
Special Issue on Distributed Computing and Artificial Intelligence

-46-

Abstract — Grid infrastructure is a large set of nodes

geographically distributed and connected by a communication. In

this context, fault tolerance is a necessity imposed by the

distribution that poses a number of problems related to the

heterogeneity of hardware, operating systems, networks,

middleware, applications, the dynamic resource, the scalability,

the lack of common memory, the lack of a common clock, the

asynchronous communication between processes. To improve the

robustness of supercomputing applications in the presence of

failures, many techniques have been developed to provide

resistance to these faults of the system. Fault tolerance is intended

to allow the system to provide service as specified in spite of

occurrences of faults. It appears as an indispensable element in

distributed systems. To meet this need, several techniques have

been proposed in the literature. We will study the protocols based

on rollback recovery. These protocols are classified into two

categories: coordinated checkpointing and rollback protocols and

log-based independent checkpointing protocols or message

logging protocols. However, the performance of a protocol

depends on the characteristics of the system, network and

applications running. Faced with the constraints of large-scale

environments, many of algorithms of the literature showed

inadequate. Given an application environment and a system, it is

not easy to identify the recovery protocol that is most appropriate

for a cluster or hierarchical environment, like grid computing.

While some protocols have been used successfully in small scale,

they are not suitable for use in large scale. Hence there is a need

to implement these protocols in a hierarchical fashion to compare

their performance in grid computing. In this paper, we propose

hierarchical version of four well-known protocols. We have

implemented and compare the performance of these protocols in

clusters and grid computing using the Omnet++ simulator.

Keywords — Grid computing, fault tolerance, checkpointing,

message-logging

I. INTRODUCTION

 Molecular biology, astrophysics, high energy physics, those

are only a few examples among the numerous research fields

that have needs for tremendous computing power, in order to

execute simulations, or analyze data. Increasing the computing

power of the machines to deal with this endlessly increasing

needs has its limits. The natural evolution was to divide the

work among several processing units. Parallelism was first

introduced with monolithic parallel machines, but the arrival

of high-speed networks, and especially Wide Area Network

(WAN) made possible the concept of clusters of machines,

which were further extended to large scale distributed

platforms, leading to a new field in computer science, grid

computing.

The first definition of a grid has been given by Foster and

Kesselman in [40]. A grid is a distributed platform which is the

aggregation of heterogeneous resources. They do an analogy

with the electrical power grid. The computing power provided

by a grid should be transparently made available from

everywhere, and for everyone. The ultimate purpose is to

provide to scientific communities, governments and industries

an unlimited computing power, in a transparent manner. This

raised lots of research challenges, due to the complexity of the

infrastructure. Heterogeneity is present at all levels, from the

hardware (computing power, available memory,

interconnection network), to the software (operating system,

available libraries and software), via the administration

policies.

From this definition, several kinds of architectures were

born. One of the most commonly used architecture, referred to

as remote cluster computing, is composed of the aggregation

of many networked loosely coupled computers, usually those

computers are grouped into clusters of homogeneous and well

connected machines. These infrastructures are often dedicated

to scientific or industrial needs, and thus provide large amount

of computing resources, and a quite good stability.

Today, grid computing technologies make it possible to

securely share data and programs for multiple computers,

whether desktop or personal supercomputers. These resources

are networked and shared through software solutions. In recent

years, grid technology has emerged as an important tool for

solving compute-intensive problems within the scientific

community and in industry. To further the development and

adoption of this technology, researchers and practitioners from

different disciplines have collaborated to produce standard

specifications for creating large-scale, interoperable grid

system. The focus of this activity has been the Open Grid

Forum (OGF) [8], but other standard development

organizations have also produced specifications, such as

Performance comparison of hierarchical

checkpoint protocols grid computing

Ndeye Massata NDIAYE
1,2

, Pierre SENS
1
, and Ousmane THIARE

2

 (1) Regal team, LIP6, UPMC Paris Jussieu France

(2) Gaston Berger University of Saint-Louis Senegal

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 5.

-47-

[9][10], that are used in grid systems. To fully transition grid

technology to operational use and to expand the range and

scale of grid applications, grid systems must exhibit high

reliability; i.e. they must be able to continuously provide

correct service [11]. Moreover, it is important that the

specifications used to build these systems fully support reliable

grid services. With the increase in use of grid technology,

achieving these goals will be made more difficult as grid

systems become larger, more heterogeneous in composition,

and more dynamic. Many grids are appearing in the sciences,

production grids are now being implemented in companies and

among agencies: Grid'5000, TeraGrid, Sun Grid, Xgrid ... Grid

computing will allow dynamic sharing of resources among

participants, organizations and businesses in order to be able

to pool, and thus run compute-intensive applications or

treatment of very large volumes of data.

Since the failure probability increases with a rising number

of components, fault tolerance is an essential characteristic of

massively parallel systems. Such systems must provide

redundancy and mechanisms to detect and localize errors as

well as to reconfigure the system and to recover from error

states. A fault tolerant approach may therefore be useful in

order to potentially prevent a faulty node affecting the overall

performance of the application. Fault tolerance appears as an

indispensable element in grid computing. Many protocols for

distributed computing have been designed [1]. These protocols

are classified into four different classes, namely, coordinated

checkpointing, communication induced checkpointing,

independent checkpointing and log-based protocols.

We have implemented and compare the performance of

these protocols in clusters and grid computing using the

Omnet++ simulator [7].

Section II describes the protocols implemented in Omnet++.

In section III, we talk about hierarchical checkpointing for

grids. The experimental setup and results obtained by

executing these protocols are presented in Section IV. In

section V, we present the related work and finally section VI

concludes.

II. CHECKPOINT AND ROLLBACK-RECOVERY PROTOCOLS

Checkpointing is a standard method for the repair of faults

in systems. The idea is to save the state of the system on a

stable periodic to prevent breakdowns (Fig. 1). That way when

you restart after a power failure, the state saved newest

restored and execution resumes its course before the crash.

The overall status of a distributed system is defined by the

union of local states of all processes belonging to the system.

Taking checkpoints is the process of periodically saving the

state of a running process to durable storage. Checkpointing

allows a process that fails to be restarted from the point its

state was last saved, or its checkpoint. If the host processor has

not failed, temporal redundancy can be used to roll back and

restart the process on the same platform. As in other systems,

this method is widely used in grids [36][37][38]. Otherwise, if

the host has failed, the process may be migrated, or

transferred, to a different execution environment where it can

be restarted from a checkpoint (a technique also referred to as

failover). This section begins by discussing checkpoint and

process migration methods used in commercial and science

grid systems that are based on methods used in high-

performance cluster computing. This is followed by discussion

of new methods being developed or adapted for scaled grid

environments, together with related issues that need to be

resolved. Most notable is the issue of finding efficient methods

for checkpointing many concurrent, intercommunicating

processes, so that in the event of failure, they can resume from

a common saved state [39]. Checkpointing can be initiated

either from within grid systems or within applications.

Fig 1: Rollback-Recovery

There are two main classes of protocols: coordinated

checkpointing and message logging.

A. Coordinated checkpointing

Coordinated checkpointing is an attractive approach for

transparently adding fault tolerance to distributed applications

without requiring additional programmer ef- forts. In this

approach, the state of each process in the sys- tem is

periodically saved on stable storage, which is called a

checkpoint of the process. To recover from a failure, the

system restarts its execution from a previous error-free,

consistent global state recorded by the checkpoints of all

processes. More specifically, the failed processes are re-

started on any available machine and their address spaces are

restored from their latest checkpoints on stable storage. Other

processes may have to rollback to their checkpoints on stable

storage in order to restore the entire system to a consistent

state. Coordinated checkpointing simplifies failure recovery

and eliminates domino effects in case of failures by preserving

a consistent global checkpoint on stable storage. However, the

approach suffers from high overhead associated with the

checkpointing process. Two approaches are used to reduce the

overhead: First is to minimize the number of synchronization

messages and the number of checkpoints, the other is to make

the checkpointing process nonblocking.

The protocol requires processes coordinate their checkpoints

to form a consistent global state. A global state is consistent if

it does not include any orphan messages (i.e, a message

received but not already sent). This approach simplifies the

recovery and avoids the domino effect, since every process

always restarts at the resume point later. Also, the protocol

requires each process to maintain only one permanent

checkpoint in stable storage, reducing the overhead due to

storage and release of checkpoints (garbage collection) [1].

Special Issue on Distributed Computing and Artificial Intelligence

-48-

Its main drawback however is the large latency that require

interaction with the outside world, in this case the solution is to

perform a checkpoint after every input / output. To improve

the performance of the backup coordinated, several techniques

have been proposed. We have implemented as non-blocking

coordinated checkpointing.

1) Non-blocking coordinated checkpointing

A nonblocking checkpointing algorithm does not require any

process to suspend its underlying computation. When

processes do not suspend their computations, it is possible for

a process to receive a computation message from an other

process which is already running in a new checkpoint interval.

If this situation is not properly dealt with, it may result in an

inconsistency. For example, in Fig. 2, P2 initiates a

checkpointing process. The example of coordinated

checkpoint non-blocking is that of Chandy and Lamport

algorithm [2]. This algorithm uses markers to coordinate the

backup, and operates under the assumption of FIFO channels.

In [3], a comparison of protocols for coordinated checkpoint

blocking and non-blocking has been made. Experiments have

shown that the synchronization between nodes induced by the

protocol blocking further penalize the performance of the

calculation with a non-blocking protocol. However, using

frequencies of taken checkpoints usual performance of the

blocking approach is better on a cluster to high-performance

communications.

2) Communication induced checkpointing

This protocol defines two types of checkpoints [1]: local

checkpoints taken by processes independently, to avoid the

synchronization of coordinated backup and forced checkpoints

based on messages sent and received and dependency

information carried 'piggyback' on these posts, so to avoid the

domino effect of uncoordinated backup, ensuring the

advancement of online collection. Unlike coordinated

checkpoint protocols, the additional cost due to the medium

access protocol disappears because the protocol does not

require any message exchange to force a checkpoint: this

information is inserted piggyback on the messages exchanged.

B. Message-Logging protocols

Message logging (for example [12] [13] [14] [15] [16] [17]

[18] [19] [20]) is a common technique used to build systems

that can tolerate process crash failure. These protocols

required that each process periodically record its local state

and log the messages it received after having recorded that

state. When a process crashes, a new process is created in its

place: the new process is given the appropriate recorded local

state, and then it is sent the logged messages in the order they

were originally received. Thus, message logging protocols

implement an abstraction of a resilient process in which the

crash of a process is translated into intermittent unavailability

of that process.

All message logging protocols require that the state of a

recovered process be consistent with the states of the other

processes. This consistency requirement is usually expressed

in terms of orphan processes, which are surviving processes

whose states are inconsistent with the recovered state of

crashed process. Thus, in the terminology of message logging,

message logging protocols must guarantee that there are no

orphan processes, either through careful logging of through a

somewhat complex recovery protocol.

The logging mechanism uses the fact that a process can be

modeled as a sequence of deterministic state intervals, each

event begins with a non-deterministic. An event may be

receiving a message, or issued or other event in the process. It

is deterministic if from a given initial state, it always happens

at the same final state. [1]

The principle of Logging is to record on a reliable storage any

occurrences of non-deterministic events to be able to replay

them in recovering from a failure. During execution, each

process performs periodic backups of their states, and

recorded in a log information about messages exchanged

between processes. There are three message-logging

categories: optimistic, pessimistic and causal.

1) Pessimistic message-logging

This protocol was designed under the assumption that a failure

may occur after any nondeterministic event (i.e. message

reception). Then, each message is saved on a stable storage

before to be delivering to the application.

These protocols are often made reference to the synchronized

because when logging process logs an event of non-

deterministic stable memory, it waits for an acknowledgment

to continue its execution.

In a pessimistic logging system, the status of each process can

be recovered independently. This property has four

advantages:

 Process can send messages to the outside without using

a special protocol

 The process restarted at the most recent checkpoint.

 Recovery is simple because the effects of a failure are

limited only on the fail process

 The garbage collector is simple

The main drawback is the high latency of communications,

which results in degradation of the applications response time.

Several approaches have been developed to minimize

synchronizations:

 The use of semiconductor memories such as non-

volatile stable support

 The sender based message logging (SBML) [14] which

preserves the determinant or the message in the

volatile memory of the transmitter, instead of a

remote memory

2) Optimistic message-logging

This protocol uses the assumption that the logging of a

message on reliable support will be complete before a failure

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 5.

-49-

occurs. Indeed, during the process execution, the determinants

of messages are stored in volatile memory, before being saved

periodically on stable support. The storage stable memory is

asynchronous: the protocol does not require the application to

be blocked during the backup memory stable. Induced latency

is then very low.

However, a failure may occur before the messages are saved

on stable storage. In this case, the information stored in

volatile memory of the process down is lost and the messages

sent by this process are orphaned. This can produce a domino

effect of rollbacks, which increases the recovery time.

3) Causal message-logging

This protocol combines the advantages of both previous

methods. As optimistic logging, it avoids the synchronized

access to stable, except during the input / output. As

pessimistic logging, it allows the process to make interactions

with the outside world independently, and does not create

process orphan. Causal logging protocols piggyback

determinants of messages previously received on outgoing

messages so that they are stored by their receivers.

III. HIERARCHICAL CHECKPOINTING FOR GRIDS

The architecture of a grid can be defined as a set of clusters

connected by a WAN-type network. The cluster consists of

multiple nodes connected by a broadband network. We adopt a

hierarchical scheme. In each cluster, there is one leader

connected to all other nodes of its cluster. All leaders are

connected together (Fig. 2).

The leader assumes the role of intermediary in the inter-cluster

communications. The backup takes place in four phases:

1) Initialization: an initiator sends a checkpoint-request to its

leader

2) Coordination of leaders: the leader transfers the

checkpoint request to the other leaders

3) Local checkpointing : Each leader initiates a checkpoint in

its cluster

4) Termination: When local checkpoint is over, each leader

sends an acknowledgement to the initial leader.

The recovery follows the same rules as the backup:

coordination phase of the leaders, and a phase of recovery

limited to the cluster.

Fig 2: Hierarchical checkpointing for grids

IV. PERFORMANCE EVALUATION

In the most previous studies, fault tolerance algorithms were

tested in flat architectures, namely in a cluster. The aim of our

study is to determine which algorithm best suits the

architectural grid. To this aim, we implement the seven

checkpoint algorithms described in Section 2: the 3 main

messages logging protocols (represented as “ML” in the

figures), Chandy-Lamport, Communication induced protocol

(CIC in figures), and blocking coordinated checkpointing.We

compare the performance of these algorithms in cluster and

grid environments. We use the Omnet++ simulator [7]. The

cluster is configured with 25 nodes. For the grid configuration,

25 nodes were uniformly spread in 5 clusters. The intra-cluster

delay is fixed to 0.1 ms and the inter-cluster delay is fixed to

100ms. Our tests were carried out with 50 application

processes. Messages between processes were randomly

generated.

A. Failure free performance

Fig. 3 presents the performance of the algorithms in both

configurations. It is obvious that the time taken to run an

application with checkpointing is greater than the time taken

for it to run without checkpoint. Protocol overhead checkpoint

coordinated non-blocking is less compared to other approaches

to that phase synchronization is limited to the cluster and the

second concerns only the leaders of each cluster. The

additional cost of communications-driven approach is due to

the forced checkpoints during execution. Logging protocols

are sensitive to characteristics of the application, especially in

communications-intensive applications. Indeed, they produce a

large overhead due to the backup of messages on stable

storage and the increasing size of messages to piggyback

determinants.

Special Issue on Distributed Computing and Artificial Intelligence

-50-

Fig. 3: Failure free performance, Checkpoint interval=180s, Execution

time=900s

B. Recovery time

The recovery time depends on the number of checkpoints

maintained by the protocol and the number of rollbacks. In

coordinated checkpointing and pessimistic logging, recovery is

simplified because the system is rolled back only to the last

recent checkpoint. In the grid approach, the additional cost of

recovery decreases slightly. Indeed, if the faulty node has no

dependencies with nodes of other cluster nodes, the fault is

confined to the cluster node's fault. So all the nodes of the grid

do not perform the recovery procedure. By cons, if the inter-

cluster communications are intensive, the overhead increases

as in the case of causal and optimistic logging.

Fig.4: Overhead of recovery,checkpoint interval=180s,execution

time=900s,numbers of fault=10

C. Number of rollbacks

For coordinated checkpoint protocols, all processes must

resume during recovery. The logging protocol reduces the

number of rollback. This number is minimal in pessimistic

approach since only faulty processes need to be rolled back.

For the other logging protocol, this number depends on the

information stored in backups and in the main memory of

correct processes.

Fig. 5: Number of process, Checkpoint interval=180s, Execution time=900s,

Numbers of fault= 1

V. RELATED WORK

Paul et a.l [4] proposes a hierarchical protocol based on

coordinated checkpoint. This protocol is designed for

hierarchical networks like the Internet. The experiments were

made on a network of four clusters of eight nodes. Authors

consider three roles of the different processes. Initiator is the

process that initiates checkpoint sessions. One Leader process

coordinates the activities within each cluster, in line with the

instructions of the Initiator. Follower are the rest of the system

processes, they follow the instructions of their Leader. The

checkpoint protocol is hierarchical in two phases. The first

phase is the execution of the algorithm coordinated checkpoint

limited to the cluster. During this phase the processes are

blocked and establish a consistent checkpoint. The second

phase is a coordinated checkpoint but the leaders are the only

participants, with the initiator, which acts as a coordinator. The

experiments showed that the overhead of checkpointing in the

hierarchical approach is lower than in the standard “flat”

coordinated protocol. However the protocol hierarchy is

sensitive to the frequency of messages between clusters.

Indeed the extra cost of checkpoint increases progressively as

the frequency of messages increases, and tends towards that of

the checkpoint protocol standard.

Bhatia et al. [5] propose a hierarchical causal logging protocol

that addresses the scalability problems of causal logging.

Indeed, the traditional causal logging algorithms are used

successfully in small-scale systems. They are known to provide

a low overhead during failure-free executions sending no extra

messages. But they are not scalable since each application

process needs to maintain a data structure, which grows

quadratically with the number of processes in the system.

Authors reduce the data structure by an exponential amount.

They propose a hierarchical approach using a set of proxies

spread on the network that act as a distributed cache. This

approach highly reduces the amount of information

piggybacked on each messages. However, the use of proxies

decreases the performance of recovery since the recovery

information is spread on the proxies.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 5.

-51-

Monnet et al. [6] propose a hierarchical checkpointing

protocol, which combines coordinated checkpointing inside

clusters and a checkpoint induced by communications between

clusters. Simulation of the protocol shows that it generates a

high number of forced checkpoints when the communication

rate between clusters increases. Then, this approach is more

suitable for code coupling applications where communications

are mainly local inside clusters.

Several techniques are used to implement fault tol- erance in

message-passing systems. Simple replication is not relevant for

such systems, since if the system is designed to tolerate n

faults, every component must be replicated n times and the

computation resources are thus divided by n. The two main

techniques used are message- logging and coordinated

checkpoints. A review of the different techniques can be fount

in [2].

Message-logging consists in saving the messages sent between

the computation nodes, and replay them if a failure occurs. It is

based on the piecewise deterministic assumption: the

execution of a process is a sequence of deterministic events

separated by non deterministic ones [14]. With this

assumption, replaying the same sequence of non-deterministic

events at the same moment makes possible the recovering of

the state preceding a failure. Thus these protocols consist for

every process to save

all its non-deterministic events in a reliable manner and to

checkpoint regularly. When a failure occurs, only the crashed

process is restarted from its last checkpoint, and it recovers its

last state after having replayed all saved events. There is no

need to coordinate the checkpoints of the different processes.

No orphan processes (i.e. processes that are waiting for a

message that will never come, since the expected sender is

more advanced into its execution) are created. The recover

mechanism is more complex than with coordinated

checkpoints as a process shall obtain its past events and be

able to replay them. Moreover the overhead induced during

failure-free execution decreases the performances in not very

faulty environments, such as clusters [23]. Furthermore, it can

lead to the domino effect [24]: a process that rollbacks and that

need a message to be replayed, asks another process to

rollback. This process does, and asks another one to do so, etc.

The execution can be restarted from the beginning because of

cascading rollbacks and so the benefits of fault tolerance are

lost.

Message-logging protocols are classified into three categories :

optimistic, pessimistic and causal proto- cols. Optimistic

protocols assume that no failure will occur between the

moment a process executes a non- deterministic event and the

moment this event is saved on a reliable storage support. So

when a process executes a non deterministic event, it sends it

to the reliable storage support then continues its computation

without waiting any acknowledgment [22]. The induced

overhead during failure-free execution is then quite small, but

the optimistic hypothesis introduces the risk to get an

incoherent state if it is not realized. Pessimistic protocols do

not make this hypothesis, and the processes wait for an

acknowledgment from the reliable storage support to continue

their execution [23]. The induced overhead during fault-free

execution is then important. The third category of message-

logging protocols tries to gather the advantages of both

optimistic and pessimistic protocols: low overhead during

fault-free execution, and no risk to recover into an incoherent

state. It consists in saving the causality information on a

reliable storage, but does not need to wait for the

acknowledgment from this medium by piggybacking these

information in the messages until the acknowledgments are

received. A description can be found in [24], and another

causal protocol based on dependencies graphs is described in

[25]. A metric to evaluate the performances of message-

logging protocols can be found in [26].

Coordinated checkpointing has been introduced by Chandy

and Lamport in [27]. This technique requiresthat at least one

process sends a marker to notify the other ones to take a

snapshot of their local state and then form a global checkpoint.

The global state obtained from a coordinated checkpoint is

coherent, allowing the system to recover from the last full

completed checkpoint wave. It does not generate any orphan

processes nor domino effect, but all the computation nodes

must rollback to a previous state. The recover process is

simple, and a simple garbage collection reduces the size

needed to store the checkpoints.

In blocking checkpointing protocols, the processes stop their

execution to perform the checkpoint, save it on a reliable

storage support (that can be distant), send an acknowledgment

to the checkpoint initiator and wait for its commit. They

continue the execution only when they have received this

commit. The initiator sends the commit only when it has

received all the acknowledg- ments from all the computing

nodes to make sure that the global state that has been saved is

fully completed. As claimed in [28], blocking checkpoints

induce an important latency and non-blocking checkpoints are

then more efficient.

Non-blocking coordinated checkpoints with dis- tributed

snapshots consists in taking checkpoints when a marker is

received. This marker can be received from a centralized

entity, that initiates the checkpoint wave, or from another

computation node which has itself received the maker and

transmits the checkpoint signal to the other nodes. This

algorithm assumes that all the communication channels comply

with the FIFO property. Therefore the computation processes

do not have to wait for the other ones to finish their

checkpoint, and then the delay induced by the checkpoint

corresponds only to the local checkpointing.

Communication-induced checkpoint protocols (CIC) perform

uncoordinated checkpoints but avoid the domino effect [29].

Unlike coordinated checkpoints, it does not require additional

messages for a process to know when it has to perform a local

checkpoint. The information about when a local checkpoint

must be performed are piggybacked in the messages

exchanged between the processes. Two kinds of checkpoints

are defined: local and forced. Local checkpoints are decided

by the local process, forced ones are decided by the process

accord- ing to the information piggybacked in the messages.

The forced ones avoid the domino effect and ensure then the

progress of the recovery line, i.e. the set of checkpoints of all

the processes describing a coherent global state. When a

Special Issue on Distributed Computing and Artificial Intelligence

-52-

failures occurs, all the processes rollback to their last stored

local checkpoint and then to the last recovery

line. CIC is an interesting theoretical solution but it has been

shown in [30], using NPB 2.3 benchmark suite [31], that it is

not relevant for typical cluster applications.

Several MPI libraries are fault tolerant. A review can be found

in [32]. Coordinated checkpointing has been implemented in

several MPI implementations on different levels of the

application.

LAM/MPI [33], [34] implements the Chandy-Lamport

algorithm for a system-initiated global checkpointing. When a

checkpoint must be performed, the mpirun process receives a

checkpoint request from a user or from the batch scheduler. It

propagates the checkpoint request to each MPI process to

initiate a checkpoint wave. As in our blocking Chandy-

Lamport implementation, each MPI process then coordinates

itself with all the others, flushing every communication

channel, in order to reach a consistent global state. If a failure

occurs, mpirun restarts all the processes from their last stored

state. Finally, processes rebuild their communication channels

with the other ones and resume their execution.

VI. CONCLUSION

In this paper, we compare checkpoint protocols and message

logging in grid computing. We propose a hierarchical

approach to combine different algorithms. We find that the

protocols that require the recovery of all processes in case of

single failure are poorly suited to systems with many

processes. The message logging protocols are more suitable

for large configuration with the exception of some causal

logging approach, which induces communications to all

processes during the recovery. Non-blocking coordinated

checkpoint are not sensitive to the rate of communications.

They therefore represent an attractive solution for applications

and highly interconnected grid architectures by reducing the

number of markers sent during the synchronization phase.

REFERENCES

[1] E. N. (MOOTAZ) ELNOZAHY, LORENZO ALVISI, YI-MIN WANG,

DAVID B. JOHNSON, A Survey of Rollback-Recovery Protocols in

Message-Passing Systems, ACM Computing Surveys, Vol. 34, No. 3,

September 2002, pp. 375–408.

[2] Distributed snapshots: Determining global states of distributed systems.

ACM Trans. Comput. Syst. 31, 1, 63–75.

[3] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E.

Rodriguez, and F. Cappello. Blocking vs. non-blocking coordinated

checkpointing for large-scale fault tolerant MPI. In SC '06: Proceedings

of the 2006 ACM/IEEE conference on Supercomputing, page 127, New

York, NY, USA, 2006. ACM.

[4] Himadri S. Paul, Arobinda Gupta R. Badrinath, Hierarchical

Coordinated Checkpointing Protocol. In International Conference on

Parallel and Distributed Computing Systems, pages 240-245, November

2002

[5] K. Bhatia, K. Marzullo, and L. Alvisi. “Scalable causal Message

Logging for Wide-Area Environments,” Concurency and Computation:

Practice and Experience, 15(3), pp. 873-889, Aug. 2003.

[6] S. Monnet, C. Morin, R. Badrinath, “Hybrid Checkpointing for Parallel

Applications in cluster Federations”, Proc. 4th IEEE/ACM International

Symposium on Cluster Computing and the Grid, Chicago, IL, USA, pp.

773-782, April 2004.

[7] http://www.omnetpp.org

[8] Open Grid Forum. http://ogf.org

[9] Organization for the Advancement of Structured Information Standards

(OASIS). http://www.oasis-open.org

[10] Internet Engineering Task Force. http://www.ietf.org

[11] A. Avizienis, J. Laprie, B. Randell and C. Landwehr. “Basic concepts

and taxonomy of dependable and secure computing”, IEEE Transactions

on Dependable and Secure Computing, 1(1), pp. 11-33, 2004

[12] A. Borg, J. Baumbach, and S. Glazer, “A message system supporting

fault-tolerance”, In Proceedings of the Symposium on Operating

Systems Principles, ACM SIGOPS, pp. 90-99, Oct. 1983

[13] M. L. Powell, and D. L. Presotto, “Publishing: A reliable broadcast

communication mechanism”, In Proceedings of the Ninth Symposium

on Operating System Principle, ACM SIGOPS, pp. 100-109, Oct. 1983

[14] R. B. Strom and S. Yemeni, “Optimistic recovery in distributed system”

ACM Transactions on Computer Systems, 3(3), pp. 204-226, April

1985

[15] D. B. Johnson and W. Zwaenepoel, “Sender-based message logging”, In

Digest of Papers: 17 Annual International Symposium on Fault-Tolerant

Computing, IEEE Computer Society, pp. 14-19, June 1987

[16] R. E. Strom, D. F. Bacon and S. A. Yemeni, “Volatile logging in n-

fault-tolerant distributed systems”, In Proceedings of the Eighteenth

Annual International Symposium on Fault-Tolerant Computing, pp. 44-

49, 1988

[17] A. P. Sistla and J. L. Welch, “Efficient distributed recovery using

message logging”, In Proceedings of the Eighth Symposium on

Principles of Distributed Computing, ACM SIGACT/SIGOPS, pp. 223-

238, Aug. 1989

[18] D. B. Johnson, and W. Zwaenepoel, “Recovery in distributed systems

using optimistic message logging and checkpointing”, Journal of

Algorithm, 11: pp. 462-491, 1990

[19] S. Venkatesan, and T. Y. Juang, “Efficient algorithms for optimistic

crash recovery”, Distributed Computing, 8(2): pp. 105-114, June 1994

[20] E. N. Elnozahy and W. Zwaenepoel, “In the use and implementation of

message logging”, In Digest of Papers: 24 Annual International

Symposium on Fault-Tolerant Computing, IEEE Computer Society, pp.

298-307, June 1994

[21] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik, and F. Cappello,

“Improved message logging versus improved coordinated checkpointing

for fault tolerant MPI,” in IEEE International Conference on Cluster

Computing (Cluster 2004). IEEE CS Press, 2004

[22] B. Randell, “System structure for software fault tolerance,” IEEE

Transactions on Software Engineering, vol. SE-1, no. 2, pp. 220–232,

1975

[23] A . Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and

F. Magniette, “MPICH-V2: a fault tolerant MPI for volatile nodes based

on pessimistic sender based mes- sage logging,” in High Performance

Networking and Computing (SC2003), Phoenix USA. IEEE/ACM,

November 2003

[24] A. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello,

“Coordinated checkpoint versus message log for fault tolerant MPI,” in

IEEE International Conference on Cluster Computing (Cluster 2003).

 IEEE CS Press, December 2003

[25] E. N. Elnozahy and W. Zwaenepoel, “Replicated distributed processes

in manetho,” in 22nd International Symposium on Fault Tolerant

Computing (FTCS-22). Boston, Massachusetts: IEEE Computer

Society Press, 1992, pp. 18–27

[26] L. Alvisi and K. Marzullo, “Message logging: Pessimistic, optimistic,

causal, and optimal,” IEEE Trans. Software Eng, vol. 24, no. 2, pp.

149–159, 1998

[27] K. M. Chandy and L.Lamport, “Distributed snapshots : Determining

global states of distributed systems,” in Transactions on Computer

Systems, vol. 3(1). ACM, February 1985, pp. 63–75

[28] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance

of consistent checkpointing,” in Symposium on Reliable Distributed

Systems, 1992, pp. 39–47

[29] J.-M. Helary, A. Mostefaoui, and M. Raynal, “Communication- induced

determination of consistent snapshots,” IEEE Transac- tions on

Parallel and Distributed Systems, vol. 10, no. 9, pp. 865–877, 1999

[30] L. Alvisi, E. Elnozahy, S. Rao, S. A. Husain, and A. D. Mel, “An

analysis of communication induced checkpointing,” in 29th Symposium

on Fault-Tolerant Computing (FTCS’99). IEEE CS Press, june 1999

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 5.

-53-

[31] N. A. R. center, “Nas parallel benchmarks,”

1997http://science.nas.nasa.gov/Software/NPB/

[32] W. Gropp, and E. Lusk, “Fault tolerance in MPI Program”, Special issue

of the Journal of High Performance Computing Applications (IJHPCA),

2002

[33] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster

Environment for MPI,” in Proceedings of Supercomputing Sym-

posium, 1994, pp. 379–386

[34] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P.

Hargrove, and E. Roman, “The LAM/MPI checkpoint/restart

framework: System-initiated checkpointing,” in Proceedings, LACSI

Symposium, Sante Fe, New Mexico, USA, October 2003

[35] S. Zanikolas, and R. Sakellariou, “A taxonomy of Grid monitoring

systems”, Future Generation Computer System, 21(1), pp. 163-188,

2005

[36] H. Jitsumoto, T. Endo, and S. Matsuoka, “ABARIS : An adaptable fault

detection/recovery component framework for MPI”, Proceedings of the

IEEE International Parallel and Distributed Processing Symposium,

IEEE Computer Society Press : Los Alamitos, CA, pp. 1_8, 2007

[37] H. Jin, W. Qiang, and D. Xou, “DRIC : Dependable Grid Computing

framework”, IEICE Transactions on Information and System : E89-

D(2), pp. 612-623, 2006

[38] E. Elnozahy, D. Johnson, and Y. Wang, “A survey of rollback recovery

protocols in message passing systems”, ACM Computing Surveys,

34(3), pp. 375-408, 2002

[39] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, ISBN 1558609334, 2003

Ndeye Massata Ndiaye received his B.Sc and M. Sc in Cumputer science

from Gaston Berger University of Saint and M.Phil in Computer Science

from Cheikh Anta Diop university of Dakar in Senegal. She is now an

assistant professor in university of Bambey Senegal.

Pierre Sens is a full professor at the University of Paris 6 since 2003. He

received his PhD in 1994 and the "Habilitation à Diriger des Recherches" in

2000. Since 2002, he leads Regal project which is a joint research team

between LIP6 and INRIA, France. He has been author and co-author of

published papers in several books, journals and recognized international

conferences and symposiums.

Ousmane Thiare. Received a PhD in computer science (Distributed systems)

at 2007 from the university of Cergy Pontoise, France. He is an associate

professor in Gaston Berger University of Saint-Louis Senegal. He has been

co-author of published papers in several journals and recognized international

conferences and symposiums.

http://regal.lip6.fr/

