. Feature-Level Fusion 

A feature-level fusion scheme integrates unimodal features 

before learning concepts, as it is described in [27]. The main 

advantage of a feature-level fusion scheme is the use of only 

one learning stage. Moreover, this fusion scheme allows 

taking advantage of mutual information from data. We used 

concatenation of the reduced set of acoustic features and the 

linguistic set to create a multimodal representation of each 

instance. Thus, the amount of features for the merged dataset 

was of 33 elements per instance. 

IV. RESULTS 

Results of this experiment are shown in Fig. 2. Like in Fig. 

1, for each algorithm we show three results: the Fold 1 column 

indicates the results obtained when training the classifiers with 

the fold 1 and testing with the fold 2, the Fold 2 column is the 

opposite and the third result is the mean of the previous 

results. The results obtained by the dataset created by the FW 

search procedure are shown at the top and the results achieved 

by the BW search dataset are shown at the bottom. 

Focusing on the mean value of the two folds, it can be 

observed that the performance of the classifiers that only used 

Fold 1 Fold 2 Mean Fold 1 Fold 2 Mean Fold 1 Fold 2 Mean Fold 1 Fold 2 Mean

FW Selected acoustic features (28) Linguistic features (5) Decision-level fusion (FW) Feature-level fusion (FW)

NB 27.94 29.52 28.73 25.76 31.92 28.84 30.30 38.54 34.42 33.90 36.44 35.17

SVM 39.44 38.48 38.96 27.54 33.48 30.51 39.52 43.96 41.74 41.60 45.18 43.39

SL 39.30 38.36 38.83 28.00 33.78 30.89 38.92 44.08 41.50 44.06 46.10 45.08
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Fold 1 Fold 2 Mean Fold 1 Fold 2 Mean Fold 1 Fold 2 Mean Fold 1 Fold 2 Mean

BW Selected acoustic features (305) Linguistic features (5) Decision-level fusion (BW) Feature-level fusion (BW)

NB 40.56 38.08 39.32 25.76 31.92 28.84 37.22 41.04 39.13 41.04 39.52 40.28

SVM 39.90 37.16 38.53 27.54 33.48 30.51 42.28 38.46 40.37 41.68 42.88 42.28

SL 39.84 38.66 39.25 28.00 33.78 30.89 40.96 39.86 40.41 42.68 44.08 43.38
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Fig. 2.  Unweighted average recall of the classifiers using the selected set of acoustic features (28 features selected by the greedy forward search 

selection algorithm (top) and 305 features selected by the greedy backward search selection algorithm (bottom)), the set of 5 linguistic features, the 

decision-level fusion scheme and the feature-level fusion scheme. 
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the 28 acoustic features selected by the FW search was better, 

in general, than the performance of the classifiers that only 

used the 5 linguistic parameters. In the case of the SVM 

classifier, the use of the acoustic features improved the 

performance of the linguistic parameters by 8.45% absolute 

(27.70% relative). In the case of the Simple Logistic 

performance was improved by 7.94% absolute (25.70% 

relative). Only the Naïve-Bayes got its performance improved 

(by only 0.11% absolute, 0.38% relative) using the linguistic 

features instead of the acoustic parameters. In the case of the 

set of features selected by the BW search, the performance of 

the classifiers using the 305 features was better, in all cases, 

than using the 5 linguistic parameters. The improvement in the 

case of the Naïve-Bayes, the SVM and the Simple Logistic 

classifiers was 10.48% absolute (36.34% relative), 8.02% 

absolute (26.29% relative) and 8.36% absolute (27.06% 

relative), respectively. 

However, the combination of the linguistic and the acoustic 

features at the decision and at the feature levels improved the 

performance of the classifiers that considered both modalities 

independently. For the FW search, the decision-level fusion 

results improved the mean of the performances achieved by 

the acoustic and the linguistic sets in the case of the Naïve-

Bayes, the SVM and the Simple Logistic classifiers by 5.63% 

absolute (19.56% relative), 7.00% absolute (20.15% relative) 

and 6.64% absolute (19.05% relative), respectively. The 

improvement in the case of the feature-level fusion scheme 

was 6.38% absolute (22.16% relative), 8.65% absolute 

(24.90% relative) and 10.22% absolute (29.32% relative), 

respectively. Considering the BW search, the decision-level 

fusion results improved the mean of the performances 

achieved by the acoustic and the linguistic sets in the case of 

the Naïve-Bayes, the SVM and the Simple Logistic classifiers 

by 5.85% absolute (16.95% relative) and 5.34% absolute 

(15.23% relative), respectively. In the case of the Naïve-Bayes 

classifier, performance was slightly degraded. The 

improvement in the case of the feature-level fusion scheme 

was 6.20% absolute (18.19% relative) for the Naïve-Bayes, 

7.76% absolute (22.48% relative) for the SVM and 8.31% 

absolute (23.70% relative) for the Simple Logistic classifier. 

As it can be observed, the improvement achieved by the 

fusion of the acoustic and the linguistic parameters (regardless 

the classifier considered) is more significant in the case of the 

acoustic FW search selected features than in the case of the 

acoustic BW search selected features. 

In all the cases, the fusion of both modalities at the feature 

level outperformed the results of the fusion at the decision 

level. Considering the FW search selected features, for the 

Naïve-Bayes, the SVM and the Simple Logistic classifiers, the 

feature-level fusion scheme improved the performance of the 

decision-level scheme by 0.75% absolute (2.18% relative), 

1.65% absolute (3.95% relative) and 3.58% absolute (8.63% 

relative), respectively. In the case of the BW search selected 

features, the feature-level fusion scheme considering the 

Naïve-Bayes, the SVM and the Simple Logistic improved the 

performance of the decision-level scheme by 1.15% absolute 

(2.94% relative), 1.91% absolute (4.73% relative) and 2.97% 

absolute (7.35% relative), respectively. 

Although the Naïve-Bayes classifier performed well in a 

prior study [16], in the case of the FW search selected features 

its performance was below the other two classifiers. The main 

reason can be found in the fact that the feature selection 

algorithm used in Section III.B was not designed to avoid 

dependencies among the chosen parameters, being 

independence of features one of the requirements of this 

classification algorithm [28]. This degradation was not 

observed analysing the features selected by the BW search 

because it contains a larger number of parameters. 

Only the Fold 1 columns of Fig. 2 must be taken into 

account to compare these results with the experiments carried 

out by other authors in the same scenario. This column shows 

the performance of the classification algorithms when using 

fold 1 for training and fold 2 for testing, i.e. the two different 

schools independently, as detailed in [7]. Reference [8] 

compiled a list of results achieved by several authors working 

in the same conditions and their fusion by a majority voting 

scheme. The fusion of the best 7 results achieved a 

performance of 44.00% UAR, considering different learning 

schemes and datasets. The best result obtained in this paper by 

means of the Simple Logistic classifier and the feature-level 

fusion scheme considering the acoustic FW search selected 

features (i.e. using 33 features) improved this result by 0.06% 

absolute (0.14% relative). Although both results were quite 

similar, it is noteworthy that the number of features involved 

in our study was dramatically lower and also the complexity 

of the learning scheme. 

V. CONCLUSION 

In this paper we presented a comparison between decision-

level and feature-level fusion to merge the acoustic and the 

linguistic modalities in a real-life non-prototypical emotion 

recognition from speech scenario. Also, we compared two 

procedures to select the most relevant features from the large 

set of acoustic parameters. 

We parameterized the audio recordings of a naturalistic 

speech corpus obtaining 384 acoustic and 5 linguistic features. 

To reduce the amount of acoustic features we compared two 

greedy search procedures for feature selection analysing the 

full set of features forwards and backwards, obtaining 28 and 

305 relevant parameters, respectively. The performance of the 

classifiers with these reduced datasets was, except for the case 

of the Naïve-Bayes algorithm with the FW search selected 

features, slightly better than using the full dataset. Using fewer 

features we were able to speed up the emotion recognition 

process because we simplified the parameterization stage and 

the small datasets reduced the computational cost of the 

classification stage. 

Linguistic information, by themselves, did not create a good 

dataset for the classifiers of this experiment and their 

performance was even below the performance achieved by 
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using only the acoustic dataset. However, the combination of 

these modalities by means of any of the two fusion procedures 

outperformed the results achieved by both modalities on their 

own. It is remarkable, then, the importance of analysing the 

acoustic modality (how things are said) and the linguistic 

modality (what things are said) to achieve the best results in 

an automatic emotion recognition experiment, in a similar way 

as we do in the human communication. This outperformance 

is more significant in the case of the fusion of the linguistic 

parameters and the acoustic FW search selected features than 

in the case of the fusion of the linguistic parameters and the 

acoustic BW search selected features. Moreover, in general, 

results from the FW scheme are better than in the BW scheme, 

except for the case of the Naïve-Bayes algorithm. 

Feature-level fusion revealed as the best scheme to merge 

the acoustic and the linguistic information. Moreover, this 

kind of fusion is simpler than decision-level fusion, which 

reduces the complexity of the analysis of the speech 

recordings. In this feature-level fusion scheme we used only 

one classifier to analyse a reduced set of acoustic and 

linguistic parameters merged by simple concatenation of 

vectors. The performance of this scheme was better than the 

decision-level scheme consisting of three classifiers: two for 

each modality and one to merge their results. 

The best classifier in this experiment was the Simple 

Logistic algorithm. Although the Naïve-Bayes is a simple 

classifier able to achieve good results, its performance was 

degraded when working with the smallest set of acoustic 

features (those selected by the FW search procedure). One of 

the requirements of this classifier is the use of independent 

parameters but our feature selection procedure was not 

intended to achieve it. For this reason, in future work, we will 

experiment with other methods to select relevant feature 

subsets but also eliminating the redundancy of the data, like 

[29]. 

Future work will be related to the enhancement of the 

linguistic parameterization by considering not only individual 

words but also groups of them in the form of n-grams. With 

these n-grams we will be able to study the relation of more 

complex linguistic structures and the relations between words. 

Also, we will include an automatic speech recogniser module 

to work in a more real scenario. 
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